Summary:
The existing RemoteCacheBackend classes were a bit haphazard - some of them accepted bytes only, some accepted objects, some returned different types of objects than were passed in.
Update them to be more consistent:
1. RemoteCacheBackend is an implementation of a backend: Redis, Memcache, Manifold, LocalFile
2. RemoteCacheSerde is an implementation of a serde protocol - to turn structured objects (dict, list, etc) into bytes: RemoteCacheJsonSerde (json encoding), RemoteCachePassthroughSerde (strictly bytes only)
3. RemoteCache is the cache implementation itself, mixing a RemoteCacheBackend along with an RemoteCacheSerde to provide structured caching.
Other than simply reorganizing the existing cache code this also fixes the Redis autotune caching for OSS.
Test Plan: unit tests
Reviewed By: oulgen
Differential Revision: D61178859
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134032
Approved by: https://github.com/oulgen, https://github.com/bhack
Summary:
- `torch._VF` is a hack to work around the lack of support for `torch.functional` in the JIT
- that hack hides `torch._VF` functions from Mypy
- could be worked around by re-introducing a stub file for `torch.functional`, but that's undesirable
- so instead try to make both happy at the same time: the type ignore comments are needed for Mypy, and don't seem to affect the JIT after excluding them from the `get_type_line()` logic
Encountered this issue while trying to make `mypy` run on `torch/functional.py` in gh-43446.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43454
Reviewed By: glaringlee
Differential Revision: D23305579
Pulled By: malfet
fbshipit-source-id: 50e490693c1e53054927b57fd9acc7dca57e88ca
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38157
This removes the error prone process of assembling `torch/__init__.pyi`
(and frequently forgetting to expose things), since now we can simply
rely on the true source file to get things done. Most of the old
codegen in gen_pyi.py is now rerouted to various files:
- `torch/_C/__init__.pyi` (the dumping pile of all misc bindings)
- `torch/_C/_nn.pyi` (NN function bindings)
- `torch/_C/_VariableFunctions.pyi` (torch function bindings)
`torch.types` grew a bunch more definitions that previously where
defined in `torch/__init__.pyi`
Some miscellaneous changes
- Fixed a bug where we treat single TensorList argument as implying
varargs are accepted. This is actually only supported on IntList.
This means we can correctly generate a stub for dequantize.
- Add missing manual stub for nonzero
- Switched torch/onnx/operators.py to directly refer to _C module,
since apparently mypy doesn't think that methods prefixed with
underscores get reexported. This may be a recurring theme; maybe
we need to find a better way to solve it.
Because I was really lazy, I dumped namedtuple definitions in both
`torch._C` and `torch._C._VariableFunctions`. This is definitely wrong.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D21497400
Pulled By: ezyang
fbshipit-source-id: 07b126141c82efaca37be27c07255cb2b9b3f064
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33504
Fix resolution fo functions that are bound onto torch in torch/functional.py. This does not fix compilation of all of those functions, those will be done in follow ups. Does torch.stft as a start.
Fixes#21478
Test Plan: Imported from OSS
Differential Revision: D20014591
Pulled By: eellison
fbshipit-source-id: bb362f1b5479adbb890e72a54111ef716679d127