## Summary
- add a CuBLASReductionOption enum so the CUDA context can track reduced-precision and split-K options
- extend the Python bindings, backend helpers, and docs to accept an optional allow_splitk argument for fp16/bf16 matmul controls
- update cuBLAS/cuBLASLt call sites plus dynamo guards and tests to respect the new combinations
## Testing
- python test/test_cuda.py TestCuda.test_cublas_allow_fp16_reduced_precision_reduction_get_set -v *(fails: ModuleNotFoundError: No module named 'psutil')*
------
https://chatgpt.com/codex/tasks/task_e_68e404623178832f8a3e1d34e1e175da
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164766
Approved by: https://github.com/malfet, https://github.com/albanD
The MIOpen integration has changed over the years. In the past, the MIOpen default for benchmark was True and if it were set to False it would use MIOpen Immediate Mode. But with #145294 the MIOpen benchmark default changed to False and to activate immediate mode you would set the deterministic flag to True. This has proved too restrictive because benchmark and deterministic flags are independent from immediate mode. Thus, immediate mode needs its own flag. Though MIOpen still masquerades behind torch.backends.cudnn and its flags, it seemed inappropriate to add an miopen-exclusive flag to the set of cudnn flags. This PR adds the first miopen-only flag to control its immediate mode.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158951
Approved by: https://github.com/jeffdaily
Co-authored-by: Jeff Daily <jeff.daily@amd.com>