The error message here implies that we can only call `self.persistent_load(...)` for ints or tuples, but due to the second part of the type check being inverted, weights-only unpickler will throw an exception iff `pid` is an int.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161661
Approved by: https://github.com/Skylion007
Fixes#152985
In #152985, users are confused why weights-only load failed even though functions were registered in safe_globals.
Because the error message doesn't make the critical failure reason clear, they couldn't figure out only some functions are missing from safe_globals registration.
This fix is to make that point more clear.
Here's the new errror message, the blocked function information will be following the warning message with a line breaker to make it stand out.
```
_pickle.UnpicklingError: Weights only load failed. In PyTorch 2.6, we changed the default value of the `weights_only` argument in `torch.load` from `False` to `True`. Re-running `torch.load` with `weights_only` set to `False` will likely succeed, but it can result in arbitrary code execution. Do it only if you got the file from a trusted source.
Please file an issue with the following so that we can make `weights_only=True` compatible with your use case: WeightsUnpickler error:
Trying to call reduce for unrecognized function <built-in method _unpickle of type object at 0x641e8a57d1f0> which belongs to <class 'zoneinfo.ZoneInfo'>
Check the documentation of torch.load to learn more about types accepted by default with weights_only https://pytorch.org/docs/stable/generated/torch.load.html.
To execute this test, run the following from the base repo dir:
python test/test_serialization.py TestSerialization.test_weights_only_with_safe_zoneinfo_unpickle_registration_success
This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/159935
Approved by: https://github.com/mikaylagawarecki
This is a redo of https://github.com/pytorch/pytorch/pull/147408 which added validation at the end of the legacy constructor calls.
The reason why I didn't land that was because in `legacy_load`, constructor would be called before storages of indices/values are set. So the tensor would not actually be validated.
Technically, torch.sparse.{Foo}Tensor should not even be called by our rebuild process since afaict this was the first PR that added support for sparse tensor serialization https://github.com/pytorch/pytorch/pull/27062 and it already uses `_rebuild_sparse_tensor` (which would add the rebuilt tensor to the list to validate), but torch.sparse.FooTensor is allowlisted
This PR adds tensors constructed as such to the list to validate at the end of torch.load.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147759
Approved by: https://github.com/albanD
- Fixes#146814
Change
```python
for f in _marked_safe_globals_set:
module, name = f.__module__, f.__name__
```
to
```python
for f in _marked_safe_globals_set:
module, name = f.__module__, f.__qualname__
```
for avoiding same key string overwrite.
A test is also added.
```
python test/test_serialization.py TestSerialization.test_serialization_nested_class
```
- Fixes#146886
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146815
Approved by: https://github.com/mikaylagawarecki
Fixes#142144
A global x is saved in checkpoint as `GLOBAL x.__module__ x.__name__`. So , after allowlisting a GLOBAL it is expected to match any GLOBAL instruction of the form `GLOBAL x.__module__ x.__name__` but there are edge cases when for the same API from the same module, what `__module__` gives changes between versions which prevents users from allowlisting the global.
In this case, in numpy < 2.1
```
torch.save("bla", np_array)
# checkpoint has GLOBAL "np.core.multiarray" "_reconstruct"
```
In np version 2.1
```
with safe_globals([np.core.multiarray._reconstruct]):
torch.load("bla")
```
np.core.multiarray._reconstruct.__module__ gives "np._core.multiarray" (note the extra _ before core) and see what was done [here](https://github.com/numpy/numpy/blob/main/numpy/core/multiarray.py)
Since the dictionary to access safe globals is keyed on "{foo.__module__}.{foo.__name__}", __module__, __name__ will no longer match that in the checkpoint so "np.core.multiarray._reconstruct" can no longer be properly allowlisted (instead np._core.multiarray._reconstruct is a key in the dict).
We allow `add_safe_globals/safe_globals` to optionally take tuples of (global, str of module.name) to workaround such (odd/edge case) situations.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/142153
Approved by: https://github.com/albanD
Per discussion with @malfet, only allow weights_only unpickler to load NJT if `torch.nested` and `torch._dynamo` are imported
(this is slightly weird as technically `torch.nested` is actually imported by default and `torch._dynamo.decorators._DimRange` is actually what needs to be imported)
we can't import this from `torch.nested` as this would
- undo dynamo lazy import
- cause circular import
===========================
Redo of https://github.com/pytorch/pytorch/pull/140304 caused issues as `torch.nested._internal.foo` needs to be imported, which causes issues like
```python
torch/_weights_only_unpickler.py", line 339, in load
if full_path in _get_allowed_globals():
torch/_weights_only_unpickler.py", line 188, in _get_allowed_globals
torch.nested._internal.nested_tensor.NestedTensor
AttributeError: module 'torch.nested' has no attribute '_internal'
```
**This likely wasn't caught in our CI because imports are global during unit tests(?), so we use subprocess to properly test this time**
Differential Revision: [D65961691](https://our.internmc.facebook.com/intern/diff/D65961691)
@jbschlosser
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140739
Approved by: https://github.com/malfet
Test uses `torch.load()` for DTensor state_dict:
```
python3 test/distributed/fsdp/test_fsdp_dtensor_state_dict.py -k TestFSDPWithDeviceMeshAndDTensor
```
In this PR, we add `DTensor` related class to allowed safe globals so we can still `torch.load()` a `DTensor` with `weights_only=True`. We also need this for backward compatibility, since `DTensor` can be `torch.load()` before `weights_only` defaults to True. Without the change, `torch.load()` a `DTensor` would run into the following error:
```
_pickle.UnpicklingError: Weights only load failed. This file can still be loaded, to do so you have two options, do those steps only if you trust the source of the checkpoint.
(1) Re-running `torch.load` with `weights_only` set to `False` will likely succeed, but it can result in arbitrary code execution. Do it only if you got the file from a trusted source.
(2) Alternatively, to load with `weights_only=True` please check the recommended steps in the following error message.
WeightsUnpickler error: Unsupported global: GLOBAL torch.distributed.tensor.DTensor was not an allowed global by default. Please use `torch.serialization.add_safe_globals([DTensor])` or the `torch.serialization.safe_globals([DTensor])` context manager to allowlist this global if you trust this class/function.
```
The unit test failure is not being captured by CI when `weights_only` being rolled out for `torch.load()` by default. This is due to another issue that the test communication wrapper `with_comms` let unit tests silently pass without capturing failure due to a recent change (https://github.com/pytorch/pytorch/pull/138108). This wrapper issue is going to be fixed
by a separate PR https://github.com/pytorch/pytorch/pull/139637.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139949
Approved by: https://github.com/mikaylagawarecki
This is tested in PR stacked above in
```python
python test/distributed/fsdp/test_fsdp_state_dict.py TestFSDPStateDict.test_torch_save_load
```
We cannot depend on whether `hasattr(..., __slots__)` to know whether a BUILD instruction has slotstate. For example, if a class subclasses ABC `hasattr(__slots__)` will be `True` but there might be no slots (and hence `state` will not be a tuple). So revert #138936 to following the pickle library's code
```python
>>> from abc import ABC
>>> hasattr(ABC, "__slots__")
True
```
So
```python
import torch
from abc import ABC
from dataclasses import dataclass
class Foo(ABC):
pass
class FooWrapper(Foo):
def __init__(self, x, y):
self.x = x
self.y = y
f = FooWrapper(1, 2)
torch.save(f, "temp.pt")
with torch.serialization.safe_globals([FooWrapper]):
torch.load("temp.pt")
```
Would fail on the previous code with
```
File "/data/users/mg1998/pytorch/torch/serialization.py", line 1934, in _load
result = unpickler.load()
File "/data/users/mg1998/pytorch/torch/_weights_only_unpickler.py", line 366, in load
for k, v in slotstate.items():
```
As there is actually no slotstate
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139541
Approved by: https://github.com/malfet
ghstack dependencies: #138936, #139221, #139433
Related: https://github.com/pytorch/xla/issues/7799#issuecomment-2375818263
Follow ups: Do the same for maia and mtia
## Motivation
With the move to `weights_only` by default, we are making an explicit decision not to allowlist GLOBALs required to deserialize `numpy` tensors by default. The implication is that backends relying on numpy for serialization will fail loudly when `torch.load` flips `weights_only`.
However, we make the observation that this dependency on numpy was legacy and is not actually needed anymore. So we can remove it, which aligns with our weights_only strategy.
## Why is this ok?
The following comment on why numpy is necessary for serialization is legacy
c87c9f0a01/torch/_tensor.py (L303-L312)
We no longer do the following, though it was the case 5 years ago in the PR that added this
> CPU storage is reconstructed with randomly initialized data, moved onto backend device, and then storage is updated to the serialized content
**Instead what now happens is that CPU storage is constructed with data from the file **and then** moved onto backend device.**
Old behavior (`legacy_load`): 67adda891a/torch/serialization.py (L620)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137444
Approved by: https://github.com/albanD
Clarify that `add_safe_globals` will allow types for these instructions
Some types do not appear as `GLOBAL` and are only caught in `BUILD`, example from hf slack is `numpy.dtypes.UInt32DType`
```python
import torch
import numpy as np
from tempfile import TemporaryDirectory
from pathlib import Path
from codecs import encode
torch.serialization.add_safe_globals([encode, np.dtype, np.core.multiarray._reconstruct, np.ndarray])
with TemporaryDirectory() as tempdir:
p = Path(tempdir)
r2 = np.random.get_state()
torch.save(r2, p / "r2.pkl")
torch.load(p / "r2.pkl", weights_only=True)
```
Yields (error comes from BUILD)
```
UnpicklingError: Weights only load failed. Re-running `torch.load` with `weights_only` set to `False` will likely succeed, but it can result in arbitrary code execution. Do it only if you got the file from a trusted source.
Please file an issue with the following so that we can make `weights_only=True` compatible with your use case: WeightsUnpickler error: Can only build Tensor, parameter or OrderedDict objects, but got <class 'numpy.dtypes.UInt32DType'>
```
The reasoning is that `numpy.dtypes.UInt32DType` is constructed via `REDUCE` with `func =<class 'numpy.dtype'>` and `args= ('u4', False, True)`, clarify the error message that doing `add_safe_globals` on these will also allow them
After this PR error message becomes
```
_pickle.UnpicklingError: Weights only load failed. Re-running `torch.load` with `weights_only` set to `False` will likely succeed, but it can result in arbitrary code execution. Do it only if you got the file from a trusted source.
Please file an issue with the following so that we can make `weights_only=True` compatible with your use case: WeightsUnpickler error: Can only build Tensor, Parameter, OrderedDict or types allowlisted via `add_safe_globals`, but got <class 'numpy.dtypes.UInt32DType'>
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134346
Approved by: https://github.com/albanD
Fixes#133163
Debugged in collaboration with @hariveliki
The `byte` type is demanding the global `_codecs.encode`. That means, the following currently works:
```python
import torch
torch.save(b'hello', '/tmp/dummy.pth')
torch.serialization.add_safe_globals([_codecs.encode])
torch.load('/tmp/dummy.pth', weights_only=True)
```
Similarly, `bytearray` needs `builtins.bytearray`.
Following the `torch.loads` docs promise, both types should be supported without `add_safe_globals` as they are both primitive types:
> weights_only: Indicates whether unpickler should be restricted to
> loading only tensors, primitive types, dictionaries
> and any types added via :func:`torch.serialization.add_safe_globals`.
This PR adds both `_codecs.encode` and `builtins.bytearray` to `_get_allowed_globals` and test for saving and loading of both types with and without `weights_only`.
Co-authored-by: hariveliki <98284163+hariveliki@users.noreply.github.com>
Co-authored-by: mikaylagawarecki <mikaylagawarecki@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133189
Approved by: https://github.com/mikaylagawarecki
Also bold certain text in the error message as suggested
<img width="3000" alt="Screenshot 2024-07-19 at 5 56 48 PM" src="https://github.com/user-attachments/assets/378f20c5-c6b2-4e53-8eaf-0bd26c3a6b60">
With a GLOBAL like `os.execv` the error message is now as such
```python
File "/data/users/mg1998/pytorch/torch/serialization.py", line 1256, in load
raise pickle.UnpicklingError(_get_wo_message(str(e))) from None
_pickle.UnpicklingError: Weights only load failed. Re-running `torch.load` with `weights_only` set to `False` will likely succeed, but it can result in arbitrary code execution. Do it only if you got the file from a trusted source.
Trying to load unsupported GLOBAL posix.execv whose module posix is blocked.
Check the documentation of torch.load to learn more about types accepted by default with weights_only https://pytorch.org/docs/stable/generated/torch.load.html.
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131259
Approved by: https://github.com/malfet, https://github.com/albanD
As @vmoens pointed out, the current error message does not make the "either/or" between setting `weights_only=False` and using `add_safe_globals` clear enough, and should print the code for the user to call `add_safe_globals`
New formatting looks like such
In the case that `add_safe_globals` can be used
```python
>>> import torch
>>> from torch.testing._internal.two_tensor import TwoTensor
>>> torch.save(TwoTensor(torch.randn(2), torch.randn(2)), "two_tensor.pt")
>>> torch.load("two_tensor.pt", weights_only=True)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/data/users/mg1998/pytorch/torch/serialization.py", line 1225, in load
raise pickle.UnpicklingError(_get_wo_message(str(e))) from None
_pickle.UnpicklingError: Weights only load failed. This file can still be loaded, to do so you have two options
(1) Re-running `torch.load` with `weights_only` set to `False` will likely succeed, but it can result in arbitrary code execution. Do it only if you got the file from a trusted source.
(2) Alternatively, to load with `weights_only=True` please check the recommended steps in the following error message.
WeightsUnpickler error: Unsupported global: GLOBAL torch.testing._internal.two_tensor.TwoTensor was not an allowed global by default. Please use `torch.serialization.add_safe_globals([TwoTensor])` to allowlist this global if you trust this class/function.
Check the documentation of torch.load to learn more about types accepted by default with weights_only https://pytorch.org/docs/stable/generated/torch.load.html.
```
For other issues (unsupported bytecode)
```python
>>> import torch
>>> t = torch.randn(2, 3)
>>> torch.save(t, "protocol_5.pt", pickle_protocol=5)
>>> torch.load("protocol_5.pt", weights_only=True)
/data/users/mg1998/pytorch/torch/_weights_only_unpickler.py:359: UserWarning: Detected pickle protocol 5 in the checkpoint, which was not the default pickle protocol used by `torch.load` (2). The weights_only Unpickler might not support all instructions implemented by this protocol, please file an issue for adding support if you encounter this.
warnings.warn(
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/data/users/mg1998/pytorch/torch/serialization.py", line 1225, in load
raise pickle.UnpicklingError(_get_wo_message(str(e))) from None
_pickle.UnpicklingError: Weights only load failed. Re-running `torch.load` with `weights_only` set to `False` will likely succeed, but it can result in arbitrary code execution. Do it only if you got the file from a trusted source.
Please file an issue with the following so that we can make `weights_only=True` compatible with your use case: WeightsUnpickler error: Unsupported operand 149
Check the documentation of torch.load to learn more about types accepted by default with weights_only https://pytorch.org/docs/stable/generated/torch.load.html.
```
Old formatting would have been like:
```python
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/data/users/mg1998/pytorch/torch/serialization.py", line 1203, in load
raise pickle.UnpicklingError(UNSAFE_MESSAGE + str(e)) from None
_pickle.UnpicklingError: Weights only load failed. Re-running `torch.load` with `weights_only` set to `False` will likely succeed, but it can result in arbitrary code execution. Do it only if you get the file from a trusted source. Alternatively, to load with `weights_only` please check the recommended steps in the following error message. WeightsUnpickler error: Unsupported global: GLOBAL torch.testing._internal.two_tensor.TwoTensor was not an allowed global by default. Please use `torch.serialization.add_safe_globals` to allowlist this global if you trust this class/function.
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129705
Approved by: https://github.com/albanD, https://github.com/vmoens
ghstack dependencies: #129239, #129396, #129509
Since we use [`DEFAULT_PROTOCOL=2`](https://github.com/pytorch/pytorch/blob/main/torch/serialization.py#L62), some functions/classes that were renamed from python 2-->3 will be pickled with their python2 name. This PR ensures that when a mod `GLOBAL <python2_mod>.<python2_name> ` is encountered, [following the strategy used by pickle](https://github.com/python/cpython/blob/main/Lib/pickle.py#L1590C13-L1593C63) it is properly mapped to `<python3_mod>.<python3_name>`.
This fix ensures that `add_safe_globals` works properly for such functions/classes (i.e. users will allowlist the python3 func and the weights_only unpickler will do the appropriate translation when checking whether a class was allowlisted).
An example is as follows:
`__builtin__` was named to `builtins`, see the [release notes for Python 3.0](https://docs.python.org/3/whatsnew/3.0.html)
> Renamed module `__builtin__` to [`builtins`](https://docs.python.org/3/library/builtins.html#module-builtins) (removing the underscores, adding an ‘s’). The __builtins__ variable found in most global namespaces is unchanged. To modify a builtin, you should use [builtins](https://docs.python.org/3/library/builtins.html#module-builtins), not `__builtins__`!
However, since we use [`DEFAULT_PROTOCOL=2`](https://github.com/pytorch/pytorch/blob/main/torch/serialization.py#L62), builtins will be pickled with their module string as `__builtin__`.
```python
>>> import pickle
>>> import pickletools
>>> print.__module__
'builtins'
>>> with open('print.pkl', 'wb') as f:
>>> pickle.dump(print, f, protocol=2) # 2 because this is the default protocol used by pytorch
>>> with open('print.pkl', 'rb') as f:
>>> pickletools.dis(f)
0: \x80 PROTO 2
2: c GLOBAL '__builtin__ print' # pickle saves the module string as __builtin__ !!! :(
21: q BINPUT 0
23: . STOP
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129244
Approved by: https://github.com/albanD
#### Conditions for allowlisting tensor subclasses
We allow tensor subclasses types that
(1) Do not override `__setstate__`, `__getattr__`, `__setattr__`, `__get__`, `__set__` or `__getattribute__` of `torch.Tensor` (`torch.Tensor` does not have a definition of `__getattr__`, `__get__` or `__set__` so we check that these are `None`)
(2) Use the generic `tp_alloc`
(3) Are in a module that *has been imported by the user*
to be pushed onto the stack as strings by `GLOBAL` instructions, while storing the type in a dict
The strings will be converted to the classes as appropriate when executing `REBUILD` with `_rebuild_from_type_v2`
*Note that we use `inspect.getattr_static(sys.modules[module], name)` to get the class/function as this method claims to have no code execution.
The rationale for the 3 conditions above is as follows:
The rebuild func provided by `Tensor.__reduce_ex__` is `torch._tensor._rebuild_from_type_v2`, which is defined as such (note the call to `getattr`, `Tensor.__setstate__` and the call to `as_subclass` as well as the call to `_set_obj_state` which calls `setattr`)
4e66aaa010/torch/_tensor.py (L57-L71)
`as_subclass` is implemented with a call to `THPVariable_NewWithVar`
that will eventually call `tp_alloc` here
4e66aaa010/torch/csrc/autograd/python_variable.cpp (L2053)
The `func` arg to `_rebuild_from_type_v2` for wrapper subclasses is `Tensor.rebuild_wrapper_subclass`, which will similarly call into `THPVariable_NewWithVar` and hit the above `tp_alloc`
**Note that we do not call `tp_init` or `tp_new` (i.e. `cls.__init__` or `cls.__new__`) when unpickling**
### How do we check something is a tensor subclass/constraints around imports
In order to check whether `bla` is a tensor subclass in the bytecode `GLOBAL module.name`, we need to do an `issubclass` check, which entails converting the global string to the appropriate type. We *do not* arbitrarily import modules but will perform this check as long as the given subclass (given by `module.name`) has already been imported by the user (i.e. `module in sys.modules` and `issubclass(getattr(sys[modules], name), torch.Tensor)`
This PR also allowlisted `torch._utils._rebuild_wrapper_subclass` and `torch.device` (used by `_rebuild_wrapper_subclass`)
### API for allow listing
This PR also added `torch.serialization.{add/get/clear}_safe_globals` that enables user to allowlist globals they have deemed safe and manipulate this list (for example they could allowlist a tensor subclass with a custom `__setstate__` if they have checked that this is safe).
Next steps:
- Add testing and allowlist required classes for all in-core tensor subclasses (e.g. `DTensor`, `FakeTensor` etc.)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124331
Approved by: https://github.com/albanD
Adds the following to allowed globals for the `weights_only` unpickler
- [x] `torch._utils._rebuild_qtensor` and qtensor related types
- [x] `torch._utils._rebuild_parameter_with_state` (used deserializing a parameter that has user-defined attributes like `Param.foo`)
The remaining rebuild functions that have not been allowlisted are
- [x] `torch._utils._rebuild_wrapper_subclass` (allowlisted in above PR)
- [ ] `torch._utils._rebuild_device_tensor_from_numpy`
- [ ] `torch._utils._rebuild_xla_tensor` (legacy)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124330
Approved by: https://github.com/albanD
Fixes https://github.com/pytorch/pytorch/issues/98921
There were two issues detected:
- `MultiStepLR`: issue is described in https://github.com/pytorch/pytorch/issues/98921, this is resolved by allowlisting `collections.Counter`
- `OneCycleLR`: `state_dict['anneal_func']` is either `<function OneCycleLR._annealing_cos at 0x7f364186f5b0>` or
`<function OneCycleLR._annealing_linear at 0x7f39aa483640>` depending on the `anneal_func` kwarg.
This leads to `WeightsUnpickler error: Unsupported class __builtin__.getattr` from the `weights_only` Unpickler.
Fixed the above in a BC-compatible manner by adding `OneCyclicLR._anneal_func_type` as a string attribute and removing `OneCyclicLR.anneal_func`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123775
Approved by: https://github.com/albanD, https://github.com/malfet
By finally breaking FC promise on new dtypes by serializing untyped
storage and tensor dtypes
- Add `_rebuild_tensor_v3` that takes an extra dtype argument
- In `Tensor.__reduce_ex__` serialize tensor using untyped storage for
v3_dtypes (which are at the moment limited to float8 dtypes)
Test plan: `python -c "import torch;x=torch.arange(10).to(dtype=torch.float8_e4m3fn);torch.save(x, 'pt.pt');print(torch.load('pt.pt'))"`
Fixes https://github.com/pytorch/pytorch/issues/114634
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114662
Approved by: https://github.com/ngimel
Use the same strategy as for unsafe pickler, i.e. use dummy `torch.serialization.StorageType` to represent legacy typed storage classes during deserialization. Add `_dtype` property to be able to use it for both new and legacy format deserialization.
Parametrize `test_serialization_new_format_old_format_compat`
Add regression test to validate that loading legacy modes can be done
without any warnings
Before the change:
```
% python test_serialization.py -v -k test_serialization_new_format_old_format_compat_
test_serialization_new_format_old_format_compat_cpu (__main__.TestBothSerializationCPU) ... ok
test_serialization_new_format_old_format_compat_safe_cpu (__main__.TestBothSerializationCPU) ... /Users/nshulga/git/pytorch/pytorch/torch/_utils.py:836: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
return self.fget.__get__(instance, owner)()
ok
----------------------------------------------------------------------
Ran 2 tests in 0.116s
OK
```
Without the change but update test to catch warnings:
```
% python test_serialization.py -v -k test_serialization_new_format_old_format_compat_
test_serialization_new_format_old_format_compat_weights_only_False_cpu (__main__.TestBothSerializationCPU) ... ok
test_serialization_new_format_old_format_compat_weights_only_True_cpu (__main__.TestBothSerializationCPU) ... FAIL
======================================================================
FAIL: test_serialization_new_format_old_format_compat_weights_only_True_cpu (__main__.TestBothSerializationCPU)
----------------------------------------------------------------------
Traceback (most recent call last):
File "/Users/nshulga/git/pytorch/pytorch/torch/testing/_internal/common_utils.py", line 2536, in wrapper
method(*args, **kwargs)
File "/Users/nshulga/git/pytorch/pytorch/torch/testing/_internal/common_device_type.py", line 415, in instantiated_test
result = test(self, **param_kwargs)
File "/Users/nshulga/git/pytorch/pytorch/test/test_serialization.py", line 807, in test_serialization_new_format_old_format_compat
self.assertTrue(len(w) == 0, msg=f"Expected no warnings but got {[str(x) for x in w]}")
AssertionError: False is not true : Expected no warnings but got ["{message : UserWarning('TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()'), category : 'UserWarning', filename : '/Users/nshulga/git/pytorch/pytorch/torch/_utils.py', lineno : 836, line : None}"]
To execute this test, run the following from the base repo dir:
python test/test_serialization.py -k test_serialization_new_format_old_format_compat_weights_only_True_cpu
This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0
----------------------------------------------------------------------
Ran 2 tests in 0.109s
FAILED (failures=1)
```
Fixes problem reported in https://github.com/pytorch/pytorch/issues/52181#issuecomment-1715738910
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113614
Approved by: https://github.com/kit1980, https://github.com/albanD