14 Commits

Author SHA1 Message Date
424156c26c [ROCm] Update to AOTriton 0.8b (#140172)
Notable new features for SDPA operators on AMD systems from AOTriton 0.8b:

1. Nestedtensor support;
2. MQA/GQA support;
3. Restore Efficient attention support for causal=True and seqlen_q != seqlen_k cases;
    + The kernel should use top-left alignment, bottom right alignment will be added later
4. Move gfx1100 (RX7900/W7800/W7900) out of experimental support status.
   However, users are strongly recommended to update to ROCM 6.2.4, notably for
   its firmware updates.

Related unit tests are enabled as well.

Notable related changes from AOTriton 0.8b:

1. AOTriton 0.8b moves the GPU kernel out of libaotriton.so to a separate directory `aotriton.images`;
2. LZMA replaces ZSTD as GPU kernel compression algorithm for better compression ratio: aotriton0.8b (.so + aotriton.images take 350MB) compared to aotriton0.7b .so: 800MB
3. The compression cannot be disabled now, and `liblzma` is hard run-time dependency.
    + Should not be a problem, since `lzma` is part of Python Standard Library

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140172
Approved by: https://github.com/jithunnair-amd, https://github.com/jeffdaily

Co-authored-by: Jithun Nair <37884920+jithunnair-amd@users.noreply.github.com>
2024-12-06 21:45:18 +00:00
74fd1bf965 [ROCm] Update to AOTriton 0.7b (#134498)
Notable changes:
1. Enable CudaGraph related tests
2. Fix UT problems
3. EXPERIMENTAL Navi31 support. User should enable Navi31 support with Env Var `TORCH_ROCM_AOTRITON_ENABLE_EXPERIMENTAL=1`

Know Problem:
1. `test/test_transformers.py` will massive failures and/or NaN outputs with `--use-pytest`
    + Update: Confirmed skip `class TestSDPAPrivateUse1Only` can fix the problem with `--use-pytest`

Note:
AOTriton 0.7b adds support to nestedtenosrs+SDPA but need more work (and consequently a separate PR) to enable it.

Fixes #133540

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134498
Approved by: https://github.com/pruthvistony, https://github.com/jeffdaily, https://github.com/malfet
2024-09-11 20:34:01 +00:00
e3ca7346ce Re-add initial Flash Attention support on ROCM (#115981)
Note about the Updates:

This PR:
1. skips more flash attention related UTs on MI200
2. Fix additional ATen compiling errors after hipification
3. Fix the author "root" of a specific commit
4. Includes the patch from Nikita in favor of block level static initialization.

CAVEAT: This revised PR has a commit that modifies the CI to force its running on MI200 nodes. That specific commit must be reverted before merge.

Original PR (https://github.com/pytorch/pytorch/pull/114309) Note:

This pull requests add initial Flash Attention support for AMD/ROCM platform. It added a specialized Triton repository/branch as a compile-time dependency for Flash Attention math library on AMD/ROCM. This triton submodule is not used at runtime and will not be shipped to the final pytorch package. We have the plan to release this specialized Triton as a separate project.

Know limitations:

- Only supports MI200 series GPU (i.e., `gcnArchName == gfx90a:sramecc+:xnack-`.
- Only supports power of two sequence lengths.
- No support for varlen APIs.
- Only support head dimension 16,32,64,128.
- Performance is still being optimized.

Fixes #112997

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115981
Approved by: https://github.com/malfet
2024-01-04 22:21:31 +00:00
c006c8b50e Revert "markDynamoStrictTest some more (#115885)"
This reverts commit 55ce4693ff2c0b6e50b8af323f36ecc7ff929638.

Reverted https://github.com/pytorch/pytorch/pull/115885 on behalf of https://github.com/atalman due to OSSCI oncall, broke inductor ([comment](https://github.com/pytorch/pytorch/pull/115885#issuecomment-1858409669))
2023-12-15 19:51:24 +00:00
55ce4693ff markDynamoStrictTest some more (#115885)
Featuring
test_native_mha.py
test_nn.py
test_prims.py
test_schema_check.py
test_serialization.py
test_show_pickle.py
test_sort_and_select.py
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115885
Approved by: https://github.com/voznesenskym
ghstack dependencies: #115845, #115855, #115856, #115857, #115858, #115870, #115871, #115879
2023-12-15 13:19:52 +00:00
e24ce484ed Use scaled_dot_product_attention within attention.cpp (#87312)
# Summary
Use the private _scaled_dot_product_attention to support _native_multiheaded_attention. _SDP provides access to fused kernels when certain conditions are meant enabling a speed up for MHA.

cc @cpuhrsch @jbschlosser @bhosmer @mikaylagawarecki
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87312
Approved by: https://github.com/cpuhrsch
2022-10-31 04:06:31 +00:00
afaee00fec Add python nested_tensor and as_nested_tensor constructors in torch.nested (#85593)
Remove `torch.nested_tensor` which has erroneous behavior wrt gradients (could be either leaf or not leaf). Introduce `torch.nested.nested_tensor` and `torch.nested.as_nested_tensor` in the vein of `torch.tensor` and `torch.as_tensor`. Done in nested `__init__.py` for now but can move to pybind in future (when we want to load from numpy/nested lists ).

Discussed offline with @cpuhrsch and pybind constructor (https://github.com/pytorch/pytorch/pull/85536) was more gnarly than expected, so we can move to that when we do need loading from numpy etc.

Differential Revision: [D39806622](https://our.internmc.facebook.com/intern/diff/D39806622)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85593
Approved by: https://github.com/drisspg, https://github.com/cpuhrsch
2022-09-28 20:15:02 +00:00
77f1f98479 Re-introduce torch.Tensor.to_padded_tensor (#85293)
Differential Revision: [D39629004](https://our.internmc.facebook.com/intern/diff/D39629004)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85293
Approved by: https://github.com/cpuhrsch
2022-09-21 18:45:56 +00:00
e217b30b0f Add torch.nested namespace (#84102)
First step towards #83775
- only `to_padded_tensor` is moved to the nested namespace for now
- following the schema used for `special`, `fft`, `linalg` and other namespaces, nested functions are registered in native_functions.yaml as `nested_{function_name}` and are bound to the desired Python name in
`torch/nested/__init__.py`, and the desired C++ name in `torch/csrc/api/include/torch/nested.h`.

~~**Question**: should we keep the documentation for `Tensor.to_padded_tensor` or can this deleted since it is shared by `torch.nested.to_padded_tensor`?~~

[generated nested docs](https://docs-preview.pytorch.org/84102/nested.html?highlight=nested#module-torch.nested)

Differential Revision: [D39361148](https://our.internmc.facebook.com/intern/diff/D39361148)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84102
Approved by: https://github.com/drisspg
2022-09-12 16:31:05 +00:00
b236352036 Add mask identifier for multiplexed src_mask/src_key_padding_mask in BT (#81947)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81947

Transformer fastpath multiplexes two arguments, src_mask [seq_len x seq_len] and src_key_padding_mask [batch_size x seq_len], and later deduces the type based on mask shape.

In the event that batch_size == seq_len, any src_mask is wrongly interpreted as a src_key padding_mask. This is fixed by requiring a mask_type identifier be supplied whenever batch_size == seq_len.

Additionally, added support for src_mask in masked_softmax CPU path.

Test Plan: existing unit tests + new unit tests (batch_size == seq_len)

Differential Revision: D37932240

Pull Request resolved: https://github.com/pytorch/pytorch/pull/81947
Approved by: https://github.com/zrphercule
2022-08-09 23:42:16 +00:00
7e4730d017 [PyTorch] Round T up to next multiple of 8 in NestedTensor case
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77903

Code comment should explain why; in brief, it lets us use Tensor cores.

Differential Revision: [D36527773](https://our.internmc.facebook.com/intern/diff/D36527773/)

Approved by: https://github.com/ngimel, https://github.com/cpuhrsch
2022-05-25 20:34:19 +00:00
e816e17655 [PyTorch] Add native fast path for transformer encoder inference (#76333)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76333

The current PyTorch multi-head attention and transformer
implementations are slow. This should speed them up for inference.
ghstack-source-id: 154737857

(Note: this ignores all push blocking failures!)

Test Plan: CI

Reviewed By: cpuhrsch

Differential Revision: D35239925

fbshipit-source-id: 5a7eb8ff79bc6afb4b7d45075ddb2a24a6e2df28
2022-04-26 12:58:03 -04:00
2387efd356 Revert "[PyTorch] Add native fast path for transformer encoder inference"
This reverts commit b369b89f235f54bc9de85d768fb62ac4579681dc.

This has internal changes and should not have been landed via mergebot.

Ref: https://github.com/pytorch/pytorch/pull/75809#issuecomment-1108717166
2022-04-25 11:40:02 -04:00
b369b89f23 [PyTorch] Add native fast path for transformer encoder inference
Pull Request resolved: https://github.com/pytorch/pytorch/pull/75809

The current PyTorch multi-head attention and transformer
implementations are slow. This should speed them up for inference.

Differential Revision: [D35239925](https://our.internmc.facebook.com/intern/diff/D35239925/)

**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D35239925/)!

Approved by: https://github.com/ezyang
2022-04-25 06:11:36 +00:00