55 Commits

Author SHA1 Message Date
15c8bdcc5e Fix FloorDiv should not generate non integer rationals (due to sympy bug) (#164398)
FloorDiv eval have this optimization
```
  # Expands (x + y) // b into x // b + y // b.
  # This only works if floor is an identity, i.e. x / b is an integer.
 ```

 Before this PR this optimization would generate a result in an expression like this. Duo to a bug in sympy.
 ```
Mul(Rational(1, 22), Add(Mul(Integer(24), Symbol('s37', integer=True, positive=True)), Integer(672)), FloorDiv(Mul(Symbol('s14', integer=True, positive=True), Symbol('s46', integer=True, positive=True)), Integer(2016)))
 ```

 This is because in sympy an expression can have .is_integer =True yet have 1/22 in it!
 This PR ensure we do not generate that by simply opting out if this optimization if we end
 up with quotient that have such rational.

  Fix
  https://github.com/pytorch/pytorch/issues/164385,
  https://github.com/pytorch/pytorch/issues/154996
  https://github.com/pytorch/pytorch/issues/153375
  https://github.com/pytorch/pytorch/issues/164063
and internal user issue.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164398
Approved by: https://github.com/jansel, https://github.com/isuruf
2025-10-02 22:51:03 +00:00
17687eb792 [BE][4/6] fix typos in test/ (test/inductor/) (#157638)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157638
Approved by: https://github.com/yewentao256, https://github.com/jansel
2025-07-06 06:34:25 +00:00
e5f869999c [inductor] Fix ModularIndexing assumptions (#152993)
Fixes https://github.com/pytorch/pytorch/issues/151198.

Since the result of ModularIndexing can be zero due to the modulo
operation, we should not make any assumption about ModularIndexing
being positive

Pull Request resolved: https://github.com/pytorch/pytorch/pull/152993
Approved by: https://github.com/yf225
2025-05-08 18:26:45 +00:00
e2f9759bd0 Fix broken URLs (#152237)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/152237
Approved by: https://github.com/huydhn, https://github.com/malfet
2025-04-27 09:56:42 +00:00
5590a0692c [aotinductor] fix std::{min.max} compilation error for sympy expr with multiple args (#150894)
### Compilation error
The issue is that u0 (an unbacked symint) can come from a smaller int dtype e.g. int16, int32.
```
error: no matching function for call to ‘min(int64_t&, short int&)’
  759 |     call_add_kernel_with_scaling_0(... std::min(100L, s97, u0) ...);
```

### Diff
The fix is to explicitly specify `int64_t` in the std::min template.
```
int64_t s97 = arg0_1_size[0];
int16_t u0_raw;      # not a long
auto u0 = u0_raw;

# Before
std::min({100L, s97, u0})
# After
std::min<int64_t>({100L, s97, u0})
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/150894
Approved by: https://github.com/desertfire
2025-04-11 07:32:47 +00:00
c41c2130be Fix printing INT64_MIN (#149148)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149148
Approved by: https://github.com/anijain2305
2025-03-17 17:57:18 +00:00
b11d5cd584 [Inductor UT][Windows][XPU] Fix Inductor UT on XPU Windows. (#146481)
This PR fixed all the inductor UT failures for XPU backend on Windows we found in local machine(Due to resource constraints, we have not yet set up a Windows CI pipeline online.)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146481
Approved by: https://github.com/jansel, https://github.com/EikanWang
ghstack dependencies: #147347
2025-02-22 02:53:16 +00:00
4b77ff9784 Fix PythonMod printing for C++ (#143385)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143385
Approved by: https://github.com/leslie-fang-intel, https://github.com/anijain2305
2025-01-22 14:58:35 +00:00
301b9c8a90 Fix PythonMod printing (#144078)
Fixes #144075
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144078
Approved by: https://github.com/anijain2305
2025-01-06 22:52:34 +00:00
d8c8ba2440 Fix unused Python variables in test/[e-z]* (#136964)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136964
Approved by: https://github.com/justinchuby, https://github.com/albanD
2024-12-18 23:02:30 +00:00
a1688d8607 Fix test_indexing on MacOS (#142440)
Where int64_t is long long rather than long

This fixes test regression introduced by https://github.com/pytorch/pytorch/pull/140597 that went undetected due to https://github.com/pytorch/pytorch/issues/142206

Pull Request resolved: https://github.com/pytorch/pytorch/pull/142440
Approved by: https://github.com/kit1980
2024-12-10 01:46:28 +00:00
f83361b274 inductor dtype propagation fixes (#141495)
- Add in upcast_compute_type on creation of new tensors (loads, constants)
- Fixes index_expr - right now we are sort of inconsistent in dtype and dont always respect the dtype specified. would be nice to fix but not doing in this pr.
- bug fix in view dtype where we were always upcasting back to fp32 when input was in bf16/fp16. we should only be doing that if the output is also in bf16/fp16.
- for masked, avoid calling dtype propagation and just use output dtype.

Turns on the runtime dtype verification for opinfo tests. The separate test file is still useful because we can use it for testing turning off codegen_upcast_to_fp32.

Follow ups:

- We could consider requiring less explicit upcast_compute_types calls and do it automatically. That would potentially make things easier but be less flexible in the future. Maybe I should have done it this pr.
- Be more consistent on our index expr dtype printing.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141495
Approved by: https://github.com/blaine-rister, https://github.com/arui-meta, https://github.com/ezyang
ghstack dependencies: #139945, #140057
2024-11-28 11:39:38 +00:00
44186a0a4e Move Sympy printers to torch/utils/_sympy/printers.py (#140597)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140597
Approved by: https://github.com/ezyang, https://github.com/anijain2305
2024-11-26 18:11:00 +00:00
f23621ec56 Revert "Move Sympy printers to torch/utils/_sympy/printers.py (#140597)"
This reverts commit c25b201583fc28243b87c460a2f18e2531a676e7.

Reverted https://github.com/pytorch/pytorch/pull/140597 on behalf of https://github.com/huydhn due to Trunk is sad again after this lands, this looks like a landrace this time, so please do a rebase ([comment](https://github.com/pytorch/pytorch/pull/140597#issuecomment-2494052978))
2024-11-22 15:43:39 +00:00
c25b201583 Move Sympy printers to torch/utils/_sympy/printers.py (#140597)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140597
Approved by: https://github.com/ezyang, https://github.com/anijain2305
2024-11-22 02:04:36 +00:00
701e06b643 Revert "Move Sympy printers to torch/utils/_sympy/printers.py (#140597)"
This reverts commit aefcdb3c9fa787f9d43864f6f99a3590c914324a.

Reverted https://github.com/pytorch/pytorch/pull/140597 on behalf of https://github.com/huydhn due to Sorry for reverting your change but I think it fails inductor/test_padding in trunk. This is a target determination miss and that failed test was not run in your PR ([comment](https://github.com/pytorch/pytorch/pull/140597#issuecomment-2489641453))
2024-11-20 22:13:57 +00:00
aefcdb3c9f Move Sympy printers to torch/utils/_sympy/printers.py (#140597)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140597
Approved by: https://github.com/ezyang, https://github.com/anijain2305
2024-11-20 20:26:49 +00:00
fbf3fc2a30 [inductor] Use int64_t as index type for all platfroms 4 (#133892)
It is parallel PR to https://github.com/pytorch/pytorch/pull/133819 , and it is append change for @jansel 's comments.
1. For `torch/_inductor/codegen/cpp_wrapper_cpu.py`, revert to origin code to append LL on MacOS and Windows: bdc14ad89a
2. For `torch/_inductor/codegen/cpp_utils.py`, append LL on MacOS and Windows forlarge constants. And fix its UTs: 3a56b76ce0

------------------------------
Another solution for https://github.com/pytorch/pytorch/pull/133615, use `int64_t` as index type for all plartform.

### Development notes:
The metioned PR( https://github.com/pytorch/pytorch/pull/133615) is fix the index type not match to parse_arg args types. As reviewed with @jansel , Jason think we need to unificate `INDEX_TYPE` for all platforms.
Current code is make code cumbersome:
```python
INDEX_TYPE = "int64_t" if _IS_WINDOWS else "long"
```

So, I have some attempts to unificate `INDEX_TYPE` as `long` or `int64_t`.
For use `long` as index type: https://github.com/pytorch/pytorch/pull/133768
For use `int64_t` as index type: https://github.com/pytorch/pytorch/pull/133782

Since that, we still discussed which type we will select as final solution.
![image](https://github.com/user-attachments/assets/b23fa577-2d40-4bd6-b934-fb7994fe0bb0)

`long` type is different define and size in different OSs and different compilers. So, @jansel make decision that, we need to select `int64_t` for all platforms. So, I would comtine my work based on https://github.com/pytorch/pytorch/pull/133782.

As https://github.com/pytorch/pytorch/pull/133782 still has two issues:
1. std::min/std::max could not match function instances by arg types. It as fixed and validated in PR: https://github.com/pytorch/pytorch/pull/133812
4. Cuda TestMemoryPlanning::test_cpp_wrapper issue by wrong index type. It is fixing in this PR.

So, we made final solution in this PR.

### Changes:
**1. Use `int64_t` type as index type for all OSs: `Windows`, `Linux` and `MacOS`.**
**2. Use static_cast<int64_t>(`constant`) to convert constant to `div_floor_integer` with args type(`int64_t`).**
**3. Update `parse_arg` function signature to `int64_t`, which follow the index type.**
**4. Append double L(`LL`) to constant on Windows and MacOS, because of their int64_t are are long long.**
**5. Fix `std::min/std::max` type miss match by static_cast to `INDEX_TYPE`.**
**6. Fix UTs, containts: cuda `TestMemoryPlanning::test_cpp_wrapper`, and `test_indexing.py`.**

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133892
Approved by: https://github.com/jansel
2024-08-20 16:54:12 +00:00
5cb05a82b4 [BC breaking] move benchmarking + prefer inductor path (#132827)
move benchmarking out of `torch._inductor.runtime.runtime_utils` and into `torch._inductor.runtime.benchmarking`, and prefer this path over directly accessing Triton's benchmarking

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132827
Approved by: https://github.com/eellison
2024-08-08 00:47:45 +00:00
260c991e20 [inductor] Fix unsoundness with negative-valued indexing expressions (#131761)
This fixes a few instances where we assumed indexing expressions were
non-negative. This is not valid when we have more complicated
expressions involving masking e.g. pointwise cat.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131761
Approved by: https://github.com/ezyang
2024-07-31 21:32:20 +00:00
957a89f56c Revert "[inductor] Fix unsoundness with negative-valued indexing expressions (#131761)"
This reverts commit 03760be2714c6ed3b4f44c4dc3ea016f557d8597.

Reverted https://github.com/pytorch/pytorch/pull/131761 on behalf of https://github.com/atalman due to Broke CI: inductor/test_cpu_cpp_wrapper.py::DynamicShapesCppWrapperCpuTests::test_linear_binary_dynamic_shapes_cpp_wrapper [GH job link](https://github.com/pytorch/pytorch/actions/runs/10145214748/job/28051168920) [HUD commit link](03760be271) ([comment](https://github.com/pytorch/pytorch/pull/131761#issuecomment-2256287736))
2024-07-29 15:52:08 +00:00
03760be271 [inductor] Fix unsoundness with negative-valued indexing expressions (#131761)
This fixes a few instances where we assumed indexing expressions were
non-negative. This is not valid when we have more complicated
expressions involving masking e.g. pointwise cat.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131761
Approved by: https://github.com/ezyang
2024-07-29 03:14:13 +00:00
134bc4fc34 [BE][Easy][12/19] enforce style for empty lines in import segments in test/i*/ (#129763)
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter.

You can review these PRs via:

```bash
git diff --ignore-all-space --ignore-blank-lines HEAD~1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129763
Approved by: https://github.com/jansel
2024-07-18 07:49:19 +00:00
b732b52f1e Revert "[BE][Easy][12/19] enforce style for empty lines in import segments in test/i*/ (#129763)"
This reverts commit aecc746fccc4495313167e3a7f94210daf457e1d.

Reverted https://github.com/pytorch/pytorch/pull/129763 on behalf of https://github.com/XuehaiPan due to need reland after rerunning lintrunner on main ([comment](https://github.com/pytorch/pytorch/pull/129763#issuecomment-2235736732))
2024-07-18 06:39:58 +00:00
aecc746fcc [BE][Easy][12/19] enforce style for empty lines in import segments in test/i*/ (#129763)
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter.

You can review these PRs via:

```bash
git diff --ignore-all-space --ignore-blank-lines HEAD~1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129763
Approved by: https://github.com/jansel
2024-07-18 05:13:41 +00:00
cc518ebd38 [Inductor Intel GPU backend Upstream] Reuse inductor test for Intel GPU (PART 2) (#124147)
Reuse Inductor test case for Intel GPU.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124147
Approved by: https://github.com/EikanWang, https://github.com/jansel
2024-06-16 08:07:05 +00:00
f1ee3589a1 [Inductor] Emit strided block pointer from ModularIndexing and FloorDiv (#127342)
**Summary**

Inductor currently uses modulo and division to compute indices into certain multi-dimensional tensors, such as those arising from row padding. This PR matches on that indexing pattern, replacing it with an N-D block pointer. This should be more efficient than computing indices with division and modulo, and it can easily map to DMAs on non-GPU hardware targets.

Because the 1D block size needs to map to an integer block shape in ND, we need to know that the ND block size evenly divides the size of the iteration range. This PR only generates ND block pointers when it can guarantee that the iteration order and number of elements loaded are unchanged. This means that the number of elements in a slice of the iteration range must either be:
  - Powers of 2. Since Triton block sizes are powers of 2, any integer power of 2 either divides the block size, or is greater than the block size. In the latter case, `CielDiv(x, y)` rounds up to 1.
  - Multiples of the maximum block size. Since block sizes are powers of 2, the maximum block size is a multiple of every possible block size.

Note that a *slice* of the iteration range does not include the leading dimension. Thus we can support arbitrary leading dimensions like `(5,8)`.

Feature proposal and discussion: https://github.com/pytorch/pytorch/issues/125077

Example kernel:
```
triton.jit
def triton_(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
    xnumel = 4096
    xoffset = tl.program_id(0) * XBLOCK
    xindex = xoffset + tl.arange(0, XBLOCK)[:]
    xmask = xindex < xnumel
    tmp0 = tl.reshape(tl.load(tl.make_block_ptr(in_ptr0, shape=[32, 16, 8], strides=[1024, 32, 1], block_shape=[32 * (32 <= ((127 + XBLOCK) // 128)) + ((127 + XBLOCK) // 128) * (((127 + XBLOCK) // 128) < 32), 16 * (16 <= ((7 + XBLOCK) // 8)) + ((7 + XBLOCK) // 8) * (((7 + XBLOCK) // 8) < 16), 8 * (8 <= XBLOCK) + XBLOCK * (XBLOCK < 8)], order=[0, 1, 2], offsets=[(xoffset // 128), (xoffset // 8) % 16, xoffset % 8]), boundary_check=[0, 1, 2]), [XBLOCK])
    tmp1 = tmp0 + tmp0
    tl.store(tl.make_block_ptr(out_ptr0, shape=[4096], strides=[1], block_shape=[XBLOCK], order=[0], offsets=[xoffset]), tl.broadcast_to(tmp1, [XBLOCK]).to(tl.float32))
''', device_str='cuda')
```

**Test Plan**

This PR adds a new CI test script to cover this feature. The tests can be grouped into a few main categories:
  - Can we generate strided block pointers for the appropriate shapes?
     - Powers of 2
     - Non-power of 2, but multiple of the maximum block size
     - Arbitrary leading dimensions, with power of 2 inner dimensions
     - Weird strides and offsets
     - Reductions
     - Symbolic shapes that are multiples of the maximum block size (wasn't able to trace this through dynamo)
     - Broadcasts (some variables are missing from the indexing expression)
  - Do we still compile other cases correctly, even if we don't expect to be able to generate block pointers?
     - Unsupported static shapes
     - Unsupported symbolic shapes
  - Mixing and matching these cases:
     - Pointwise and reduction in the same kernel
  - Sanity check the test harness
     - Do we raise an exception if the expected number of block pointers and the actual number are different?

**Follow-ups**

There are a few important cases which this PR can't handle. I'm hoping these can be deferred to follow-up PRs:
  - Handle non-divisible shapes
      - Change the tiling algorithm to generate a 2D (X,Y) blocking, if doing so enables block pointers to be emitted.
      - Pad unsupported loads up to the nearest divisible size, then mask/slice out the extra elements? This is probably the best solution, but I'm not yet sure how to go about it in triton.
 - Take advantage of this analysis when `triton.use_block_ptr=False`. I'm guessing we can still avoid `%` and `/` without requiring block pointers. Maybe we could compute block indices with arange and broadcast instead?

Differential Revision: D56739375

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127342
Approved by: https://github.com/jansel, https://github.com/shunting314
2024-06-16 07:35:57 +00:00
3964a3ec73 Complete revamp of float/promotion sympy handling (#126905)
At a high level, the idea behind this PR is:

* Make it clearer what the promotion and int/float rules for various Sympy operations are. Operators that previously were polymorphic over int/float are now split into separate operators for clarity. We never do mixed int/float addition/multiplication etc in sympy, instead, we always promote to the appropriate operator. (However, equality is currently not done correctly.)
* Enforce strict typing on ValueRanges: if you have a ValueRange for a float, the lower and upper MUST be floats, and so forth for integers.

The story begins in **torch/utils/_sympy/functions.py**. Here, I make some changes to how we represent certain operations in sympy expressions:

* FloorDiv now only supports integer inputs; to do float floor division, do a truediv and then a trunc. Additionally, we remove the divide out addition by gcd optimization, because sympy gcd is over fields and is willing to generate rationals (but rationals are bad for ValueRange strict typing).
* ModularIndexing, LShift, RShift now assert they are given integer inputs.
* Mod only supports integer inputs; eventually we will support FloatMod (left for later work, when we build out Sympy support for floating operations). Unfortunately, I couldn't assert integer inputs here, because of a bad interaction with sympy's inequality solver that is used by the offline solver
* TrueDiv is split into FloatTrueDiv and IntTrueDiv. This allows for us to eventually generate accurate code for Python semantics IntTrueDiv, which is written in a special way to preserve precision when the inputs are >= 2**53 beyond what first coercing the integer to floats and then doing true division.
* Trunc is split to TruncToFloat and TruncToInt.
* Round is updated to return a float, not an int, making it consistent with the round op handler in Inductor. To get Python-style conversion to int, we call TruncToInt on the result.
* RoundDecimal updated to consistently only ever return a float
* Add ToFloat for explicit coercion to float (required so we can enforce strict ValueRanges typing)

In **torch/__init__.py**, we modify SymInt and SymFloat to appropriately call into new bindings that route to these refined sympy operations.  Also, we modify `torch.sym_min` and `torch.sym_max` to have promotion semantics (if one argument is a float, the return result is always a float), making them inconsistent with builtins.min/max, but possible to do type analysis without runtime information.

We also need to introduce some new op handlers in **torch/_inductor/ops_handler.py**:

* `to_int` for truncation to int64, directly corresponding to TruncToInt; this can be implemented by trunc and dtype, but with a dedicated handler it is more convenient for roundtripping in Sympy
* `int_truediv` for Python-style integer true division, which has higher precision than casting to floats and then running `truediv`

These changes have consequences. First, we need to make some administrative changes:

* Actually wire up these Sympy functions from SymInt/SymFloat in **torch/fx/experimental/sym_node.py**, including the new promotion rules (promote2)
* Add support for new Sympy functions in **torch/utils/_sympy/interp.py**, **torch/utils/_sympy/reference.py**
  * In particular, in torch.utils._sympy.reference, we have a strong preference to NOT do nontrivial compute, instead, everything in ops handler should map to a singular sympy function
  * TODO: I chose to roundtrip mod back to our Mod function, but I think I'm going to have to deal with the C/Python inconsistency this to fix tests here
* Add printer support for the Sympy functions in **torch/_inductor/codegen/common.py**, **torch/_inductor/codegen/cpp_utils.py**, **torch/_inductor/codegen/triton.py**. `int_truediv` and mixed precision equality is currently not implemented soundly, so we will lose precision in codegen for large values. TODO: The additions here are not exhaustive yet
* Update ValueRanges logic to use new sympy functions in **torch/utils/_sympy/value_ranges.py**. In general, we prefer to use the new Sympy function rather than try to roll things by hand, which is what was done previously for many VR analysis functions.

In **torch/fx/experimental/symbolic_shapes.py** we need to make some symbolic reasoning adjustments:

* Avoid generation of rational subexpressions by removing simplification of `x // y` into `floor(x / y)`. This simplification then triggers an addition simplification rule `(x + y) / c --> x / c + y / c` which is bad because x / c is a rational number now
* `_assert_bound_is_rational` is no more, we no longer generate rational bounds
* Don't intersect non-int value ranges with the `int_range`
* Support more sympy Functions for guard SYMPY_INTERP
* Assert the type of value range is consistent with the variable type

The new asserts uncovered necessary bug fixes:

* **torch/_inductor/codegen/cpp.py**, **torch/_inductor/select_algorithm.py**, **torch/_inductor/sizevars.py** - Ensure Wild/Symbol manually allocated in Inductor is marked `is_integer` so it's accepted to build expressions
* **torch/_inductor/utils.py** - make sure you actually pass in sympy.Expr to these functions
* **torch/_inductor/ir.py** - make_contiguous_strides_for takes int/SymInt, not sympy.Expr!
* **torch/export/dynamic_shapes.py** - don't use infinity to represent int ranges, instead use sys.maxsize - 1

Because of the removal of some symbolic reasoning that produced rationals, some of our symbolic reasoning has gotten worse and we are unable to simplify some guards. Check the TODO at **test/test_proxy_tensor.py**

**Reland notes.** This requires this internal fbcode diff https://www.internalfb.com/phabricator/paste/view/P1403322587 but I cannot prepare the diff codev due to https://fb.workplace.com/groups/osssupport/posts/26343544518600814/

It also requires this Executorch PR https://github.com/pytorch/executorch/pull/3911 but the ET PR can be landed prior to this landing.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126905
Approved by: https://github.com/xadupre, https://github.com/lezcano
2024-06-09 06:20:25 +00:00
0c7f4353e5 [inductor] simplify indexing (#127661)
This is a short term fix for: https://github.com/pytorch/pytorch/issues/124002

We found the cause of bad perf for the int8_unpack kernel is due to sub-optimal indexing. In this PR we introduce 2 indexing optimizations:
1. expand FloorDiv to the entire expression when feasible. E.g. `x1 * 1024 + x2 // 2`  will be transformed to `(x1 * 2048 + x2) // 2`. The motivation is that we have more chance to simplify loops for `x1 * 2048 + x2`.
2. merge ModularIndexing pairs: `ModularIndexing(ModularIndex(x, 1, a), 1, b)`, can be simplified to `ModularIndexing(x, 1, b)` if a is a multiple of b.

With both indexing optimizations, we improve int8_unpack perf by 1.54x (183us -> 119us).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127661
Approved by: https://github.com/jansel
2024-06-07 17:51:30 +00:00
ac51f782fe Revert "Complete revamp of float/promotion sympy handling (#126905)"
This reverts commit 2f7cfecd86009a9d396fdbdcdfb4ba7a005db16b.

Reverted https://github.com/pytorch/pytorch/pull/126905 on behalf of https://github.com/atalman due to Sorry need to revert - failing internally ([comment](https://github.com/pytorch/pytorch/pull/126905#issuecomment-2155118778))
2024-06-07 16:01:46 +00:00
23c156cd2d Revert "[inductor] simplify indexing (#127661)"
This reverts commit 901226ae837bd4629b34735c84a3481c4988bb5b.

Reverted https://github.com/pytorch/pytorch/pull/127661 on behalf of https://github.com/atalman due to Sorry reverting because in conflict with https://github.com/pytorch/pytorch/pull/126905 which needs to be reverted, will be relanding it ([comment](https://github.com/pytorch/pytorch/pull/127661#issuecomment-2155115388))
2024-06-07 15:58:36 +00:00
901226ae83 [inductor] simplify indexing (#127661)
This is a short term fix for: https://github.com/pytorch/pytorch/issues/124002

We found the cause of bad perf for the int8_unpack kernel is due to sub-optimal indexing. In this PR we introduce 2 indexing optimizations:
1. expand FloorDiv to the entire expression when feasible. E.g. `x1 * 1024 + x2 // 2`  will be transformed to `(x1 * 2048 + x2) // 2`. The motivation is that we have more chance to simplify loops for `x1 * 2048 + x2`.
2. merge ModularIndexing pairs: `ModularIndexing(ModularIndex(x, 1, a), 1, b)`, can be simplified to `ModularIndexing(x, 1, b)` if a is a multiple of b.

With both indexing optimizations, we improve int8_unpack perf by 1.54x (183us -> 119us).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127661
Approved by: https://github.com/jansel
2024-06-06 23:57:45 +00:00
2f7cfecd86 Complete revamp of float/promotion sympy handling (#126905)
At a high level, the idea behind this PR is:

* Make it clearer what the promotion and int/float rules for various Sympy operations are. Operators that previously were polymorphic over int/float are now split into separate operators for clarity. We never do mixed int/float addition/multiplication etc in sympy, instead, we always promote to the appropriate operator. (However, equality is currently not done correctly.)
* Enforce strict typing on ValueRanges: if you have a ValueRange for a float, the lower and upper MUST be floats, and so forth for integers.

The story begins in **torch/utils/_sympy/functions.py**. Here, I make some changes to how we represent certain operations in sympy expressions:

* FloorDiv now only supports integer inputs; to do float floor division, do a truediv and then a trunc. Additionally, we remove the divide out addition by gcd optimization, because sympy gcd is over fields and is willing to generate rationals (but rationals are bad for ValueRange strict typing).
* ModularIndexing, LShift, RShift now assert they are given integer inputs.
* Mod only supports integer inputs; eventually we will support FloatMod (left for later work, when we build out Sympy support for floating operations). Unfortunately, I couldn't assert integer inputs here, because of a bad interaction with sympy's inequality solver that is used by the offline solver
* TrueDiv is split into FloatTrueDiv and IntTrueDiv. This allows for us to eventually generate accurate code for Python semantics IntTrueDiv, which is written in a special way to preserve precision when the inputs are >= 2**53 beyond what first coercing the integer to floats and then doing true division.
* Trunc is split to TruncToFloat and TruncToInt.
* Round is updated to return a float, not an int, making it consistent with the round op handler in Inductor. To get Python-style conversion to int, we call TruncToInt on the result.
* RoundDecimal updated to consistently only ever return a float
* Add ToFloat for explicit coercion to float (required so we can enforce strict ValueRanges typing)

In **torch/__init__.py**, we modify SymInt and SymFloat to appropriately call into new bindings that route to these refined sympy operations.  Also, we modify `torch.sym_min` and `torch.sym_max` to have promotion semantics (if one argument is a float, the return result is always a float), making them inconsistent with builtins.min/max, but possible to do type analysis without runtime information.

We also need to introduce some new op handlers in **torch/_inductor/ops_handler.py**:

* `to_int` for truncation to int64, directly corresponding to TruncToInt; this can be implemented by trunc and dtype, but with a dedicated handler it is more convenient for roundtripping in Sympy
* `int_truediv` for Python-style integer true division, which has higher precision than casting to floats and then running `truediv`

These changes have consequences. First, we need to make some administrative changes:

* Actually wire up these Sympy functions from SymInt/SymFloat in **torch/fx/experimental/sym_node.py**, including the new promotion rules (promote2)
* Add support for new Sympy functions in **torch/utils/_sympy/interp.py**, **torch/utils/_sympy/reference.py**
  * In particular, in torch.utils._sympy.reference, we have a strong preference to NOT do nontrivial compute, instead, everything in ops handler should map to a singular sympy function
  * TODO: I chose to roundtrip mod back to our Mod function, but I think I'm going to have to deal with the C/Python inconsistency this to fix tests here
* Add printer support for the Sympy functions in **torch/_inductor/codegen/common.py**, **torch/_inductor/codegen/cpp_utils.py**, **torch/_inductor/codegen/triton.py**. `int_truediv` and mixed precision equality is currently not implemented soundly, so we will lose precision in codegen for large values. TODO: The additions here are not exhaustive yet
* Update ValueRanges logic to use new sympy functions in **torch/utils/_sympy/value_ranges.py**. In general, we prefer to use the new Sympy function rather than try to roll things by hand, which is what was done previously for many VR analysis functions.

In **torch/fx/experimental/symbolic_shapes.py** we need to make some symbolic reasoning adjustments:

* Avoid generation of rational subexpressions by removing simplification of `x // y` into `floor(x / y)`. This simplification then triggers an addition simplification rule `(x + y) / c --> x / c + y / c` which is bad because x / c is a rational number now
* `_assert_bound_is_rational` is no more, we no longer generate rational bounds
* Don't intersect non-int value ranges with the `int_range`
* Support more sympy Functions for guard SYMPY_INTERP
* Assert the type of value range is consistent with the variable type

The new asserts uncovered necessary bug fixes:

* **torch/_inductor/codegen/cpp.py**, **torch/_inductor/select_algorithm.py**, **torch/_inductor/sizevars.py** - Ensure Wild/Symbol manually allocated in Inductor is marked `is_integer` so it's accepted to build expressions
* **torch/_inductor/utils.py** - make sure you actually pass in sympy.Expr to these functions
* **torch/_inductor/ir.py** - make_contiguous_strides_for takes int/SymInt, not sympy.Expr!
* **torch/export/dynamic_shapes.py** - don't use infinity to represent int ranges, instead use sys.maxsize - 1

Because of the removal of some symbolic reasoning that produced rationals, some of our symbolic reasoning has gotten worse and we are unable to simplify some guards. Check the TODO at **test/test_proxy_tensor.py**

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126905
Approved by: https://github.com/xadupre, https://github.com/lezcano
2024-06-06 02:29:45 +00:00
d5cb5d623a Revert "Complete revamp of float/promotion sympy handling (#126905)"
This reverts commit fb696ef3aa34e20c0fef1c0210a397abd3ea5885.

Reverted https://github.com/pytorch/pytorch/pull/126905 on behalf of https://github.com/ezyang due to internal user reported ceiling equality simplification problem, I have a plan ([comment](https://github.com/pytorch/pytorch/pull/126905#issuecomment-2148805840))
2024-06-05 03:57:58 +00:00
fb696ef3aa Complete revamp of float/promotion sympy handling (#126905)
At a high level, the idea behind this PR is:

* Make it clearer what the promotion and int/float rules for various Sympy operations are. Operators that previously were polymorphic over int/float are now split into separate operators for clarity. We never do mixed int/float addition/multiplication etc in sympy, instead, we always promote to the appropriate operator. (However, equality is currently not done correctly.)
* Enforce strict typing on ValueRanges: if you have a ValueRange for a float, the lower and upper MUST be floats, and so forth for integers.

The story begins in **torch/utils/_sympy/functions.py**. Here, I make some changes to how we represent certain operations in sympy expressions:

* FloorDiv now only supports integer inputs; to do float floor division, do a truediv and then a trunc. Additionally, we remove the divide out addition by gcd optimization, because sympy gcd is over fields and is willing to generate rationals (but rationals are bad for ValueRange strict typing).
* ModularIndexing, LShift, RShift now assert they are given integer inputs.
* Mod only supports integer inputs; eventually we will support FloatMod (left for later work, when we build out Sympy support for floating operations). Unfortunately, I couldn't assert integer inputs here, because of a bad interaction with sympy's inequality solver that is used by the offline solver
* TrueDiv is split into FloatTrueDiv and IntTrueDiv. This allows for us to eventually generate accurate code for Python semantics IntTrueDiv, which is written in a special way to preserve precision when the inputs are >= 2**53 beyond what first coercing the integer to floats and then doing true division.
* Trunc is split to TruncToFloat and TruncToInt.
* Round is updated to return a float, not an int, making it consistent with the round op handler in Inductor. To get Python-style conversion to int, we call TruncToInt on the result.
* RoundDecimal updated to consistently only ever return a float
* Add ToFloat for explicit coercion to float (required so we can enforce strict ValueRanges typing)

In **torch/__init__.py**, we modify SymInt and SymFloat to appropriately call into new bindings that route to these refined sympy operations.  Also, we modify `torch.sym_min` and `torch.sym_max` to have promotion semantics (if one argument is a float, the return result is always a float), making them inconsistent with builtins.min/max, but possible to do type analysis without runtime information.

We also need to introduce some new op handlers in **torch/_inductor/ops_handler.py**:

* `to_int` for truncation to int64, directly corresponding to TruncToInt; this can be implemented by trunc and dtype, but with a dedicated handler it is more convenient for roundtripping in Sympy
* `int_truediv` for Python-style integer true division, which has higher precision than casting to floats and then running `truediv`

These changes have consequences. First, we need to make some administrative changes:

* Actually wire up these Sympy functions from SymInt/SymFloat in **torch/fx/experimental/sym_node.py**, including the new promotion rules (promote2)
* Add support for new Sympy functions in **torch/utils/_sympy/interp.py**, **torch/utils/_sympy/reference.py**
  * In particular, in torch.utils._sympy.reference, we have a strong preference to NOT do nontrivial compute, instead, everything in ops handler should map to a singular sympy function
  * TODO: I chose to roundtrip mod back to our Mod function, but I think I'm going to have to deal with the C/Python inconsistency this to fix tests here
* Add printer support for the Sympy functions in **torch/_inductor/codegen/common.py**, **torch/_inductor/codegen/cpp_utils.py**, **torch/_inductor/codegen/triton.py**. `int_truediv` and mixed precision equality is currently not implemented soundly, so we will lose precision in codegen for large values. TODO: The additions here are not exhaustive yet
* Update ValueRanges logic to use new sympy functions in **torch/utils/_sympy/value_ranges.py**. In general, we prefer to use the new Sympy function rather than try to roll things by hand, which is what was done previously for many VR analysis functions.

In **torch/fx/experimental/symbolic_shapes.py** we need to make some symbolic reasoning adjustments:

* Avoid generation of rational subexpressions by removing simplification of `x // y` into `floor(x / y)`. This simplification then triggers an addition simplification rule `(x + y) / c --> x / c + y / c` which is bad because x / c is a rational number now
* `_assert_bound_is_rational` is no more, we no longer generate rational bounds
* Don't intersect non-int value ranges with the `int_range`
* Support more sympy Functions for guard SYMPY_INTERP
* Assert the type of value range is consistent with the variable type

The new asserts uncovered necessary bug fixes:

* **torch/_inductor/codegen/cpp.py**, **torch/_inductor/select_algorithm.py**, **torch/_inductor/sizevars.py** - Ensure Wild/Symbol manually allocated in Inductor is marked `is_integer` so it's accepted to build expressions
* **torch/_inductor/utils.py** - make sure you actually pass in sympy.Expr to these functions
* **torch/_inductor/ir.py** - make_contiguous_strides_for takes int/SymInt, not sympy.Expr!
* **torch/export/dynamic_shapes.py** - don't use infinity to represent int ranges, instead use sys.maxsize - 1

Because of the removal of some symbolic reasoning that produced rationals, some of our symbolic reasoning has gotten worse and we are unable to simplify some guards. Check the TODO at **test/test_proxy_tensor.py**

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126905
Approved by: https://github.com/xadupre, https://github.com/lezcano
2024-06-04 11:47:32 +00:00
535bc71d03 Enable FX graph caching in another batch of inductor tests (#121697)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121697
Approved by: https://github.com/eellison
2024-03-15 19:38:51 +00:00
168a04e752 [inductor] Changes to support newer triton pin (#121267)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121267
Approved by: https://github.com/lezcano
ghstack dependencies: #121438
2024-03-09 18:17:36 +00:00
708e6241ed Fix sympy_subs to preserve integer and non-negative properties. (#118150)
This diff introduce the following changes:
1. Fix sympy_subs to preserve integer and non-negative properties of replaced symbol when replacement is string
why is this needed?
I was compiling an expression:
 x*abs(y)  where y =-2
  what happens is that this expression is passed as ``s1*abs(s0)`` then s0 is replaced to ks0 with a call to sympy_subs.
 but sympy_subs used to replace s0 (integer=false, nonegative=false) with ks0(inetegr=true, nonegative = true)
 resulting in ``x*abs(ks0) = x*ks0`` which is wrong

2. rename sympy_symbol to sympy_index_symbol to make it explicit.
3. add assertion that replaced expression is not passed as string but always a sympy expression.

Fixes https://github.com/pytorch/pytorch/issues/117757

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118150
Approved by: https://github.com/ezyang
2024-01-25 20:54:55 +00:00
94363cee41 [inductor] Indexing refactors (#116078)
Perf differences seems to be noise:
![image](https://github.com/pytorch/pytorch/assets/533820/d7a36574-0388-46e4-bd4d-b274d37cab2b)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116078
Approved by: https://github.com/aakhundov
2024-01-09 19:06:51 +00:00
99f7e721fe [inductor] make inductor work with new triton compile interface (#115878)
Recent 2 triton PRs (https://github.com/openai/triton/pull/2701, https://github.com/openai/triton/pull/2756) change the interface for triton.compile, this PR added the necessary change on inductor side to work with both old and new compile API.

Also there is some simplification between compilation call in subprocess and the one in main process
- previously we pass warm_cache_only=True if the compilation happens in subprocess. But triton never use that argument in the currently used pin. So I removed that
- previously we only pass compute_capability if compilation happens in subprocess. The PR change that to always passing compute_capability to triton.compile no matter if the compilation happens in main or sub process.

Updated:
There are more interface change from triton side. E.g.
- tl.math.{min, max} now requires a propagate_nan argument
- JITFunction.run now requires a warmup argument. This affect the benchmarking phase of matmul max-autotune; on the other hand, JITFunction.run forbids stream argument now. Simply removing passing this in when benchmarking matmul triton kernel will work for both old and new version of triton.
- triton Autotuner change attribute name from 'warmup' to 'num_warmup' and from 'rep' to 'num_rep'. This cause dynamo failed to handle triton Autotuner object since dynamo TritonKernelVariable makes assumption about attribute names. It's used in some test cases that a model call triton Autotuner directly.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115878
Approved by: https://github.com/jansel
2023-12-22 00:09:29 +00:00
db35ccf463 Revert "[innductor] make inductor work with new triton compile interface (#115878)"
This reverts commit bbded928b3556cf5678edf8fa41109d418312bcc.

Reverted https://github.com/pytorch/pytorch/pull/115878 on behalf of https://github.com/kit1980 due to Broke ROCm https://github.com/pytorch/pytorch/actions/runs/7282149837/job/19844618618 ([comment](https://github.com/pytorch/pytorch/pull/115878#issuecomment-1865369349))
2023-12-21 02:00:17 +00:00
bbded928b3 [innductor] make inductor work with new triton compile interface (#115878)
Recent 2 triton PRs (https://github.com/openai/triton/pull/2701, https://github.com/openai/triton/pull/2756) change the interface for triton.compile, this PR added the necessary change on inductor side to work with both old and new compile API.

Also there is some simplification between compilation call in subprocess and the one in main process
- previously we pass warm_cache_only=True if the compilation happens in subprocess. But triton never use that argument in the currently used pin. So I removed that
- previously we only pass compute_capability if compilation happens in subprocess. The PR change that to always passing compute_capability to triton.compile no matter if the compilation happens in main or sub process.

Updated:
There are more interface change from triton side. E.g.
- tl.math.{min, max} now requires a propagate_nan argument
- JITFunction.run now requires a warmup argument. This affect the benchmarking phase of matmul max-autotune; on the other hand, JITFunction.run forbids stream argument now. Simply removing passing this in when benchmarking matmul triton kernel will work for both old and new version of triton.
- triton Autotuner change attribute name from 'warmup' to 'num_warmup' and from 'rep' to 'num_rep'. This cause dynamo failed to handle triton Autotuner object since dynamo TritonKernelVariable makes assumption about attribute names. It's used in some test cases that a model call triton Autotuner directly.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115878
Approved by: https://github.com/jansel
2023-12-21 00:03:38 +00:00
505a9e4854 add support for dynamic shapes in round (#115259)
Fixes #114310 and supersedes #114748.

There are two reasons why we have quite a few special cases for `round`:

1. `round` is actually two ops. With `ndigits=None` (default), `round` always returns an integer. When `ndigits` is an integer, the returned type is a float.
2. Although `round` takes two arguments, it is a unary function with a parameter rather than a binary one.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115259
Approved by: https://github.com/peterbell10, https://github.com/lezcano
2023-12-19 15:45:50 +00:00
1e60174891 Revert "[dynamo] Add run_inductor_tests entrypoint (#113278)"
This reverts commit b00311ce9e430cf1b98d2103e21ed2179450a424.

Reverted https://github.com/pytorch/pytorch/pull/113278 on behalf of https://github.com/huydhn due to Sorry for reverting your stack, but it is failing to list test internally with buck2 ([comment](https://github.com/pytorch/pytorch/pull/113278#issuecomment-1811646325))
2023-11-15 01:19:48 +00:00
b00311ce9e [dynamo] Add run_inductor_tests entrypoint (#113278)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113278
Approved by: https://github.com/yanboliang
2023-11-11 08:54:43 +00:00
5e03af8295 [inductor] Enable floor_div indexing to work under ABI-compat mode (#113276)
Previously, floor_div operations were defined in
ATen/native/BinaryOps.h. Since this header was not included under
ABI-compat mode, trying to use those indexing operations would result in
compilation errors.

Technically, it is safe to use aten::native::floor_div_* functions in
ABI-compat mode as they are header-only; we could simply include
BinaryOps.h. However, there are other declarations in BinaryOps.h that
are not binary-compatible, so this is not ideal. Thus, I have moved those
functions into a separate file, and put them under c10/util, since they
don't really have tensor-specific logic.

c10 functions are not all header-only, so this still isn't ideal, but
this still seems like an improvement. Moreover, cpp_prefix.h -- used
when compiling cpp kernels -- already includes c10 header files, so
ABI-compatibility already depends on maintaining some c10 functions as
header-only.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113276
Approved by: https://github.com/chenyang78, https://github.com/desertfire
2023-11-11 02:51:29 +00:00
adcf9bb2bd optimize case where div denominator is -1 (#112878)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112878
Approved by: https://github.com/lezcano
2023-11-09 02:41:05 +00:00
66fb83293e [inductor] Add min/max to index propagation pass (#105020)
This allows `ops.minimum` and `ops.maximum` to be hoisted for indirect indexing
into direct indexing expressions. I also add support to the cpp printer for
Min/Max and fix the triton printer to support multi-argument Min/Max.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105020
Approved by: https://github.com/lezcano
2023-07-12 19:03:01 +00:00
49a2b72927 [inductor] handle Min and Max in TritonPrinter (#104944)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104944
Approved by: https://github.com/ezyang
2023-07-11 17:11:31 +00:00
7ae100628e Move most SymPy functions to their own file (#104556)
All these are standalone implementations of some functions and they
don't depend on anything else, so we better have them under the
`_sympy/` folder on their own

Pull Request resolved: https://github.com/pytorch/pytorch/pull/104556
Approved by: https://github.com/ezyang
2023-07-04 03:53:48 +00:00