Summary:
`-Wunused-exception-parameter` has identified an unused exception parameter. This diff removes it.
This:
```
try {
...
} catch (exception& e) {
// no use of e
}
```
should instead be written as
```
} catch (exception&) {
```
If the code compiles, this is safe to land.
Test Plan: Sandcastle
Reviewed By: dtolnay
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149328
Approved by: https://github.com/Skylion007, https://github.com/eqy
## Background
This PR adds `torch.utils.serialization.config.load.calculate_storage_offsets`. This option relies on the previous PR in this stack, where storage order was changed to non lexicographical. A `.format_version` entry was added to the zipfile and `calculate_storage_offsets` will only work on checkpoints with `.format_version`.
When this is turned on, for `torch.load(mmap=True)`, offsets of each storage record (other than the 0th storage will be calculated instead of relying on `miniz` APIs to determine this).
The existing APIs will issue multiple random reads (reading the end of central directory record, then reading the zipfile header for the record) to determine the storage offset where the record starts. This can greatly degrade `torch.load(mmap=True)` performance for non-filesystem cases.
6aaae9d78f/caffe2/serialize/inline_container.cc (L589-L605)
## How does this work
The format for the checkpoint is as such
```
archive_name/
|_ data.pkl
|_.format_version
|_byteorder
|_data/
|_ 0
|_ 1
|_ 2
|_ ...
|_
```
Each `data/i` record represents a storage, where storages are written in the order that the Pickler encounters them.
For each storage, our `persistent_load` logic saves the following metadata to the pickle file `dtype, numel, key, location` where `numel` is the number of bytes in the storage.
Note that we always use `miniz` writer in the zip64 mode per [here](7796e308d0/caffe2/serialize/inline_container.cc (L701)) A zipfile record written by miniz looks as such
```
---------------- ----------------- ------------------- ---------------- --------- ------------------------------
| 30 byte header | n byte filename | zip64_extra_data | m byte padding | storage | 16 or 24 byte local dir footer |
---------------- ----------------- ------------------- ---------------- --------- ------------------------------
```
- The header size (30) is given by [`MZ_ZIP_LOCAL_DIR_HEADER_SIZE`](https://github.com/pytorch/pytorch/blob/main/third_party/miniz-3.0.2/miniz.c?fbclid=IwZXh0bgNhZW0CMTEAAR2O8Vysd--UoSCxW70gabXIS1dbz733oHwuUQ5_Ff1hY2WU6PL2i6CSH4A_aem_J9oaU2HpDeWtJKOU9EnVqw#L3290)
- filename will be `"{archive_name}/{filepath}"`
- `zip64_extra_data` is determined by [`mz_zip_writer_create_zip64_extra_data`](7796e308d0/third_party/miniz-3.0.2/miniz.c (L6202)). Note that [we only create zip64_extra_data if storage_size >= 0xFFFFFFFF or the offset of the start of the header >= 0xFFFFFFFF](7796e308d0/third_party/miniz-3.0.2/miniz.c (L6519-L6524))
- `m` is determined by [`getPadding`](7796e308d0/caffe2/serialize/inline_container.cc (L254)), which accounts for filename, zip64_extra_data to determine `m` such that the start of `storage` is aligned to 64 bytes. The `m` bytes will always start with `F B padding_size" as the first 4 bytes
- The local dir footer size is determined based on [this snippet ](7796e308d0/third_party/miniz-3.0.2/miniz.c (L6610-L6632)): if the buffer size is 0 it is skipped. If the zip64_extra_data was created, it is 24, otherwise it is 16.
When `torch.utils.serialization.config.load.calculate_storage_offsets` is set we do the following
- We keep track of where the "cursor" is in the file using `current_offset`, after each persistent_load call, it will be at the offset where the header for the next record starts
- for the 0th storage, "data/0", we use the regular get_record_offset to determine the start of the storage
- for any other storage, (where the storages will be in order encountered by the unpickler, 0, 1, 2, 3, ...) we use `get_record_offset_no_read`, which re-uses the `getPadding` logic to determine the offset of the storage
- Note that `load_tensor` will only ever be called again with the same key if the storage's `._data_ptr()` is 0 [[pointer1](https://github.com/pytorch/pytorch/blob/main/torch/serialization.py#L1917-L1918)][[pointer2](https://github.com/pytorch/pytorch/blob/main/torch/serialization.py#L1936-L1937)], so we cache the offsets for this edge case
- After each storage, if the storage is non-zero, we account for the local dir footer based on the logic described above
## Testing strategy
The agreed upon testing strategy was as follows:
- Add debug code gated by an environment flag `TORCH_SERIALIZATION_DEBUG` that will run this offset calculation logic and verify it against getRecordOffset for each storage (when mmap=False)
- This flag is set throughout CI, which means that every time `torch.load` is called, the offset calculation logic is implicitly being tested.
Differential Revision: [D67673026](https://our.internmc.facebook.com/intern/diff/D67673026)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143880
Approved by: https://github.com/albanD
ghstack dependencies: #143879
## Background
This PR adds `torch.utils.serialization.config.load.calculate_storage_offsets`. This option relies on the previous PR in this stack, where storage order was changed to non lexicographical. A `.format_version` entry was added to the zipfile and `calculate_storage_offsets` will only work on checkpoints with `.format_version`.
When this is turned on, for `torch.load(mmap=True)`, offsets of each storage record (other than the 0th storage will be calculated instead of relying on `miniz` APIs to determine this).
The existing APIs will issue multiple random reads (reading the end of central directory record, then reading the zipfile header for the record) to determine the storage offset where the record starts. This can greatly degrade `torch.load(mmap=True)` performance for non-filesystem cases.
6aaae9d78f/caffe2/serialize/inline_container.cc (L589-L605)
## Testing strategy
The agreed upon testing strategy was as follows:
- Add debug code gated by an environment flag `TORCH_SERIALIZATION_DEBUG` that will run this offset calculation logic and verify it against getRecordOffset for each storage (when mmap=False)
- This flag is set throughout CI, which means that every time `torch.load` is called, the offset calculation logic is implicitly being tested.
Differential Revision: [D67673026](https://our.internmc.facebook.com/intern/diff/D67673026)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143880
Approved by: https://github.com/albanD
ghstack dependencies: #143879
Add `PyTorchFileWriter.write_record_metadata(record_name, num_bytes)` that
- writes the zipfile header/end of central directory metadata for an entry*
- reserves `num_bytes` in the zipfile for the payload.
*Since the payload is not provided, the CRC32 computation is skipped and 0s are written in the corresponding entry of the zipfile header
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125184
Approved by: https://github.com/albanD
Summary:
To be able to get more info on serialization/deserialization events, adding these two files to the metadata logging.
- file_name
- file_size
Test Plan: buck2 test mode/dev caffe2/caffe2/serialize:inline_container_test
Reviewed By: davidberard98
Differential Revision: D51040426
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113077
Approved by: https://github.com/davidberard98
Summary:
Use concurrent multiple readers to access record from different start index. It can provide better performance when the data being accessed is large.
bypass-github-pytorch-ci-checks
Test Plan:
```
buck2 run @//mode/dev //caffe2/caffe2/serialize:inline_container_test
```
Reviewed By: YazhiGao
Differential Revision: D50957607
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112818
Approved by: https://github.com/houseroad, https://github.com/huydhn
Summary:
Zion-4s core has poor perf when it comes to reading the large tensor (e.g. 300G), no matter for manifold downloading or reading from files. In this diff, I changed the getRecord function from single thread to multiple threads by passing multiple readers to getRecord function and access the same record at different chunks with different readers.
We control the number of additional reader with the`sigrid_model_manager_additional_reader` flag. The default value is 0. When `additional_reader=2`, we allocate `2` extra read client threads.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111426
Approved by: https://github.com/jiayisuse
Summary: The new logger allows passing metadata into the api usage logger. The immediate use case is to pass the serialization_id to the save and load events to be enable tracking serialized models in API events. It could be extended to add more metadata in the future.
Test Plan:
```
buck2 test @//mode/dev //caffe2/caffe2/serialize:inline_container_test
```
Reviewed By: davidberard98
Differential Revision: D45683697
Pull Request resolved: https://github.com/pytorch/pytorch/pull/101762
Approved by: https://github.com/davidberard98
Summary:
serialization_id was added in a previous change to be written as a random GUID associated with each time saving of a module is called, for the purpose of adding tracking for saved artifacts. In order not to disturb existing systems that rely on the serialized bytes to be deterministic for serializing the same module, this change uses the combined hash of uncompressed content and file names instead of GUID for serialization id.
The use of this hashing reuses the same CRC32 that is already calculated for zip writing, so it doesn't incur additional computational overhead.
Data descriptor is one of the file headers inside the zip format https://en.wikipedia.org/wiki/ZIP_(file_format)#Data_descriptor. It contains the CRC32 of the uncompressed data. By inspecting the written data in PyTorchStreamWriter, the CRC32 is found for each written record.
In order to make serialization_id a unique and deterministic id for the
serialized files without computation overhead, the updated `serialization_id` is computed based on all files written, and is composed of:
1) a combined hash of record name hashes
2) a combined crc32 of the record uncompressed data
Example value: "15656915541136177431866432772"
Test Plan: buck2 test @//mode/dev //caffe2/caffe2/serialize:inline_container_test
Differential Revision: D46038973
Pull Request resolved: https://github.com/pytorch/pytorch/pull/101964
Approved by: https://github.com/davidberard98
Summary:
In order to better track models after serialization, this change writes a serialization_id as a UUID to inline container. Having this ID enables traceability of model in saving and loading events.
serialization_id is generated as a new UUID everytime serialization takes place. It can be thought of as a model snapshot identifier at the time of serialization.
Test Plan:
```
buck2 test @//mode/dev //caffe2/caffe2/serialize:inline_container_test
```
Local tests:
```
buck2 run @//mode/opt //scripts/atannous:example_pytorch_package
buck2 run @//mode/opt //scripts/atannous:example_pytorch
buck2 run @//mode/opt //scripts/atannous:example_pytorch_script
```
```
$ unzip -l output.pt
Archive: output.pt
Length Date Time Name
--------- ---------- ----- ----
36 00-00-1980 00:00 output/.data/serialization_id
358 00-00-1980 00:00 output/extra/producer_info.json
58 00-00-1980 00:00 output/data.pkl
261 00-00-1980 00:00 output/code/__torch__.py
326 00-00-1980 00:00 output/code/__torch__.py.debug_pkl
4 00-00-1980 00:00 output/constants.pkl
2 00-00-1980 00:00 output/version
--------- -------
1045 7 files
```
```
unzip -p output.pt "output/.data/serialization_id"
a9f903df-cbf6-40e3-8068-68086167ec60
```
Differential Revision: D45683657
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100994
Approved by: https://github.com/davidberard98
Number of OSS PR were reverted, because new signed-unsigned comparison warnings, which are treated as errors in some internal builds.
Not sure how those selective rules are applied, but this PR removes `-Wno-sign-compare` from PyTorch codebase.
The only tricky part in this PR, as making sure that non-ASCII character detection works for both signed and unsigned chars here:
6e3d51b08a/torch/csrc/jit/serialization/python_print.cpp (L926)
Exclude several files from sign-compare if flash attention is used, due to the violation in cutlass, to be fixed by https://github.com/NVIDIA/cutlass/pull/869
Do not try to fix sign compare violations in caffe2 codebase
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96723
Approved by: https://github.com/albanD
Avoid double exception in destructor if attempting to serialize to
python object that does not have `write` method
Use `Finalizer` class in `PyTorchStreamWriter::writeEndOfFile()` to a
always set `finailized_` property even if excretion occurs. (as there
isn't much one can do at this point)
Add expicit check for the attribue to `_open_zipfile_writer_buffer` and
add unitests
Modernize code a bit by using Python-3 `super()` method
Fixes https://github.com/pytorch/pytorch/issues/87997
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88128
Approved by: https://github.com/albanD
Hi!
I was playing with libfuzzer and found bug when loading a model from file via `torch::jit::load` function.
There is an unhandled exception in caffe2/serialize when calling a `stoull` function on unsanitized version string.
The bug can be reproduced with `aot_model_compiler` binary:
```
aot_model_compiler --model=crash-stoull --model_name=name --model_version=1 --input_dims='1,3,224,224;2,2' --input_types='float;float'
```
Crash file is provided in [crash.zip](https://github.com/pytorch/pytorch/files/8701504/crash.zip).
gdb output:
```
Temporary breakpoint 1, main (argc=6, argv=0x7ffcd160f9f8) at /pytorch_master/binaries/aot_model_compiler.cc:87
87 "Run NNC AOT compiler for pytorch model. Example usage:\n"
(gdb) c
Continuing.
terminate called after throwing an instance of 'std::invalid_argument'
what(): stoull
Program received signal SIGABRT, Aborted.
__GI_raise (sig=sig@entry=6) at ../sysdeps/unix/sysv/linux/raise.c:50
50 ../sysdeps/unix/sysv/linux/raise.c: No such file or directory.
(gdb) bt
#0 __GI_raise (sig=sig@entry=6) at ../sysdeps/unix/sysv/linux/raise.c:50
#1 0x00007fa637f16859 in __GI_abort () at abort.c:79
#2 0x00007fa6381c1911 in ?? () from /lib/x86_64-linux-gnu/libstdc++.so.6
#3 0x00007fa6381cd38c in ?? () from /lib/x86_64-linux-gnu/libstdc++.so.6
#4 0x00007fa6381cd3f7 in std::terminate() () from /lib/x86_64-linux-gnu/libstdc++.so.6
#5 0x00007fa6381cd6a9 in __cxa_throw () from /lib/x86_64-linux-gnu/libstdc++.so.6
#6 0x00007fa6381c42ce in std::__throw_invalid_argument(char const*) () from /lib/x86_64-linux-gnu/libstdc++.so.6
#7 0x000000000247d567 in __gnu_cxx::__stoa<unsigned long long, unsigned long long, char, int> (__str=0x7ffcd160f228 "ZZ", __idx=0x0, __base=10, __convf=<optimized out>, __name=<optimized out>)
at /usr/bin/../lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/ext/string_conversions.h:83
#8 std::__cxx11::stoull (__str="ZZ", __idx=0x0, __base=10) at /usr/bin/../lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/bits/basic_string.h:6577
#9 caffe2::serialize::PyTorchStreamReader::init (this=this@entry=0x8c11ce0) at /pytorch_master/caffe2/serialize/inline_container.cc:145
#10 0x000000000247d9c7 in caffe2::serialize::PyTorchStreamReader::PyTorchStreamReader (this=0x8c11ce0, in=std::shared_ptr<class caffe2::serialize::ReadAdapterInterface> (empty) = {...})
at /pytorch_master/caffe2/serialize/inline_container.cc:88
#11 0x00000000035b7ba4 in __gnu_cxx::new_allocator<caffe2::serialize::PyTorchStreamReader>::construct<caffe2::serialize::PyTorchStreamReader, std::shared_ptr<caffe2::serialize::ReadAdapterInterface> > (
__p=0x2, __args=..., this=<optimized out>) at /usr/bin/../lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/ext/new_allocator.h:150
#12 std::allocator_traits<std::allocator<caffe2::serialize::PyTorchStreamReader> >::construct<caffe2::serialize::PyTorchStreamReader, std::shared_ptr<caffe2::serialize::ReadAdapterInterface> > (__a=...,
__p=0x2, __p@entry=0x8c11ce0, __args=...) at /usr/bin/../lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/bits/alloc_traits.h:512
#13 0x00000000035b1988 in std::_Sp_counted_ptr_inplace<caffe2::serialize::PyTorchStreamReader, std::allocator<caffe2::serialize::PyTorchStreamReader>, (__gnu_cxx::_Lock_policy)2>::_Sp_counted_ptr_inplace<std::shared_ptr<caffe2::serialize::ReadAdapterInterface> > (this=0x8c11cd0, __a=..., __args=...) at /usr/bin/../lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/bits/shared_ptr_base.h:551
#14 std::__shared_count<(__gnu_cxx::_Lock_policy)2>::__shared_count<caffe2::serialize::PyTorchStreamReader, std::allocator<caffe2::serialize::PyTorchStreamReader>, std::shared_ptr<caffe2::serialize::ReadAdapterInterface> > (this=0x7ffcd160f3a8, __p=@0x7ffcd160f3a0: 0x10, __args=..., __a=...) at /usr/bin/../lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/bits/shared_ptr_base.h:683
#15 std::__shared_ptr<caffe2::serialize::PyTorchStreamReader, (__gnu_cxx::_Lock_policy)2>::__shared_ptr<std::allocator<caffe2::serialize::PyTorchStreamReader>, std::shared_ptr<caffe2::serialize::ReadAdapterInterface> > (this=0x7ffcd160f3a0, __args=..., __tag=...) at /usr/bin/../lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/bits/shared_ptr_base.h:1371
#16 std::shared_ptr<caffe2::serialize::PyTorchStreamReader>::shared_ptr<std::allocator<caffe2::serialize::PyTorchStreamReader>, std::shared_ptr<caffe2::serialize::ReadAdapterInterface> > (this=0x7ffcd160f3a0,
__args=..., __tag=...) at /usr/bin/../lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/bits/shared_ptr.h:408
#17 std::allocate_shared<caffe2::serialize::PyTorchStreamReader, std::allocator<caffe2::serialize::PyTorchStreamReader>, std::shared_ptr<caffe2::serialize::ReadAdapterInterface> > (__args=..., __a=...)
at /usr/bin/../lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/bits/shared_ptr.h:859
#18 std::make_shared<caffe2::serialize::PyTorchStreamReader, std::shared_ptr<caffe2::serialize::ReadAdapterInterface> > (__args=...)
at /usr/bin/../lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/bits/shared_ptr.h:875
#19 torch::jit::load (rai=std::shared_ptr<class caffe2::serialize::ReadAdapterInterface> (empty) = {...}, device=device@entry=..., Python Exception <class 'gdb.error'> No type named std::__detail::_Hash_node<struct std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, true>.:
extra_files=std::unordered_map with 0 elements)
at /pytorch_master/torch/csrc/jit/serialization/import.cpp:474
#20 0x00000000035b1ef6 in torch::jit::load (filename="crash-stoull", device=device@entry=..., Python Exception <class 'gdb.error'> No type named std::__detail::_Hash_node<struct std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, true>.:
extra_files=std::unordered_map with 0 elements) at /pytorch_master/torch/csrc/jit/serialization/import.cpp:444
#21 0x00000000035b1d22 in torch::jit::load (filename="", device=device@entry=...) at /pytorch_master/torch/csrc/jit/serialization/import.cpp:424
#22 0x00000000008f9be3 in main (argc=1, argv=0x7ffcd160f9f8) at /pytorch_master/binaries/aot_model_compiler.cc:128
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77557
Approved by: https://github.com/Gamrix