11 Commits

Author SHA1 Message Date
f531815526 Deprecate tensor.type() (#30281)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/29161.

I looked a bit at the code changes related to this and think I have all of the use cases of `DeprecatedTypeProperties` covered in the message, but suggestions from someone with more context on this would be very much appreciated :)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30281

Differential Revision: D18830818

Pulled By: ezyang

fbshipit-source-id: 1a7fcee15354ae09e6644577e7fa33bd26acfe20
2019-12-05 10:55:34 -08:00
420b37f3c6 Deprecate tensor.data<T>(), and codemod tensor.data<T>() to tensor.data_ptr<T>() (#24886)
Summary:
This PR adds deprecation message for `tensor.data<T>()` (91d94e7d41), and changes all call sites of `tensor.data<T>()` to `tensor.data_ptr<T>()`  in PyTorch core.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/24886

Differential Revision: D16924576

Pulled By: yf225

fbshipit-source-id: 0943d6be73245c7c549c78597b74c3b07fa24440
2019-08-21 20:11:24 -07:00
73a97387c1 Replace AT_CHECK with TORCH_CHECK [shard 9/10]
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/20435

Reviewed By: jerryzh168

Differential Revision: D15318877

fbshipit-source-id: 4d83571187ea14a604fef83ac355d328b46d93e1
2019-05-15 08:05:59 -07:00
393ad6582d Use torch:: instead of at:: in all C++ APIs (#13523)
Summary:
In TorchScript and C++ extensions we currently advocate a mix of `torch::` and `at::` namespace usage. In the C++ frontend I had instead exported all symbols from `at::` and some from `c10::` into the `torch::` namespace. This is far, far easier for users to understand, and also avoid bugs around creating tensors vs. variables. The same should from now on be true for the TorchScript C++ API (for running and loading models) and all C++ extensions.

Note that since we're just talking about typedefs, this change does not break any existing code.

Once this lands I will update stuff in `pytorch/tutorials` too.

zdevito ezyang gchanan
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13523

Differential Revision: D12942787

Pulled By: goldsborough

fbshipit-source-id: 76058936bd8707b33d9e5bbc2d0705fc3d820763
2018-11-06 14:32:25 -08:00
e05d689c49 Unify C++ API with C++ extensions (#11510)
Summary:
Currently the C++ API and C++ extensions are effectively two different, entirely orthogonal code paths. This PR unifies the C++ API with the C++ extension API by adding an element of Python binding support to the C++ API. This means the `torch/torch.h` included by C++ extensions, which currently routes to `torch/csrc/torch.h`, can now be rerouted to `torch/csrc/api/include/torch/torch.h` -- i.e. the main C++ API header. This header then includes Python binding support conditioned on a define (`TORCH_WITH_PYTHON_BINDINGS`), *which is only passed when building a C++ extension*.

Currently stacked on top of https://github.com/pytorch/pytorch/pull/11498

Why is this useful?

1. One less codepath. In particular, there has been trouble again and again due to the two `torch/torch.h` header files and ambiguity when both ended up in the include path. This is now fixed.
2. I have found that it is quite common to want to bind a C++ API module back into Python. This could be for simple experimentation, or to have your training loop in Python but your models in C++. This PR makes this easier by adding pybind11 support to the C++ API.
3. The C++ extension API simply becomes richer by gaining access to the C++ API headers.

soumith ezyang apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11510

Reviewed By: ezyang

Differential Revision: D9998835

Pulled By: goldsborough

fbshipit-source-id: 7a94b44a9d7e0377b7f1cfc99ba2060874d51535
2018-09-24 14:44:21 -07:00
54a4867675 Bring back C++ extension torch.h (#7310)
* Bring back C++ extension torch.h

* Fix python.h include in python_tensor.cpp
2018-05-05 14:06:27 -07:00
67d0d14908 Rename autograd namespace to torch and change torch.h into python.h (#7267)
* Rename autograd namespace to torch and change torch.h into python.h

* Include torch.h instead of python.h in test/cpp/api

* Change some mentions of torch.h to python.h in C++ extensions

* Set paths directly, without find_path
2018-05-04 08:04:57 -07:00
0427afadd1 Make AT_ASSERT/AT_ERROR non-printf based, other tweaks (#7104)
* Make AT_ASSERT/AT_ERROR non-printf based, other tweaks

- AT_ASSERT/AT_ERROR don't take printf strings anymore; instead,
  they take a comma-separated list of things you wanted to print
  (bringing it inline with Caffe2's conventions).

  Instead of AT_ASSERT(x == 0, "%d is not zero", x)
  you write AT_ASSERT(x == 0, x, " is not zero")

  This is done by way of a new variadic template at::str(), which
  takes a list of arguments and cats their string reps (as per
  operator<<) together.

- A bunch of the demangling logic that was in Error.h is now
  moved to Error.cpp (better header hygiene.)  Also, demangle
  has been moved out to its own helper function, and also
  a new helper demangle_type (from Caffe2) added.

- A bunch of AT_ASSERT converted into AT_CHECK, to more properly
  convey which checks can be caused by user error, and which are
  due to logic error in ATen.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* CR

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Fix test failure.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* buildfix

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* More fixes.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* One more fix

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Try harder

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
2018-05-01 10:28:31 -04:00
008ba18c5b Improve CUDA extension support (#5324)
* Also pass torch includes to nvcc build

* Export ATen/cuda headers with install

* Refactor flags common to C++ and CUDA

* Improve tests for C++/CUDA extensions

* Export .cuh files under THC

* Refactor and clean cpp_extension.py slightly

* Include ATen in cuda extension test

* Clarifying comment in cuda_extension.cu

* Replace cuda_extension.cu with cuda_extension_kernel.cu in setup.py

* Copy compile args in C++ extension and add second kernel

* Conditionally add -std=c++11 to cuda_flags

* Also export cuDNN headers

* Add comment about deepcopy
2018-02-23 10:15:30 -05:00
22fe542b8e Use TORCH_EXTENSION_NAME macro to avoid mismatched module/extension name (#5277)
* Warn users about mismatched module/extension name

* Define TORCH_EXTENSION_NAME macro
2018-02-16 22:31:04 -05:00
1b71e78d13 CUDA support for C++ extensions with setuptools (#5207)
This PR adds support for convenient CUDA integration in our C++ extension mechanism. This mainly involved figuring out how to get setuptools to use nvcc for CUDA files and the regular C++ compiler for C++ files. I've added a mixed C++/CUDA test case which works great.

I've also added a CUDAExtension and CppExtension function that constructs a setuptools.Extension with "usually the right" arguments, which reduces the required boilerplate to write an extension even more. Especially for CUDA, where library_dir (CUDA_HOME/lib64) and libraries (cudart) have to be specified as well.

Next step is to enable this with our "JIT" mechanism.

NOTE: I've had to write a small find_cuda_home function to find the CUDA install directory. This logic is kind of a duplicate of tools/setup_helpers/cuda.py, but that's not available in the shipped PyTorch distribution. The function is also fairly short. Let me know if it's fine to duplicate this logic.

* CUDA support for C++ extensions with setuptools

* Remove printf in CUDA test kernel

* Remove -arch flag in test/cpp_extensions/setup.py

* Put wrap_compile into BuildExtension

* Add guesses for CUDA_HOME directory

* export PATH to CUDA location in test.sh

* On Python2, sys.platform has the linux version number
2018-02-13 15:02:50 -08:00