22 Commits

Author SHA1 Message Date
fc0376e8b1 [BE][2/6] fix typos in test/ (test/test_*.py) (#157636)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157636
Approved by: https://github.com/yewentao256, https://github.com/mlazos
ghstack dependencies: #156311, #156609
2025-07-09 11:02:23 +00:00
d8c8ba2440 Fix unused Python variables in test/[e-z]* (#136964)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136964
Approved by: https://github.com/justinchuby, https://github.com/albanD
2024-12-18 23:02:30 +00:00
ba48cf6535 [BE][Easy][6/19] enforce style for empty lines in import segments in test/ (#129757)
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter.

You can review these PRs via:

```bash
git diff --ignore-all-space --ignore-blank-lines HEAD~1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129757
Approved by: https://github.com/ezyang
2024-07-17 06:42:37 +00:00
c5fafe9f48 [BE]: TRY002 - Ban raising vanilla exceptions (#124570)
Adds a ruff lint rule to ban raising raw exceptions. Most of these should at the very least be runtime exception, value errors, type errors or some other errors. There are hundreds of instance of these bad exception types already in the codebase, so I have noqa'd most of them. Hopefully this error code will get commiters to rethink what exception type they should raise when they submit a PR.

I also encourage people to gradually go and fix all the existing noqas that have been added so they can be removed overtime and our exception typing can be improved.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124570
Approved by: https://github.com/ezyang
2024-04-21 22:26:40 +00:00
2216068559 Enable UFMT on test/test_ops* (#123935)
Part of https://github.com/pytorch/pytorch/issues/123062

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123935
Approved by: https://github.com/ezyang
2024-04-13 03:31:56 +00:00
3477a2ee03 unMarkDynamoStrictTest on OpInfo-based tests (#115856)
These take too long to run under strict mode. We'll worry about them
later. Note that these decorators don't do anything yet (unless we flip
the default from non-strict to strict).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115856
Approved by: https://github.com/voznesenskym
ghstack dependencies: #115845, #115855
2023-12-15 01:22:31 +00:00
3f88e3105f Reland: Remove remaining global set_default_dtype calls from tests (#108088)
Fixes #68972

Relands #107246

To avoid causing Meta-internal CI failures, this PR avoids always asserting that the default dtype is float in the `TestCase.setUp/tearDown` methods. Instead, the assert is only done if `TestCase._default_dtype_check_enabled == True`. `_default_dtype_check_enabled` is set to True in the `if __name__ == "__main__":` blocks of all the relevant test files that have required changes for this issue

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108088
Approved by: https://github.com/ezyang
2023-09-07 03:04:34 +00:00
161ea463e6 Revert "Remove remaining global set_default_dtype calls from tests (#107246)"
This reverts commit aa8ea1d787a9d21b064b664c5344376265feea6c.

Reverted https://github.com/pytorch/pytorch/pull/107246 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/107246#issuecomment-1693838522))
2023-08-25 19:34:55 +00:00
aa8ea1d787 Remove remaining global set_default_dtype calls from tests (#107246)
Fixes #68972

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107246
Approved by: https://github.com/ezyang
2023-08-24 16:10:48 +00:00
73e1455327 [BE] Enable ruff's UP rules and autoformat test/ (#105434)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105434
Approved by: https://github.com/albanD
2023-07-19 20:36:06 +00:00
e2a3817dfd [BE] Enable C419 rule for any all shortcircuiting (#99890)
Apparently https://github.com/pytorch/pytorch/pull/78142 made torch.JIT allow for simple generator expressions which allows us to enable rules that replace unnecessary list comprehensions with generators in any/all. This was originally part of #99280 but I split it off into this PR so that it can be easily reverted should anything break.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/99890
Approved by: https://github.com/justinchuby, https://github.com/kit1980, https://github.com/malfet
2023-04-25 15:02:13 +00:00
4c20c0509d Split out forward AD tests from test_ops_gradients and reenable slow gradcheck CI (#88216)
Fixes: https://github.com/pytorch/pytorch/issues/88010

This PR does a couple things to stop slow gradcheck from timing out:
- Splits out test_ops_fwd_gradients from test_ops_gradients, and factors out TestFwdGradients and TestBwdGradients which both inherit from TestGradients, now situated in common_utils (maybe there is a better place?)
- Skips CompositeCompliance (and several other test files) for slow gradcheck CI since they do not use gradcheck
- because test times for test_ops_fwd_gradients and test_ops_gradients are either unknown or wrong, we hardcode them for now to prevent them from being put together. We can undo the hack after we see actual test times are updated. ("def calculate_shards" randomly divides tests with unknown test times in a round-robin fashion.)
- Updates references to test_ops_gradients and TestGradients
- Test files that are skipped for slow gradcheck CI are now centrally located in in run_tests.py, this reduces how fine-grained we can be with the skips, so for some skips (one so far) we still use the old skipping mechanism, e.g. for test_mps

Pull Request resolved: https://github.com/pytorch/pytorch/pull/88216
Approved by: https://github.com/albanD
2022-11-03 00:20:45 +00:00
604487f239 OpInfo for Slice (#85554)
This is based on wconstab tests from #84680

Technically, slice is covered by the __getitem__ opinfo, but it is
easier to debug/test on a more narrow internal function that only
uses this functionality and not other advanced indexing stuff.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85554
Approved by: https://github.com/mruberry, https://github.com/wconstab
2022-09-23 22:01:32 +00:00
99d8eb7bd7 [JIT Test] Add more debugging information for JIT opinfo tests (#83269)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83269
Approved by: https://github.com/davidberard98
2022-08-12 00:29:06 +00:00
f595467e5c Reenable slow gradcheck and make it pass (#80514)
Context: For a while slow gradcheck CI was skipping nearly all tests and this hid the fact that it should've been failing and timing out (10+h runtime for TestGradients). The CI configuration has since been fixed to correct this, revealing the test failures. This PR reenables slow gradcheck CI and makes it pass again.

This PR:
- makes slow and failing tests run in fast gradcheck mode only
- reduce the input size for slow gradcheck only for unary/binary ufuncs (alternatively, skip the test entirely)
- skip entire test files on slow gradcheck runner if they don't use gradcheck (test_ops, test_meta, test_decomp, test_ops_jit)
- reduces the input size for some ops

Follow ups:
1. Investigate slow mode failures https://github.com/pytorch/pytorch/issues/80411
2. See if we can re-enable slow gradcheck tests for some of the slow tests by reducing the sizes of their inputs

The following are failing in slow mode, they are now running in fast mode only.
```
test_fn_fwgrad_bwgrad___rmod___cuda_float64
test_fn_fwgrad_bwgrad_linalg_householder_product_cuda_complex128
test_fn_fwgrad_bwgrad__masked_prod_cuda_complex128
test_fn_fwgrad_bwgrad__masked_prod_cuda_float64
test_fn_fwgrad_bwgrad_linalg_matrix_power_cuda_complex128
test_fn_fwgrad_bwgrad_cat_cuda_complex128
test_fn_fwgrad_bwgrad_linalg_lu_factor_ex_cuda_float64
test_fn_fwgrad_bwgrad_copysign_cuda_float64
test_fn_fwgrad_bwgrad_cholesky_inverse_cuda_complex128
test_fn_fwgrad_bwgrad_float_power_cuda_complex128
test_fn_fwgrad_bwgrad_fmod_cuda_float64
test_fn_fwgrad_bwgrad_float_power_cuda_float64
test_fn_fwgrad_bwgrad_linalg_lu_cuda_float64
test_fn_fwgrad_bwgrad_remainder_cuda_float64
test_fn_fwgrad_bwgrad_repeat_cuda_complex128
test_fn_fwgrad_bwgrad_prod_cuda_complex128
test_fn_fwgrad_bwgrad_slice_scatter_cuda_float64
test_fn_fwgrad_bwgrad_tile_cuda_complex128
test_fn_fwgrad_bwgrad_pow_cuda_float64
test_fn_fwgrad_bwgrad_pow_cuda_complex128
test_fn_fwgrad_bwgrad_fft_*
test_fn_fwgrad_bwgrad_zero__cuda_complex128
test_fn_gradgrad_linalg_lu_factor_cuda_float64
test_fn_grad_div_trunc_rounding_cuda_float64
test_fn_grad_div_floor_rounding_cuda_float64
```

Marks the OpInfos for the following ops that run slowly in slow gradcheck as `fast_gradcheck` only (the left column represents runtime in seconds):
```
0  918.722  test_fn_fwgrad_bwgrad_nn_functional_conv_transpose3d_cuda_float64
1  795.042  test_fn_fwgrad_bwgrad_nn_functional_unfold_cuda_complex128
2  583.63  test_fn_fwgrad_bwgrad_nn_functional_max_pool3d_cuda_float64
3  516.946  test_fn_fwgrad_bwgrad_svd_cuda_complex128
4  503.179  test_fn_fwgrad_bwgrad_linalg_svd_cuda_complex128
5  460.985  test_fn_fwgrad_bwgrad_linalg_lu_cuda_complex128
6  401.04  test_fn_fwgrad_bwgrad_linalg_lstsq_grad_oriented_cuda_complex128
7  353.671  test_fn_fwgrad_bwgrad_nn_functional_max_pool2d_cuda_float64
8  321.903  test_fn_fwgrad_bwgrad_nn_functional_gaussian_nll_loss_cuda_float64
9  307.951  test_fn_fwgrad_bwgrad_stft_cuda_complex128
10  266.104  test_fn_fwgrad_bwgrad_svd_lowrank_cuda_float64
11  221.032  test_fn_fwgrad_bwgrad_istft_cuda_complex128
12  183.741  test_fn_fwgrad_bwgrad_lu_unpack_cuda_complex128
13  132.019  test_fn_fwgrad_bwgrad_nn_functional_unfold_cuda_float64
14  125.343  test_fn_fwgrad_bwgrad_nn_functional_pad_constant_cuda_complex128
15  124.2  test_fn_fwgrad_bwgrad_kron_cuda_complex128
16  123.721  test_fn_fwgrad_bwgrad_pca_lowrank_cuda_float64
17  121.074  test_fn_fwgrad_bwgrad_nn_functional_max_unpool3d_cuda_float64
18  119.387  test_fn_fwgrad_bwgrad_rot90_cuda_complex128
19  112.889  test_fn_fwgrad_bwgrad__masked_normalize_cuda_complex128
20  107.541  test_fn_fwgrad_bwgrad_dist_cuda_complex128
21  106.727  test_fn_fwgrad_bwgrad_diff_cuda_complex128
22  104.588  test_fn_fwgrad_bwgrad__masked_cumprod_cuda_complex128
23  100.135  test_fn_fwgrad_bwgrad_nn_functional_feature_alpha_dropout_with_train_cuda_float64
24  88.359  test_fn_fwgrad_bwgrad_mH_cuda_complex128
25  86.214  test_fn_fwgrad_bwgrad_nn_functional_max_unpool2d_cuda_float64
26  83.037  test_fn_fwgrad_bwgrad_nn_functional_bilinear_cuda_float64
27  79.987  test_fn_fwgrad_bwgrad__masked_cumsum_cuda_complex128
28  77.822  test_fn_fwgrad_bwgrad_diag_embed_cuda_complex128
29  76.256  test_fn_fwgrad_bwgrad_mT_cuda_complex128
30  74.039  test_fn_fwgrad_bwgrad_linalg_lu_solve_cuda_complex128
```
```
0  334.142  test_fn_fwgrad_bwgrad_unfold_cuda_complex128
1  312.791  test_fn_fwgrad_bwgrad_linalg_lu_factor_cuda_complex128
2  121.963  test_fn_fwgrad_bwgrad_nn_functional_max_unpool3d_cuda_float64
3  108.085  test_fn_fwgrad_bwgrad_diff_cuda_complex128
4  89.418  test_fn_fwgrad_bwgrad_nn_functional_max_unpool2d_cuda_float64
5  72.231  test_fn_fwgrad_bwgrad___rdiv___cuda_complex128
6  69.433  test_fn_fwgrad_bwgrad___getitem___cuda_complex128
7  68.582  test_fn_fwgrad_bwgrad_ldexp_cuda_complex128
8  68.572  test_fn_fwgrad_bwgrad_linalg_pinv_cuda_complex128
9  67.585  test_fn_fwgrad_bwgrad_nn_functional_glu_cuda_float64
10  66.567  test_fn_fwgrad_bwgrad_lu_cuda_float64
```
```
0  630.13  test_fn_gradgrad_nn_functional_conv2d_cuda_complex128
1  81.086  test_fn_gradgrad_linalg_solve_triangular_cuda_complex128
2  71.332  test_fn_gradgrad_norm_cuda_complex128
3  64.308  test_fn_gradgrad__masked_std_cuda_complex128
4  59.519  test_fn_gradgrad_div_no_rounding_mode_cuda_complex128
5  58.836  test_fn_gradgrad_nn_functional_adaptive_avg_pool3
```

Reduces the sizes of the inputs for:
- diff
- diag_embed

Pull Request resolved: https://github.com/pytorch/pytorch/pull/80514
Approved by: https://github.com/albanD
2022-07-22 02:05:37 +00:00
24f550b0cb Minor fix in jit tests to pass TorchDynamo (#79903)
@jansel
Pull Request resolved: https://github.com/pytorch/pytorch/pull/79903
Approved by: https://github.com/jansel
2022-06-21 00:42:02 +00:00
9bf52f4be8 Add OpInfo for torch.equal and fix support for non-standard bools
Pull Request resolved: https://github.com/pytorch/pytorch/pull/79389

Approved by: https://github.com/mruberry
2022-06-20 23:48:39 +00:00
de949a0e59 Various OpInfo architecture improvements
This PR makes the following improvements:

- moves the custom skip list for test_normalize_operator_exhaustive in test_fx_experimental to use the typical OpInfo skip architecture. The skips were updated to xfails, and that identified some operators which were no longer failing the test
- redundant tests with OpInfo-based testing in test_jit.py were removed
- test_dtypes was improved so its error messages are clear and it makes test_nondifferentiable redundant; the latter test has been removed
- OpInfo.supports_complex_autograd() is removed in favor of a more accurate and general test for whether the particular dtype is in the backward dtypes of the operator
- gradchecks have been improved to verify that an operator doesn't support grad if it claims not to
- gradchecks have been improved to test the gradient of all input tensors that require gradient
- the concept of "default test dtypes" has been removed
- excessive and mostly redundant out testing for elementwise unary operators has been removed
- metadata for whether an op supports nuanced "safe casting" to out behavior has been removed from OpInfos
- numerous skips have been converted to xfails
- numerous OpInfos have had their metadata fixed based on the new checks
- jit-specific utilities in common_methods_invocations.py have been moved to jit_programming_utils.py
Pull Request resolved: https://github.com/pytorch/pytorch/pull/75951
Approved by: https://github.com/ngimel
2022-04-18 21:55:32 +00:00
a1e284d9c8 Remove high priority as an owner for tests (#74555)
Summary:
Following triage review discussion, it would be best for these tests to not be triaged high priority by automation, but by the triagers in the oncall.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/74555

Reviewed By: albanD

Differential Revision: D35099202

Pulled By: janeyx99

fbshipit-source-id: 657a0317141de3a598476a6f601ec26cc26231b1
(cherry picked from commit 057519cb2494d0f9a0b169f359ac87ba9e89f088)
2022-03-24 14:29:52 +00:00
ebca80ed08 Move test ops gradients and test ops jit to separate files
Fixes #72368

As per reference issue, the test_ops in single file takes around 3:30-4:00Hrs to execute on asan jobs:

Reference : pytorch_test_times.json

```
{
    "commit": "39535fec6c3ff5bf7c2d322d096c59571c3295ed",
    "JOB_BASE_NAME": "linux-xenial-py3.7-clang7-asan",
    "job_times": {
        "test_ops": 14928.355000000636, <- This test group is over 4hrs alone
```
----

Hence separating  test_ops into following parts:
1. TestGradients
2. TestJit
3.  TestCommon and TestMathBits

Pull Request resolved: https://github.com/pytorch/pytorch/pull/74297
Approved by: https://github.com/malfet
2022-03-17 02:07:50 +00:00
232faeacf8 Revert "Move test ops gradients and test ops jit to separate files"
This reverts commit 7cf9b942daa824267ec3902f1026b3e6353561ff.

Reverted https://github.com/pytorch/pytorch/pull/74297 on behalf of https://github.com/atalman
2022-03-16 20:08:23 +00:00
7cf9b942da Move test ops gradients and test ops jit to separate files
Fixes #72368

As per reference issue, the test_ops in single file takes around 3:30-4:00Hrs to execute on asan jobs:

Reference : pytorch_test_times.json

```
{
    "commit": "39535fec6c3ff5bf7c2d322d096c59571c3295ed",
    "JOB_BASE_NAME": "linux-xenial-py3.7-clang7-asan",
    "job_times": {
        "test_ops": 14928.355000000636, <- This test group is over 4hrs alone
```
----

Hence separating  test_ops into following parts:
1. TestGradients
2. TestJit
3.  TestCommon and TestMathBits

Pull Request resolved: https://github.com/pytorch/pytorch/pull/74297
Approved by: https://github.com/malfet
2022-03-16 19:30:22 +00:00