Improve FakeTensor cache to handle SymNode and tracing properly.
For now, when we're proxy tracing just don't bother caching operations that contain SymNodes in the output. The problem is that the proxy tracer relies on SymNode identity and our cache doesn't preserve that. It can be fixed (and I left some notes in _validate_symbolic_output_for_caching() how) but it's not worth it for now.
If we aren't proxy tracing then caching is fine.
Thus these changes:
1. Our cache key needs to include whether we were actively tracing or not - this way if we create a cache entry when we weren't tracing and then we try to use it when we ARE tracing it gets rerun.
2. If there's a SymNode in the output then bypass tracing.
3. Some general cleanup of the output validation - we were unnecessarily doing it as a two-step process when it could just be a single step (it's still two parts internally but only a single outer try/except).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164718
Approved by: https://github.com/bobrenjc93
ghstack dependencies: #165266, #164717
This fixes AOTAutograd rms_norm not being bitwise equivalent to
eager, because it avoids a decomposition. You can force the
decomposition by having the decomposition in the dispatch table,
but if eager mode wouldn't have decomposed (because it went to the fused
one), we now default to preserving the fused call by default.
This largely reverts https://github.com/pytorch/pytorch/pull/103275/ for view ops. This means that in inference mode we could hit the wrong C++ kernel; if this occurs we should just SymInt'ify the C++ kernel.
Another neat side effect of this change is that Inductor's generated kernels for rms_norm now have rms_norm in their name.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164939
Approved by: https://github.com/bdhirsh
This is follow-up of #165037. It generally recommended to use `is/is not` to compare types. Therefore this series of changes apply this suggestion in the code base, and it aims to finally enabling related linter checks.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165142
Approved by: https://github.com/albanD
It generally recommended to use `is/is not` to compare types. Therefore this series of changes apply this suggestion in the code base, and it aims to finally enabling related linter checks.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165037
Approved by: https://github.com/mlazos
This fixes AOTAutograd rms_norm not being bitwise equivalent to
eager, because it avoids a decomposition. You can force the
decomposition by having the decomposition in the dispatch table,
but if eager mode wouldn't have decomposed (because it went to the fused
one), we now default to preserving the fused call by default.
This largely reverts https://github.com/pytorch/pytorch/pull/103275/ for view ops. This means that in inference mode we could hit the wrong C++ kernel; if this occurs we should just SymInt'ify the C++ kernel.
Another neat side effect of this change is that Inductor's generated kernels for rms_norm now have rms_norm in their name.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164939
Approved by: https://github.com/bdhirsh
This fixes AOTAutograd rms_norm not being bitwise equivalent to
eager, because it avoids a decomposition. You can force the
decomposition by having the decomposition in the dispatch table,
but if eager mode wouldn't have decomposed (because it went to the fused
one), we now default to preserving the fused call by default.
This largely reverts https://github.com/pytorch/pytorch/pull/103275/ for view ops. This means that in inference mode we could hit the wrong C++ kernel; if this occurs we should just SymInt'ify the C++ kernel.
Another neat side effect of this change is that Inductor's generated kernels for rms_norm now have rms_norm in their name.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164939
Approved by: https://github.com/bdhirsh
ghstack dependencies: #164573
Fixes#156052 and #156444.
This PR setup the privateuseone key in Python to be used as a python backend for pytorch.
Meaning that, after calling `setup_privateuseone_for_python_backend('npy')`, one can use a subclass to with that device to hold arbitrary python data as "device data" and use `torch.library` to register ops that takes that Tensor.
Changes done in this PR:
1. Register an vanilla Device Guard: I extended NoOpDeviceGuard to have allow device index of 0 and to not raise errors when event related functions are accessed. If I don't do those, when calling backward I would get errors. (CPU backend uses NoOpDeviceGuard just fine, although there seems to be special treatment of CPU in the autograd engine.
2. Tensor subclass allows not having `__torch_dispatch__` if the device is not CUDA or CPU. The comment of the check suggests it was to avoid segfault when calling into ops that expects a storage. Here we have a different device so will not call into those ops.
3. python function that invokes the other incantations to setup the privateusekey backend.
This took inspiration of https://github.com/bdhirsh/pytorch_open_registration_example and https://github.com/tinygrad/tinygrad/blob/master/extra/torch_backend/wrapped_tensor.cpp; great thanks to @bdhirsh and @geohot.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157859
Approved by: https://github.com/albanD
Fixes#156052 and #156444.
This PR setup the privateuseone key in Python to be used as a python backend for pytorch.
Meaning that, after calling `setup_privateuseone_for_python_backend('npy')`, one can use a subclass to with that device to hold arbitrary python data as "device data" and use `torch.library` to register ops that takes that Tensor.
Changes done in this PR:
1. Register an vanilla Device Guard: I extended NoOpDeviceGuard to have allow device index of 0 and to not raise errors when event related functions are accessed. If I don't do those, when calling backward I would get errors. (CPU backend uses NoOpDeviceGuard just fine, although there seems to be special treatment of CPU in the autograd engine.
2. Tensor subclass allows not having `__torch_dispatch__` if the device is not CUDA or CPU. The comment of the check suggests it was to avoid segfault when calling into ops that expects a storage. Here we have a different device so will not call into those ops.
3. python function that invokes the other incantations to setup the privateusekey backend.
This took inspiration of https://github.com/bdhirsh/pytorch_open_registration_example and https://github.com/tinygrad/tinygrad/blob/master/extra/torch_backend/wrapped_tensor.cpp; great thanks to @bdhirsh and @geohot.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157859
Approved by: https://github.com/albanD
Summary:
To support exporting a cuda model on a CPU-only machine under fake tensor mode.
User commonly need to move sample inputs to the cuda device with .to("cuda:0") call.
This diff supports this.
Notice that .to("cuda") doesn't work yet, as it enquery current device idx by calling cuda API.
I expect the following pattern to work
```
with FakeTensorMode(allow_non_fake_inputs=True):
cuda_module = module.to("cuda:0")
cuda_sample_inputs = tuple([x.to("cuda:0") for x in sample_inputs])
with torch.no_grad():
ep = torch.export.export(cuda_module, cuda_sample_inputs)
```
Test Plan:
buck2 run fbcode//caffe2/test:fake_tensor -- --r test_fake_gpu_no_init
Rollback Plan:
Differential Revision: D80101283
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160431
Approved by: https://github.com/henryoier, https://github.com/ezyang
Reland of #160532
Summary:
To support exporting a cuda model on a CPU-only machine under fake tensor mode. User commonly need to move sample inputs to the cuda device with .to("cuda:0") or .to("cuda") call. This diff supports this.
I expect the following pattern to work
```
with FakeTensorMode(allow_non_fake_inputs=True):
cuda_module = module.to("cuda:0")
cuda_sample_inputs = tuple([x.to("cuda:0") for x in sample_inputs])
with torch.no_grad():
ep = torch.export.export(cuda_module, cuda_sample_inputs)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163016
Approved by: https://github.com/huydhn
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163187
Approved by: https://github.com/angelayi
Reland of #160532
Summary:
To support exporting a cuda model on a CPU-only machine under fake tensor mode.
User commonly need to move sample inputs to the cuda device with .to("cuda:0") or .to("cuda") call.
This diff supports this.
I expect the following pattern to work
```
with FakeTensorMode(allow_non_fake_inputs=True):
cuda_module = module.to("cuda:0")
cuda_sample_inputs = tuple([x.to("cuda:0") for x in sample_inputs])
with torch.no_grad():
ep = torch.export.export(cuda_module, cuda_sample_inputs)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163016
Approved by: https://github.com/huydhn
Summary:
To support exporting a cuda model on a CPU-only machine under fake tensor mode.
User commonly need to move sample inputs to the cuda device with .to("cuda:0") or .to("cuda") call.
This diff supports this.
I expect the following pattern to work
```
with FakeTensorMode(allow_non_fake_inputs=True):
cuda_module = module.to("cuda:0")
cuda_sample_inputs = tuple([x.to("cuda:0") for x in sample_inputs])
with torch.no_grad():
ep = torch.export.export(cuda_module, cuda_sample_inputs)
```
Test Plan:
CI
Rollback Plan:
Differential Revision: D80181887
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160532
Approved by: https://github.com/henryoier, https://github.com/ezyang
[relanding again after fixing internal build]
Summary:
This might cause some new DDEs on call sites that do not use is_contiguous_or_false() or sym_is_contiguous()
but want to find those call sites to handle this properly by calling is_contiguous_or_false() and not is_contiguous() explitly when appropriate.
I had to fix one issue after removing the implicit size oblivious reasoning. here is context
we defined in this https://github.com/pytorch/pytorch/pull/157472 sym_is_contiguous to be the function computing contiguity for dynamic shapes in c++. It returns a symbolic expression that represents contiguity and guaranteed not to throw a DDE.
when people call is_contiguous we do sym_is_contiguous().guard_bool()
when people call is_contiguous_or_false we do sym_is_contiguous().guard_or_false()
one issue not handled well was this path
```
c10::SymBool TensorImpl::sym_is_contiguous_custom(
at::MemoryFormat memory_format) const {
if (C10_UNLIKELY(matches_python_custom(SizesStridesPolicy::CustomStrides))) {
return pyobj_slot_.load_pyobj_interpreter()->is_contiguous(
this, memory_format);
}
return sym_is_contiguous_default(memory_format);
}
```
namely if we call sym_is_contiguous_custom but we have matches_python_custom(SizesStridesPolicy::CustomStrides) return true , then we used to call is_contiguous(this, memory_format);
This used to go through the load_pyobj_interpreter and end up calling the python is_contiguous call which used implicit size oblivious reasoning.
once we removed that implicit size oblivious reasoning, the right thing we want is to call
return pyobj_slot_.load_pyobj_interpreter()->sym_is_contiguous(this, memory_format);
otherwise we would get DDE even if the caller is doing sym_is_contiguous.
so I had to define it for pyinterpreter, and then I had to override it for nested tensors.
Approved by: https://github.com/ezyang
Test Plan:
contbuild & OSS CI, see e444cd24d4
Rollback Plan:
Differential Revision: D80435179
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160869
Approved by: https://github.com/ezyang
The motivation for this change can be seen through the following example:
```
import torch
GPU_TYPE = "cuda"
@torch.compile
def no_override(x):
return x.sum(dim=0)
@torch.compile
def override(x):
return x.sum(dim=0)
x_small = torch.randn(4096, 512, device=GPU_TYPE)
no_override(x_small)
torch._dynamo.decorators.mark_dynamic(x_small, 0, hint_override=4096 * 1000)
override(x_small)
```
Previously, when reductions were split, codegen relied only on the first observed shape. With a small input, this resulted in a small split size:
```
def triton_red_fused_sum_0(in_ptr0, out_ptr0, ks0, xnumel, r0_numel, XBLOCK : tl.constexpr, R0_BLOCK : tl.constexpr):
xnumel = 16384
rnumel = r0_numel
```
With the new scheme, inductor honors hint_override during codegen, producing larger and more appropriate split sizes:
```
def triton_red_fused_sum_0(in_ptr0, out_ptr0, ks0, xnumel, r0_numel, XBLOCK : tl.constexpr, R0_BLOCK : tl.constexpr):
xnumel = 1024000
rnumel = r0_numel
```
This addresses a broader problem with dynamism: performance and numerics previously depended on whichever shape was seen first. For example:
```
f(s0) -> f(s2)
f(s1) -> f(s2)
```
could generate different kernels. With the new approach, an explicit override pins the chosen configuration:
```
f(s0, hint_override=s0) -> f(s2)
f(s1, hint_override=s0) -> f(s2)
```
ensuring consistent kernel generation regardless of input order.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161007
Approved by: https://github.com/jansel
The motivation for this change can be seen through the following example:
```
import torch
GPU_TYPE = "cuda"
@torch.compile
def no_override(x):
return x.sum(dim=0)
@torch.compile
def override(x):
return x.sum(dim=0)
x_small = torch.randn(4096, 512, device=GPU_TYPE)
no_override(x_small)
torch._dynamo.decorators.mark_dynamic(x_small, 0, hint_override=4096 * 1000)
override(x_small)
```
Previously, when reductions were split, codegen relied only on the first observed shape. With a small input, this resulted in a small split size:
```
def triton_per_fused_sum_1(in_ptr0, out_ptr0, xnumel, r0_numel, XBLOCK : tl.constexpr):
xnumel = 512
r0_numel = 32
```
With the new scheme, inductor honors hint_override during codegen, producing larger and more appropriate split sizes:
```
def triton_red_fused_sum_0(in_ptr0, out_ptr0, xnumel, r0_numel, XBLOCK : tl.constexpr, R0_BLOCK : tl.constexpr):
xnumel = 16384
r0_numel = 128
```
This addresses a broader problem with dynamism: performance and numerics previously depended on whichever shape was seen first. For example:
```
f(s0) -> f(s2)
f(s1) -> f(s2)
```
could generate different kernels. With the new approach, an explicit override pins the chosen configuration:
```
f(s0, hint_override=s0) -> f(s2)
f(s1, hint_override=s0) -> f(s2)
```
ensuring consistent kernel generation regardless of input order.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161007
Approved by: https://github.com/jansel
This might cause some new DDEs on call sites that do not use is_contiguous_or_false() or sym_is_contiguous()
but want to find those call sites to handle this properly by calling is_contiguous_or_false() and not is_contiguous() explitly when appropriate.
I had to fix one issue after removing the implicit size oblivious reasoning. here is context
we defined in this https://github.com/pytorch/pytorch/pull/157472 sym_is_contiguous to be the function computing contiguity for dynamic shapes in c++. It returns a symbolic expression that represents contiguity and guaranteed not to throw a DDE.
when people call is_contiguous we do sym_is_contiguous().guard_bool()
when people call is_contiguous_or_false we do sym_is_contiguous().guard_or_false()
one issue not handled well was this path
```
c10::SymBool TensorImpl::sym_is_contiguous_custom(
at::MemoryFormat memory_format) const {
if (C10_UNLIKELY(matches_python_custom(SizesStridesPolicy::CustomStrides))) {
return pyobj_slot_.load_pyobj_interpreter()->is_contiguous(
this, memory_format);
}
return sym_is_contiguous_default(memory_format);
}
```
namely if we call sym_is_contiguous_custom but we have matches_python_custom(SizesStridesPolicy::CustomStrides) return true , then we used to call is_contiguous(this, memory_format);
This used to go through the load_pyobj_interpreter and end up calling the python is_contiguous call which used implicit size oblivious reasoning.
once we removed that implicit size oblivious reasoning, the right thing we want is to call
return pyobj_slot_.load_pyobj_interpreter()->sym_is_contiguous(this, memory_format);
otherwise we would get DDE even if the caller is doing sym_is_contiguous.
so I had to define it for pyinterpreter, and then I had to override it for nested tensors.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/159197
Approved by: https://github.com/ezyang
Summary: We were getting DDE on reshape still!! i looked deeper and found an issue in _view_has_unbacked_input namely when input is [[,,]] it need to be normalized to [..]
Test Plan:
existing tests.
Rollback Plan:
Differential Revision: D79951119
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160255
Approved by: https://github.com/bobrenjc93
Summary:
Device mismatches in tracing can most often be ignored. These are only logical mismatches not physical.
Take any intermediate computation, and that computation will not actually materialize in a compiled binary execution. So a device mismatch in the middle of the program is not real. The runtime will never materialize those tensors on CPU device during the execution, as they are temporary allocations.
If a user knows his tensors at graph input are all on the correct device, then he can ignore all tracing errors.
Users who know what they are doing should have an escape hatch to ignore any device mismatch in tracing.
Users can set
```
torch._functorch.config.fake_tensor_prefer_device_type = 'mtia'
```
to forcefully override any mismatch and prefer the non cpu device. This unblocks vLLM graph mode for MTIA.
Test Plan:
Added two unit tests.
Rollback Plan:
Differential Revision: D79698438
Pull Request resolved: https://github.com/pytorch/pytorch/pull/159931
Approved by: https://github.com/jansel
Python dispatcher is not always enabled in fake tensors and have to be called explicitly.
While it should be, it requires some work to get all tests working.
I have been running in several issues where I add to add enable_python_dispatcher ex
XLA, Helom ..etc to avoid issues related to that for the view specifically i moved it to fake tensor impl.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158406
Approved by: https://github.com/bobrenjc93
When select has data dependent input, we cant tell if the actual index shall be index+size or index.
to avoid throwing dde, we allocate a new unbacked symbol to represent the storage offset of the
output view and we compute its value dynamically at runtime when inductor is lowered.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157605
Approved by: https://github.com/ColinPeppler