13 Commits

Author SHA1 Message Date
a43c4c3972 [5/N] Apply ruff UP035 rule (#164423)
Continued code migration to enable ruff `UP035`. Most changes are about moving `Callable` from `typing` to `from collections.abc`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164423
Approved by: https://github.com/ezyang
2025-10-02 07:31:11 +00:00
2c7959eee9 [ignore][codex-test] Add typing to simple library registry (#161367)
## Summary
- add type annotations for simple library registry and dispatch rule holder
- remove allow-untyped-defs directive

## Testing
- `python -m mypy torch/_library/simple_registry.py` *(fails: repo expects mypy==1.16.0)*
- `lintrunner -a torch/_library/simple_registry.py` *(fails: attr-defined error in torchgen/gen_schema_utils.py)*
- `python test/test_torch.py TestTorch.test_dir` *(fails: ModuleNotFoundError: No module named 'torch')*

------
https://chatgpt.com/codex/tasks/task_e_68aa3cc210488326befdd992c79115a0
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161367
Approved by: https://github.com/Skylion007
2025-09-23 02:08:55 +00:00
eb9526ae35 Avoid double hash lookup in torch._library.simple_registry (#161328)
Not a huge cost, but free win is free.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161328
Approved by: https://github.com/Skylion007
ghstack dependencies: #161301, #161292, #161304, #161308, #161315, #161317
2025-08-30 06:55:43 +00:00
e7eeee473c [BE][Easy][14/19] enforce style for empty lines in import segments in torch/_[a-c]*/ and torch/_[e-h]*/ and torch/_[j-z]*/ (#129765)
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter.

You can review these PRs via:

```bash
git diff --ignore-all-space --ignore-blank-lines HEAD~1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129765
Approved by: https://github.com/ezyang
2024-07-31 10:42:50 +00:00
ba941769b5 Add API for open registration between operators and subclasses (and modes) (#130064)
We add torch.library.Library._register_torch_dispatch_rule. Here, a user
can provide us a specific rule to run for a specific
(torch_dispatch_class, operator) pair. The motivation is that a user
might want to extend a subclass/mode but may not have access to the
source code of the subclass/mode.

I'll make this public in a follow-up PR if we think the approach and API
is good.

Keep in mind that many subclasses will likely deliver their own open
registration solution (DTensor has register_sharding_prop_rule and NJT
has register_jagged_op); _register_torch_dispatch_rule is meant as a
catch-all open registration mechanism for when the subclass hasn't
provided anything more specific.

Test Plan:
- new tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130064
Approved by: https://github.com/albanD
2024-07-12 14:13:01 +00:00
ce499eee0c Revert "Add API for open registration between operators and subclasses (and modes) (#130064)"
This reverts commit c23d103afae65588772cb30037ea4110f01f6f41.

Reverted https://github.com/pytorch/pytorch/pull/130064 on behalf of https://github.com/izaitsevfb due to fails internal builds, see [D59553526](https://www.internalfb.com/diff/D59553526) ([comment](https://github.com/pytorch/pytorch/pull/130064#issuecomment-2221587575))
2024-07-10 21:50:32 +00:00
c23d103afa Add API for open registration between operators and subclasses (and modes) (#130064)
We add torch.library.Library._register_torch_dispatch_rule. Here, a user
can provide us a specific rule to run for a specific
(torch_dispatch_class, operator) pair. The motivation is that a user
might want to extend a subclass/mode but may not have access to the
source code of the subclass/mode.

I'll make this public in a follow-up PR if we think the approach and API
is good.

Keep in mind that many subclasses will likely deliver their own open
registration solution (DTensor has register_sharding_prop_rule and NJT
has register_jagged_op); _register_torch_dispatch_rule is meant as a
catch-all open registration mechanism for when the subclass hasn't
provided anything more specific.

Test Plan:
- new tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130064
Approved by: https://github.com/albanD
2024-07-09 21:11:27 +00:00
d44c30e2f9 Revert "Add API for open registration between operators and subclasses (and modes) (#130064)"
This reverts commit 922d2737d5e0ad22ee1dcf91c48ab09d641de840.

Reverted https://github.com/pytorch/pytorch/pull/130064 on behalf of https://github.com/huydhn due to Sorry for reverting your change but test_profiler_tree is failing in trunk after this lands 922d2737d5, maybe a landrace ([comment](https://github.com/pytorch/pytorch/pull/130064#issuecomment-2216135497))
2024-07-09 01:48:38 +00:00
922d2737d5 Add API for open registration between operators and subclasses (and modes) (#130064)
We add torch.library.Library._register_torch_dispatch_rule. Here, a user
can provide us a specific rule to run for a specific
(torch_dispatch_class, operator) pair. The motivation is that a user
might want to extend a subclass/mode but may not have access to the
source code of the subclass/mode.

I'll make this public in a follow-up PR if we think the approach and API
is good.

Keep in mind that many subclasses will likely deliver their own open
registration solution (DTensor has register_sharding_prop_rule and NJT
has register_jagged_op); _register_torch_dispatch_rule is meant as a
catch-all open registration mechanism for when the subclass hasn't
provided anything more specific.

Test Plan:
- new tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130064
Approved by: https://github.com/albanD
2024-07-08 22:13:05 +00:00
9972e5f447 Rename impl_abstract to register_fake, part 2/2 (#123938)
This PR renames the implementation details of register_fake to align
more with the new name. It is in its own PR because this is risky
(torch.package sometimes depends on private library functions and
implementation details).

Test Plan:
- tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123938
Approved by: https://github.com/williamwen42
2024-06-14 14:37:24 +00:00
afe15d2d2f Flip default value for mypy disallow_untyped_defs [3/11] (#127840)
See #127836 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127840
Approved by: https://github.com/oulgen
2024-06-08 18:28:01 +00:00
47dbfecd37 Rename impl_abstract to register_fake, part 1/2 (#123937)
This PR:
- adds a new torch.library.register_fake and deprecates
  torch.library.impl_abstract. The motivation is that we have a lot of
  confusion around the naming so we are going to align the naming with
  the actual subsystem (FakeTensor).
- renames `m.impl_abstract_pystub("fbgemm_gpu.sparse_ops")` to
  `m.has_python_registration("fbgemm_gpu.sparse_ops")`. No deprecation
  here yet; I need to test how this works with static initialization.
- Renames a bunch of internals to match (e.g. abstractimplpystub ->
  pystub)

I'm scared to rename the Python-side internal APIs (e.g.
torch._library.abstract_impl) because of torch.package concerns. I'll do
that in its own isolated PR next just in case it causes problems.

DEPRECATION NOTE: torch.library.impl_abstract was renamed to to
torch.library.register_fake. Please use register_fake. We'll delete
impl_abstract in a future version of PyTorch.

Test Plan:
- existing tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123937
Approved by: https://github.com/albanD
2024-04-17 12:46:01 +00:00
f8fcc54f70 Add torch.library.impl_abstract (#109912)
Changelog:
- torch.library.impl_abstract optionally accepts a torch.library.Library
  object. If passed in, then the lifetime of the registration is tied to
  the Library object.
- we've also changed torch.library.impl_abstract to work on all
  operators, including overloads.
- we refactored the `torch._custom_ops.*` and `torch._custom_op.*`
  impl_abstract APIs and put them under torch._library. This is the
  final resting place for them. I will follow-up with deleting
  all the `torch._custom_ops.*` stuff later.
- There is a new "SimpleOperatorRegistry" where we actually collect the
  abstract_impl. We will expand this to also hold the other
  torch._custom_ops.* APIs when we move those to torch.library

NB: Previously we had designed
`impl_abstract` assuming a very high-level Python-only custom op API.
We've revisited that since; now, impl_abstract works for all custom ops,
no matter python or C++, no matter the schema. The new refactored design
reflects this better.

Test Plan:
- existing and new tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109912
Approved by: https://github.com/ezyang
2023-09-26 01:59:50 +00:00