192 Commits

Author SHA1 Message Date
98c329b19e Revert "[core ATen IR] Add decompositions for max, min, var_mean (#110906)"
This reverts commit 9606cda64e97210cfcca07110ef4872cedc5a1d9.

Reverted https://github.com/pytorch/pytorch/pull/110906 on behalf of https://github.com/SS-JIA due to Breaks internal CI ([comment](https://github.com/pytorch/pytorch/pull/110906#issuecomment-1757490740))
2023-10-11 11:41:21 +00:00
0821868110 Revert "[export] Get export APIs ready for PTC (#110410)"
This reverts commit b96ea9f361f2ed872c4a7d662427cadec345b702.

Reverted https://github.com/pytorch/pytorch/pull/110410 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/110410#issuecomment-1757017249))
2023-10-11 07:31:51 +00:00
b96ea9f361 [export] Get export APIs ready for PTC (#110410)
Summary:
https://docs.google.com/document/d/1QJJEGnj2nHGPODlw38BEG3KLLCOTfdOVjPrNQbz_LM8/edit#bookmark=id.lp80wfshq130
Changes:
* `torch.export` will return a functional ATen graph w/o decompositions
* `exported_program.run_decompositions(decomposition_table)` will optionally take a decomposition table, and run decompositions on the exported program, returning a new exported program. By default we will run the Core ATen decomposition table.

Calling convention for Executorch stays the same:
```
pre_autograd_graph = capture_pre_autograd_graph(f, args, ...)
aten_graph_no_decomps = torch.export.export(pre_autograd_graph, args, ...)
# Within to_edge we decompose to core aten and then convert to edge
edge_graph = exir.to_edge(aten_graph_no_decomps)
```

Test Plan: CI

Differential Revision: D49742989

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110410
Approved by: https://github.com/ydwu4
2023-10-11 06:10:07 +00:00
5aee22e0e0 Move export.constrain_as_* to torch._constrain_as_* (#110757)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110757
Approved by: https://github.com/avikchaudhuri
ghstack dependencies: #109859
2023-10-11 02:37:55 +00:00
9606cda64e [core ATen IR] Add decompositions for max, min, var_mean (#110906)
## Context

Add decompositions for `aten.max`, `aten.min`, and `aten.var_mean`. These operators follow a pattern of returning a tuple of outputs from two component operators:

```
aten.max(x) -> return aten.amax(x), aten.argmax(x)
aten.min(x) -> return aten.amin(x), aten.argmin(x)
aten.var_mean(x) -> return aten.var(x), aten.mean(x)
```

For `var_mean`, the `refs` implementation was doing something similar, so I changed it to call `torch.` ops instead like was done for other `refs` implementations previously. cc: @peterbell10 @lezcano

Note that Inductor lowers all these directly, so they are excluded from the Inductor decomp table.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110906
Approved by: https://github.com/manuelcandales
2023-10-11 00:06:24 +00:00
ff96f6d04f [core IR][reland] Add split.Tensor and unbind decompositions to core ATen decomp table (#110323)
Summary:
This is a reland of [github PR #110102]( https://github.com/pytorch/pytorch/pull/110102).

The original PR had to be unlanded due to internal CI failures. This diff applies some small fixes to the failing tests to adjust to the new decompositions.

Note that `lift_fresh` will not be decomposed for now, since it was found that [constant propogation looks specifically for `lift_fresh`](13af952f94/torch/fx/experimental/proxy_tensor.py (L381-L386)). Therefore decomposing `lift_fresh` will interfere with constant propogation during export.

Test Plan: Github CI and internal CI

Differential Revision: D49761321

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110323
Approved by: https://github.com/jansel
2023-10-03 14:35:04 +00:00
e0b035c220 Revert "[core IR] Add lift_fresh, split.Tensor, and unbind decompositions to core ATen decomp table (#110102)"
This reverts commit 22e706f76894a898036329256a3f2f58e79aee92.

Reverted https://github.com/pytorch/pytorch/pull/110102 on behalf of https://github.com/atalman due to Breaks internal CI ([comment](https://github.com/pytorch/pytorch/pull/110102#issuecomment-1739856671))
2023-09-28 19:03:25 +00:00
5f7eff0adb Replace node.meta source_fn with source_fn_stack (#108595)
A resubmit of https://github.com/pytorch/pytorch/pull/108447. Copy over the descriptions:

This is a follow-up of the discussion in https://github.com/pytorch/pytorch/pull/108356, where we want to repalce source_fn with source_fn_stack

Before this PR, for the following example:
```python
backend = EagerAndRecordGraphs()

@torch.compile(backend=backend, fullgraph=True)
def cond_f(pred, pred2, x, y):
    def true_fn(pred2, x, y):
        return x + y

    def false_fn(pred2, x, y):
        def true_fn2(x, y):
            return x.sin() - y.cos()

        def false_fn2(x, y):
            return x.cos() - y.sin()

        return control_flow.cond(pred2, true_fn2, false_fn2, (x, y))

    return control_flow.cond(pred, true_fn, false_fn, (pred2, x, y))
```
The graph captured is shown below:
```python
class GraphModule(torch.nn.Module):
    def forward(self, L_pred_ : torch.Tensor, L_pred2_ : torch.Tensor, L_x_ : torch.Tensor, L_y_ : torch.Tensor):
        l_pred_ = L_pred_
        l_pred2_ = L_pred2_
        l_x_ = L_x_
        l_y_ = L_y_

        cond_true_1 = self.cond_true_1
        cond_false_1 = self.cond_false_1
        cond = torch.ops.higher_order.cond(l_pred_, cond_true_1, cond_false_1, [l_pred2_, l_x_, l_y_]);  l_pred_ = cond_true_1 = cond_false_1 = l_pred2_ = l_x_ = l_y_ = None
        return (cond,)

    class GraphModule(torch.nn.Module):
        def forward(self, l_pred2_, l_x_, l_y_):
            add = l_x_ + l_y_;  l_x_ = l_y_ = None
            return add

    class GraphModule(torch.nn.Module):
        def forward(self, l_pred2_, l_x_, l_y_):
            cond_true_0 = self.cond_true_0
            cond_false_0 = self.cond_false_0
            cond = torch.ops.higher_order.cond(l_pred2_, cond_true_0, cond_false_0, [l_x_, l_y_]);  l_pred2_ = cond_true_0 = cond_false_0 = l_x_ = l_y_ = None
            return cond

        class GraphModule(torch.nn.Module):
            def forward(self, l_x_, l_y_):
                sin = l_x_.sin();  l_x_ = None
                cos = l_y_.cos();  l_y_ = None
                sub = sin - cos;  sin = cos = None
                return sub

        class GraphModule(torch.nn.Module):
            def forward(self, l_x_, l_y_):
                cos = l_x_.cos();  l_x_ = None
                sin = l_y_.sin();  l_y_ = None
                sub = cos - sin;  cos = sin = None
                return sub
```
the source_fn for inner cond, sin, cos will be a (name, target) tuple:
```
('cond', <torch._ops.HigherOrderOperator object at xxx>)
('sin', 'sin')
('cos', 'cos')
('sub'. <built-in function sub>)
```

After this pr, the source_fn_stack will be a list of (name, target) tuple. The bottom of stack is the end of the list.
```
[('cond', <torch._ops.HigherOrderOperator object at xxx>), ('cond', <torch._ops.HigherOrderOperator object at xxx>)],
[('cond', <torch._ops.HigherOrderOperator object at xxx>), ('cond', <torch._ops.HigherOrderOperator object at xxx>), ('sin', 'sin')],
[('cond', <torch._ops.HigherOrderOperator object at xxx>), ('cond', <torch._ops.HigherOrderOperator object at xxx>), ('cos', 'cos')]
[('cond', <torch._ops.HigherOrderOperator object at xxx>), ('cond', <torch._ops.HigherOrderOperator object at xxx>), ('sub', <built-in function sub>)]
```

Test Plan:
See added tests in test_higher_order_ops.py and modify existing test.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108595
Approved by: https://github.com/angelayi, https://github.com/zou3519
2023-09-28 18:18:36 +00:00
5da5e068f3 deprecate constraints in favor of dynamic_shapes (#110143)
Recently we updated the `export` API to take an experimental `dynamic_shapes` argument that was meant to subsume the existing `constraints` argument.

This PR deprecates `constraints` (with a warning on its use, but without actually removing it). Simultaneously it replaces all uses of `constraints` in docs, examples, and tests with corresponding uses of `dynamic_shapes` (preserving behavior). This exercise fortunately revealed some minor bugs in the implementation which have also been fixed in this PR.

Some uses of `constraints` still remain, e.g., when `torch._dynamo.export` is called directly. (Meta-internal uses will be updated in a separate diff.)

Differential Revision: D49676049

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110143
Approved by: https://github.com/tugsbayasgalan
2023-09-28 10:26:21 +00:00
22e706f768 [core IR] Add lift_fresh, split.Tensor, and unbind decompositions to core ATen decomp table (#110102)
## Context

Add existing decomps for `lift_fresh`, `split.Tensor`, and `unbind` to the core ATen decomposition table. Do not use them in inductor, since Inductor currently lowers these directly.

One note though is that `lift_fresh`'s decomposition has a note saying it's not correct under autograd. However, my understanding is that these decompositions are registered to the `"post_autograd"` decomposition table, meaning autograd wouldn't be a factor. Would like some confirmation that this premise is correct.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110102
Approved by: https://github.com/jansel
2023-09-28 01:21:45 +00:00
138fafe72d [export] Fix torch.export() issues for server use cases. (#108275)
Test Plan: In D48788843

Differential Revision: D48811793

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108275
Approved by: https://github.com/tugsbayasgalan
2023-08-31 07:19:18 +00:00
a432f37e49 Serialize pytree to json string (#106116)
Fixes https://github.com/pytorch/pytorch/pull/102577#issuecomment-1650905536

Serializing to json is more stable, and renamed the API:

```
# Takes in a treespec and returns the serialized treespec as a string. Also optionally takes in a protocol version number.
def treespec_dumps(treespec: TreeSpec, protocol: Optional[int] = None) -> str:
# Takes in a serialized treespec and outputs a TreeSpec
def treespec_loads(data: str) -> TreeSpec:
```

If users want to register their own serialization format for a given pytree, they can go through the `_register_treespec_serializer` API which optionally takes in a `getstate` and `setstate` function.
```
_register_treespec_serializer(type_, *, getstate, setstate)
# Takes in the context, and outputs a json-dumpable context
def getstate(context: Context) -> DumpableContext:
# Takes in a json-dumpable context, and reconstructs the original context
def setstate(dumpable_context: DumpableContext) -> Context:
```

We will serialize to the following dataclass, and then json.dump this it to string.
```
class TreeSpec
    type: Optional[str]  # a string name of the type. null for the case of a LeafSpec
    context: Optional[Any]  # optional, a json dumpable format of the context
    children_specs: List[TreeSpec],
}
```

If no getstate/setstate function is registered, we will by default serialize the context using `json.dumps/loads`. We will also serialize the type through `f"{typ.__module__}.{typ.__name__}"`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106116
Approved by: https://github.com/zou3519
2023-08-27 14:34:49 +00:00
162109f6c2 [export] Don't save example_inputs for now. (#107978)
Summary:

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107978
Approved by: https://github.com/angelayi
2023-08-26 14:36:56 +00:00
4e9d7f878b [export] Serialize getattr nodes (#107924)
Turns out some graphs will result in getattr nodes...so let's serialize them
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107924
Approved by: https://github.com/zhxchen17, https://github.com/avikchaudhuri
2023-08-26 02:41:49 +00:00
4b44b1861d [export] Store the arguments used to trace the exported program in itself (#107906)
Proper fix would be to do something like https://github.com/pytorch/pytorch/pull/107877, but since that depends on internal changes and it would take too long for diff train to land we will first just make OSS work using torch.save.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107906
Approved by: https://github.com/gmagogsfm
2023-08-25 16:04:58 +00:00
1e71c51350 [export] Serialize map correctly (#107837)
Summary: Previously serializing graphs using map would error
because map returns a singleton tensor list rather than a
single tensor. So this diff adds support for if a higher order operator
returns a list of tensors as output.

We also run into an issue with roundtripping the source_fn on
map nodes/subgraphs. The source_fn originally is
<functorch.experimental._map.MapWrapper object at 0x7f80a0549930>, which
serializes to `functorch.experimental._map.map`. However, we are unable
to construct the function from this string. This should be fixed once
map becomes a fully supported operator like
torch.ops.higher_order.cond.

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

Differential Revision: [D48631302](https://our.internmc.facebook.com/intern/diff/D48631302)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107837
Approved by: https://github.com/zhxchen17
ghstack dependencies: #107818
2023-08-24 06:47:50 +00:00
1166f9a02c [export] Custom object serialization (#107666)
Some NvidaTRT folks were asking for a way to integrate the serialization of custom objects with export's serialization. After some discussion (more background [here](https://docs.google.com/document/d/1lJfxakmgeoEt50inWZ53MdUtOSa_0ihwCuPy_Ak--wc/edit)), we settled on a way for users to register their custom object's serializer/deserializer functions.

Since TorchScript's `.def_pickle` already exists for [registering custom classes](https://pytorch.org/tutorials/advanced/torch_script_custom_classes.html), and `tensorrt.ICudaEngine` already contains a `.def_pickle` implementation, we'll start off by reusing the existing framework and integrating it with export's serialization.

TorchScript's `.def_pickle` requires users to register two functions, which end up being the `__getstate__` and `__setstate__` methods on the class. The semantics of `__getstate__` and `__setstate__` in TorchScript are equivalent to that of Python pickle modules. This is then registered using pybind's `py::pickle` function [here](https://www.internalfb.com/code/fbsource/[f44e048145e4697bccfaec300798fce7daefb858]/fbcode/caffe2/torch/csrc/jit/python/script_init.cpp?lines=861-916) to be used with Python's pickle to initialize a ScriptObject with the original class, and set the state back to what it used to be.

I attempted to call `__getstate__` and `__setstate__` directly, but I couldn't figure out how to initial the object to be called with `__setstate__` in python. One option would be to create a `torch._C.ScriptObject` and then set the class and call `__setstate__`, but there is no constructor initialized for ScriptObjects. Another option would be to construct an instance of the serialized class itself, but if the class constructor required arguments, I wouldn't know what to initialize it with. In ScriptObject's `py::pickle` registration it directly creates the object [here](https://www.internalfb.com/code/fbsource/[f44e048145e4697bccfaec300798fce7daefb858]/fbcode/caffe2/torch/csrc/jit/python/script_init.cpp?lines=892-906), which is why I was thinking that just directly using Python's `pickle` will be ok since it is handled here.

So, what I did is that I check if the object is pickle-able, meaning it contains `__getstate__` and `__setstate__` methods, and if so, I serialize it with Python's pickle. TorchScript does have its own implementation of [pickle/unpickle](https://www.internalfb.com/code/fbsource/[59cbc569ccbcaae0db9ae100c96cf0bae701be9a][history]/fbcode/caffe2/torch/csrc/jit/serialization/pickle.h?lines=19%2C82), but it doesn't seem to have pybinded functions callable from python.

A question is -- is it ok to combine this pickle + json serialization?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107666
Approved by: https://github.com/gmagogsfm
2023-08-24 06:36:23 +00:00
7bab98f161 [export] Serialize cond submodules (#107818)
Cond submodules only return a single tensor, which was not supported by the serializer. Since the serializer assumes that the graph always returns a list -- this is true for the toplevel graph from dynamo, but not true for the subgraphs.

Differential Revision: [D48622687](https://our.internmc.facebook.com/intern/diff/D48622687)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107818
Approved by: https://github.com/avikchaudhuri
2023-08-24 02:29:26 +00:00
431d25a141 [export] Add save/load function (#107309)
Added the following APIs:

```
def save(
    ep: ExportedProgram,
    f: Union[str, pathlib.Path, io.BytesIO],
    extra_files: Optional[Dict[str, Any]] = None,
    opset_version: Optional[Dict[str, int]] = None,
) -> None:
    """
    Saves a version of the given exported program for use in a separate process.
    Args:
        ep (ExportedProgram): The exported program to save.
        f (str): A file-like object (has to implement write and flush)
            or a string containing a file name.
        extra_files (Optional[Dict[str, Any]]): Map from filename to contents
            which will be stored as part of f.
        opset_version (Optional[Dict[str, int]]): A map of opset names
            to the version of this opset
    """

def load(
    f: Union[str, pathlib.Path, io.BytesIO],
    extra_files: Optional[Dict[str, Any]] = None,
    expected_opset_version: Optional[Dict[str, int]] = None,
) -> ExportedProgram:
    """
    Loads an ExportedProgram previously saved with torch._export.save
    Args:
        ep (ExportedProgram): The exported program to save.
        f (str): A file-like object (has to implement write and flush)
            or a string containing a file name.
        extra_files (Optional[Dict[str, Any]]): The extra filenames given in
            this map would be loaded and their content would be stored in the
            provided map.
        expected_opset_version (Optional[Dict[str, int]]): A map of opset names
            to expected opset versions
    Returns:
        An ExportedProgram object
    """
```

Example usage:
```
# With buffer
buffer = io.BytesIO()
torch._export.save(ep, buffer)
buffer.seek(0)
loaded_ep = torch._export.load(buffer)

# With file
with tempfile.NamedTemporaryFile() as f:
    torch._export.save(ep, f)
    f.seek(0)
    loaded_ep = torch._export.load(f)

# With Path
with TemporaryFileName() as fname:
    path = pathlib.Path(fname)
    torch._export.save(ep, path)
    loaded_ep = torch._export.load(path)

# Saving with extra files
buffer = io.BytesIO()
save_extra_files = {"extra.txt": "moo"}
torch._export.save(ep, buffer, save_extra_files)
buffer.seek(0)
load_extra_files = {"extra.txt": ""}
loaded_ep = torch._export.load(buffer, extra_files)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107309
Approved by: https://github.com/avikchaudhuri, https://github.com/gmagogsfm, https://github.com/tugsbayasgalan
2023-08-22 08:25:19 +00:00
a5efb5eb84 [export] Serialize constrain_as_size ops (#107386)
Since constrain_as_size has been fixed, I tried serializing it, but ran into some issues.
Notably, after each `.transform` call, I added a helper `_get_updated_range_constraints` to update the range constrains list. This is because when we retrace in a pass, the symbolic values being used changes, so we need to update this dictionary.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107386
Approved by: https://github.com/avikchaudhuri, https://github.com/zhxchen17
2023-08-21 15:24:11 +00:00
63e9b5481d [export] Add schema version to serializer/deserializer (#107420)
Added a version number to the schema for BC issues. We will add this number to the serialized ExportedProgram and then when deserializing, if the number does not match up with the existing deserializer, we will error. We should update the number of there are any major changes to the schema.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107420
Approved by: https://github.com/zhxchen17
2023-08-21 06:56:46 +00:00
2dbadd1eae [export] Remove experimental runtime assertion configs from export API. (#105043)
Test Plan: CI

Differential Revision: D47390794

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105043
Approved by: https://github.com/larryliu0820
2023-07-26 16:21:29 +00:00
8bf253ecce [export] Remove eliminate_dead_code (#105875)
Summary: Sometimes the graph that is being serialized contains nodes with side effects + no users (ex. out variants of operators), so we don't want to eliminate those when deserializing.

Test Plan: CI

Differential Revision: D47735009

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105875
Approved by: https://github.com/ydwu4
2023-07-25 05:37:44 +00:00
fed8d3608d Update core aten decomp table (#105673)
Updated the decomposition table based on the existing [Core ATen IR](https://pytorch.org/docs/stable/ir.html) list, and moved rest of decompositions to inductor's decomposition table.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105673
Approved by: https://github.com/SherlockNoMad
2023-07-21 02:45:37 +00:00
6abb8c382c [export] add kwargs support for export. (#105337)
Solving #105242.

During export, the exported function's signature changes multiple times. Suppose we'd like to export f as shown in following example:
```python
def f(arg1, arg2, kw1, kw2):
  pass

args = (arg1, arg2)
kwargs =  {"kw2":arg3, "kw1":arg4}

torch.export(f, args, kwargs)
```
The signature changes mutiple times during export process in the following order:
1. **gm_torch_level = dynamo.export(f, *args, \*\*kwargs)**. In this step, we turn all  kinds of parameters such as **postional_only**, **var_positioinal**, **kw_only**, and **var_kwargs** into **positional_or_kw**.It also preserves the positional and kword argument names in original function (i.e. f in this example) [here](https://github.com/pytorch/pytorch/blob/main/torch/_dynamo/export.py#L546C13-L546C27). The order of kwargs will be the **key order** of kwargs (after python 3.6, the order is the insertion of order of keys) instead of the original function signature and the order is baked into a _orig_args varaible of gm_torch_level's pytree info. So we'll have:
```python
def gm_torch_level(arg1, arg2, kw2, kw1)
```
Such difference is acceptable as it's transparent to users of export.

2. **gm_aot_export = aot_export_module(gm_torch_level, pos_or_kw_args)**. In this step, we need to turn kwargs into positional args in the order of how gm_torch_level expected, which is stored in _orig_args. The returned gm_aot_export has the graph signature of flat_args, in_spec = pytree.tree_flatten(pos_or_kw_args):
``` python
flat_args, _ = pytree.tree_flatten(pos_or_kw_args)
def gm_aot_export(*flat_args)
```

3. **exported_program(*args, \*\*kwargs)**. The epxorted artifact is exported_program, which is a wrapper over gm_aot_export and has the same calling convention as the original function "f". To do this, we need to 1. specialize the order of kwargs into pos_or_kw_args and 2. flatten the pos_or_kw_args into what gm_aot_export expected.  We can combine the two steps into one with :
```python
_, in_spec = pytree.tree_flatten((args, kwargs))

# Then during exported_program.__call__(*args, **kwargs)
flat_args  = fx_pytree.tree_flatten_spec((args, kwargs), in_spec)
```
, where kwargs is treated as a normal pytree whose keyorder is preserved in in_spec.

Implementation-wise, we treat _orig_args in dynamo exported graph module as single source of truth and kwags are ordered following it.

Test plan:
See added tests in test_export.py.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105337
Approved by: https://github.com/angelayi, https://github.com/tugsbayasgalan
2023-07-20 19:53:08 +00:00
8a688277a2 [BE] Enable ruff's UP rules and autoformat dynamo / functorch and refs (#105432)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105432
Approved by: https://github.com/ezyang
2023-07-19 13:48:44 +00:00
1d02106e03 Preserve source_fn or nn_module_stack in the lifted params (#105017)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105017
Approved by: https://github.com/angelayi
2023-07-13 06:03:28 +00:00
100aff9d4f [export] Deserialize subgraphs. (#103991)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103991
Approved by: https://github.com/angelayi, https://github.com/avikchaudhuri
2023-06-26 18:17:44 +00:00
ec24f1e4cc Simulate treespec flattening/unflattening (#101896)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/101896
Approved by: https://github.com/jansel, https://github.com/anijain2305
2023-06-23 10:53:15 +00:00
e5e9d563c2 Lift user defined attributes into inputs for certain cases (user defined types and tensors) (#103386)
(1) Lazy (converts to dynamo variable on access only)
(2) Uses existing side effect/reconstruct tech
(3) not tensor opinionated

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103386
Approved by: https://github.com/jansel
2023-06-20 23:45:19 +00:00
a52b6f086d [export][serde] Add validator to compare deserializer opset version with model opset version (#103691)
This PR adds a validator to compare model opset version and deserializer opset version. This currently raises exception if any of the version doesn't match.

Note: the validator will only print warning if the op namespace in model is missing from the deserializer.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103691
Approved by: https://github.com/avikchaudhuri, https://github.com/zhxchen17
2023-06-16 01:36:43 +00:00
90ef8d58cf [export] Serialize metadata (#103274)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103274
Approved by: https://github.com/zhxchen17
2023-06-15 17:34:12 +00:00
8dc6001057 [export] Serialize symbolic values (#103273)
* Modified the SymInt schema to also store the hint of the SymInt if it is represented as a symbol so that when we reconstruct the SymInt, the hint will also exist on the node.
* GraphModuleDeserializer.deserialize now also optionally map of symbol names to range.

ReplaceSymSizeOpPass should not be needed after https://github.com/pytorch/pytorch/pull/103107 lands

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103273
Approved by: https://github.com/avikchaudhuri, https://github.com/zhxchen17
2023-06-13 20:29:47 +00:00
e930c0fc35 [export] Initial deserialization v2 (#102716)
v2 of https://github.com/pytorch/pytorch/pull/102126. mentally stacked on top of https://github.com/pytorch/pytorch/pull/102707

Pull Request resolved: https://github.com/pytorch/pytorch/pull/102716
Approved by: https://github.com/avikchaudhuri, https://github.com/zhxchen17
2023-06-07 16:02:35 +00:00
3a385656b5 [export] Initial serialization v2 (#102707)
v2 of https://github.com/pytorch/pytorch/pull/102125 because of git issues
corresponding deserialization diff: https://github.com/pytorch/pytorch/pull/102716

Implementing serialization of the exported program to a python dataclass, and then from that dataclass to json. This is split into a couple of sections:
- `serialize(ep: ep.ExportedProgram, opset_version: Dict[str, int]) -> Tuple[bytes, bytes]` -- takes an exported program object, a dictionary mapping opset namespaces to versions, and returns the serialized exported program in bytes, and separately the state dict serialized in bytes
- `GraphModuleSerializer` class that serializes torch.fx.GraphModule
to the schema.GraphModule dataclass
- `ExportedProgramSerializer` class that serializes torch._export.exported_program.ExportedProgram to the schema.ExportedProgram dataclass

Serialization TODOs:
- [x] pytree spec: https://github.com/pytorch/pytorch/pull/102577
- [ ] higher order ops
- [ ] node metadata (specifically nn_module_stack/source_fn)
- [ ] constraints
- [ ] graph module metadata

The tests are not super comprehensive, but that's because I think it'll be better tested + easier to test once deserialization is implemented.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/102707
Approved by: https://github.com/avikchaudhuri, https://github.com/zhxchen17
2023-06-06 05:12:49 +00:00
c4028de462 [export] ExportedProgram (#102259)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/102259
Approved by: https://github.com/ydwu4, https://github.com/avikchaudhuri, https://github.com/tugsbayasgalan, https://github.com/zhxchen17
2023-05-26 23:36:38 +00:00
351c2ea2fb [export] Prototype on serialization schema. (#101899)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/101899
Approved by: https://github.com/angelayi
2023-05-21 06:31:53 +00:00
ba47a2b227 [export] Pickle of ExportGraphModule (#100924)
try 2 of reland of https://github.com/pytorch/pytorch/pull/100620 bc merge conflict 😭...
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100924
Approved by: https://github.com/tugsbayasgalan
2023-05-09 16:58:24 +00:00
f42eae4755 Revert "[export] Pickle of ExportGraphModule (#100620)"
This reverts commit d4975a5fe0b263087c8f060409a9331a1dbdde76.

Reverted https://github.com/pytorch/pytorch/pull/100620 on behalf of https://github.com/clee2000 due to broke export/test_serialize.py::TestSerialize::test_pickle_dynamic across various jobs d4975a5fe0, i think you hit another landrace? ([comment](https://github.com/pytorch/pytorch/pull/100620#issuecomment-1536643519))
2023-05-05 18:52:48 +00:00
d4975a5fe0 [export] Pickle of ExportGraphModule (#100620)
reland of https://github.com/pytorch/pytorch/pull/100423 bc merge conflict...
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100620
Approved by: https://github.com/mergennachin
2023-05-05 18:21:39 +00:00
c4fd76e7b4 Revert "[export] Pickle result of export (#100423)"
This reverts commit 7226dbcbce87464fb170019a6ffeb80f82c37804.

Reverted https://github.com/pytorch/pytorch/pull/100423 on behalf of https://github.com/angelayi due to merge conflict ([comment](https://github.com/pytorch/pytorch/pull/100423#issuecomment-1534163373))
2023-05-04 06:41:06 +00:00
7226dbcbce [export] Pickle result of export (#100423)
Pickles the metadata["val"] into TensorMetadata struct so that it'll be retrained when we unpickle.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/100423
Approved by: https://github.com/mergennachin
2023-05-04 06:37:16 +00:00