mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
main
42 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
e925dfcc6b |
Enable all SIM rules except disabled ones (#164645)
`SIM` rules are useful for simplifying boolean expressions and enhances code readability. Pull Request resolved: https://github.com/pytorch/pytorch/pull/164645 Approved by: https://github.com/ezyang, https://github.com/mlazos |
|||
b2953f5643 |
[9/N] Apply ruff UP035 rule (#165515)
This is follow-up of #165214 to continue applying ruff UP035 rule to the code base. Pull Request resolved: https://github.com/pytorch/pytorch/pull/165515 Approved by: https://github.com/Lucaskabela |
|||
5d7360bb03 |
Revert "Enable all SIM rules except disabled ones (#164645)"
This reverts commit 321e6026925f6b6e8a36e3a8b7c0295cd7541911. Reverted https://github.com/pytorch/pytorch/pull/164645 on behalf of https://github.com/izaitsevfb due to causes lint failures ([comment](https://github.com/pytorch/pytorch/pull/164645#issuecomment-3369274351)) |
|||
321e602692 |
Enable all SIM rules except disabled ones (#164645)
`SIM` rules are useful for simplifying boolean expressions and enhances code readability. Pull Request resolved: https://github.com/pytorch/pytorch/pull/164645 Approved by: https://github.com/ezyang |
|||
42015db6a9 |
[BE] fix typos in benchmarks/ (#156077)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156077 Approved by: https://github.com/Skylion007, https://github.com/malfet ghstack dependencies: #156069 |
|||
c73a92fbf5 |
[BE][CI] bump ruff to 0.9.2: multiline assert statements (#144546)
Reference: https://docs.astral.sh/ruff/formatter/black/#assert-statements > Unlike Black, Ruff prefers breaking the message over breaking the assertion, similar to how both Ruff and Black prefer breaking the assignment value over breaking the assignment target: > > ```python > # Input > assert ( > len(policy_types) >= priority + num_duplicates > ), f"This tests needs at least {priority+num_duplicates} many types." > > > # Black > assert ( > len(policy_types) >= priority + num_duplicates > ), f"This tests needs at least {priority+num_duplicates} many types." > > # Ruff > assert len(policy_types) >= priority + num_duplicates, ( > f"This tests needs at least {priority + num_duplicates} many types." > ) > ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/144546 Approved by: https://github.com/malfet |
|||
07669ed960 |
PEP585 update - benchmarks tools torchgen (#145101)
This is one of a series of PRs to update us to PEP585 (changing Dict -> dict, List -> list, etc). Most of the PRs were completely automated with RUFF as follows: Since RUFF UP006 is considered an "unsafe" fix first we need to enable unsafe fixes: ``` --- a/tools/linter/adapters/ruff_linter.py +++ b/tools/linter/adapters/ruff_linter.py @@ -313,6 +313,7 @@ "ruff", "check", "--fix-only", + "--unsafe-fixes", "--exit-zero", *([f"--config={config}"] if config else []), "--stdin-filename", ``` Then we need to tell RUFF to allow UP006 (as a final PR once all of these have landed this will be made permanent): ``` --- a/pyproject.toml +++ b/pyproject.toml @@ -40,7 +40,7 @@ [tool.ruff] -target-version = "py38" +target-version = "py39" line-length = 88 src = ["caffe2", "torch", "torchgen", "functorch", "test"] @@ -87,7 +87,6 @@ "SIM116", # Disable Use a dictionary instead of consecutive `if` statements "SIM117", "SIM118", - "UP006", # keep-runtime-typing "UP007", # keep-runtime-typing ] select = [ ``` Finally running `lintrunner -a --take RUFF` will fix up the deprecated uses. Pull Request resolved: https://github.com/pytorch/pytorch/pull/145101 Approved by: https://github.com/bobrenjc93 |
|||
fcf9dc3b11 |
Migrate from Tuple -> tuple in benchmarks (#144259)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144259 Approved by: https://github.com/yanboliang |
|||
dc55704b48 |
Rename cache limit to recompile limit in configs (#143709)
This PR renames every cache_limit to recompile_limit via sed. Old config options are maintained via Config(alias='xyz') Pull Request resolved: https://github.com/pytorch/pytorch/pull/143709 Approved by: https://github.com/jansel |
|||
f1cbf4b1b5 |
Enable ruff's unused variable checking everywhere in pytorch (#136965)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136965 Approved by: https://github.com/cyyever, https://github.com/albanD |
|||
a5ed499f6a |
FlexAttention Benchmark (#139665)
1. Add alibi, sliding window, tahn softcap, prefixLM, and document_mask from attn_gym to benchmark. 2. Add comparison to different SDPA backends & FAv2, FAv3, FAKV. Dependent on https://github.com/pytorch/pytorch/pull/139639 Pull Request resolved: https://github.com/pytorch/pytorch/pull/139665 Approved by: https://github.com/drisspg |
|||
498a7808ff |
Fix unused Python variables outside torch/ and test/ (#136359)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136359 Approved by: https://github.com/albanD |
|||
4110cb6ba7 |
Add explicit GQA support. (#131559)
### tl;dr This PR adds GQA support to higher order op `flex_attention`. ## Details When `enable_gqa` is set to True, HOP `flex_attention(score_mod, query, key, value, block_mask, enable_gqa)` runs Group Query Attention(GQA), where the number of query heads (Hq) is a multiple of number of key/value heads (Hkv). Each group of query heads (`Hq//Hkv` heads) attends to a shared kv head. Otherwise, `flex_attention` assumes Multi Head Attention (MHA) where the number of query heads is equal the number of kv heads. The `score_mod` and `mask_mod` API are adapted accordingly to take `q_head` as head index. ``` def score_mod(score: torch.Tensor, batch: torch.Tensor, q_head: torch.Tensor, token_q: torch.Tensor, token_kv: torch.Tensor) -> torch.Tensor def mask_mod(batch: torch.Tensor, q_head: torch.Tensor, token_q: torch.Tensor, token_kv: torch.Tensor) -> torch.Tensor ``` ## Example ```python import torch from torch.nn.attention.flex_attention import flex_attention from torch.nn.attention.flex_attention import create_block_mask torch.manual_seed(0) def query_key_value_clones( query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, dtype: torch.dtype = None, ): """Clones the query, key, and value tensors and moves them to the specified dtype.""" if dtype is None: dtype = query.dtype query_ref = query.clone().detach().to(dtype).requires_grad_(query.requires_grad) key_ref = key.clone().detach().to(dtype).requires_grad_(key.requires_grad) value_ref = value.clone().detach().to(dtype).requires_grad_(value.requires_grad) return query_ref, key_ref, value_ref # Lets create some input tensors # The input tensor has shape (batch_size, num_heads, seq_len, head_dim). # query and key/value can have different num_heads and seq_len # Here 8 query heads share one KV head. query = torch.randn(2, 8, 2048, 64, device="cuda", dtype=torch.float32, requires_grad=True) key = torch.randn(2, 2, 2048, 64, device="cuda", dtype=torch.float32, requires_grad=True) value = torch.randn(2, 2, 2048, 64, device="cuda", dtype=torch.float32, requires_grad=True) query1, key1, value1 = query_key_value_clones(query, key, value) # Lets create a score_modification. We take alibi_bias as an example. # score_mod takes batch index, query head index, query index, and key/value index. def _generate_alibi_bias(num_kv_heads: int, num_q_heads: int): def _alibi_bias( score: torch.Tensor, b: torch.Tensor, hq: torch.Tensor, token_q: torch.Tensor, token_kv: torch.Tensor, ) -> torch.Tensor: # Let's calculate kv head from query head index group = num_q_heads // num_kv_heads hkv = hq // group scale = torch.exp2(-((hkv + 1) * 8.0 / num_kv_heads)) return score + (token_kv - token_q) * scale return _alibi_bias # Let's apply a casual mask on top of it def causal_mask(b, h, q, kv): return q >= kv # Generate a block mask for our new mask_mod function. # The mask is broadcasted long head & batch dimensions. block_mask = create_block_mask(causal_mask, B=1, H=1, Q_LEN=2048, KV_LEN=2048) # Lets call flex_attention with our new score modification and block mask under eager mode. output = flex_attention(query, key, value, score_mod=_generate_alibi_bias(2, 8), block_mask=block_mask, enable_gqa=True) # Now lets compile flex_attention and run the flex_attention kernel. compiled_flex_attention = torch.compile(flex_attention) out_compiled = compiled_flex_attention(query1, key1, value1, score_mod=_generate_alibi_bias(2, 8), block_mask=block_mask, enable_gqa=True) torch.testing.assert_close(output, out_compiled, atol=5e-2, rtol=2e-2) ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/131559 Approved by: https://github.com/drisspg |
|||
5cb05a82b4 |
[BC breaking] move benchmarking + prefer inductor path (#132827)
move benchmarking out of `torch._inductor.runtime.runtime_utils` and into `torch._inductor.runtime.benchmarking`, and prefer this path over directly accessing Triton's benchmarking Fixes #ISSUE_NUMBER Pull Request resolved: https://github.com/pytorch/pytorch/pull/132827 Approved by: https://github.com/eellison |
|||
cb4d1bfb71 |
Clean up some tflop calc and add option for saving (#132799)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132799 Approved by: https://github.com/BoyuanFeng |
|||
2b86a7fcc7 |
fix printing of scores and mods names (#132424)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132424 Approved by: https://github.com/Skylion007 |
|||
bdd83c4c7f |
Add Full block support to flex_decoding (#131404)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131404 Approved by: https://github.com/yanboliang |
|||
7f61324268 |
Add sparse block to flex_decoding kernel (#130884)
fix typo Finish flex_decoding block sparse Pull Request resolved: https://github.com/pytorch/pytorch/pull/130884 Approved by: https://github.com/drisspg |
|||
6cbb1437c1 |
Revert "Add sparse block to flex_decoding kernel (#130884)"
This reverts commit 0bf59db6cc076468f44197f0d7ee41f6204c47c2. Reverted https://github.com/pytorch/pytorch/pull/130884 on behalf of https://github.com/atalman due to Sorry reverting test_causal_full_mask_vs_sdpa constantly failing on trunk ([comment](https://github.com/pytorch/pytorch/pull/130884#issuecomment-2244113663)) |
|||
0bf59db6cc |
Add sparse block to flex_decoding kernel (#130884)
fix typo Finish flex_decoding block sparse Pull Request resolved: https://github.com/pytorch/pytorch/pull/130884 Approved by: https://github.com/drisspg |
|||
6d9f74f0af |
Add flex decoding benchmark (#130850)
ghstack-source-id: b4f26fb66ed47907b11580c8c853737959c58811 Pull Request resolved: https://github.com/pytorch/pytorch/pull/130788 Add benchmark for flex decoding. Pull Request resolved: https://github.com/pytorch/pytorch/pull/130850 Approved by: https://github.com/Chillee, https://github.com/drisspg |
|||
c0ed38e644 |
[BE][Easy][3/19] enforce style for empty lines in import segments in benchmarks/ (#129754)
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter. You can review these PRs via: ```bash git diff --ignore-all-space --ignore-blank-lines HEAD~1 ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/129754 Approved by: https://github.com/ezyang |
|||
4b7ff35622 |
Fix flex_attention import in score_mod (#130906)
torch.nn.attention._flex_attention has been renamed to torch.nn.attention.flex_attention, so the import does not work currently. Pull Request resolved: https://github.com/pytorch/pytorch/pull/130906 Approved by: https://github.com/Chillee |
|||
da66e50e6e |
Added compile option to create_block_mask (#130106)
Compiling the `create_block_mask` function allows us to "materialize" extremely large masks. This would have been a 1 *trillion* element tensor if fully materialized. ``` print(do_bench(lambda: create_block_mask(causal_mask, 1, 1, 2**20, 2**20, _compiled=True))) ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/130106 Approved by: https://github.com/yanboliang ghstack dependencies: #130160 |
|||
237c4e6163 |
Improved flexattention bwd perf + added configurations for benchmarks (#129013)
Before: <img width="519" alt="image" src="https://github.com/pytorch/pytorch/assets/6355099/6f4a9b37-4aff-48d3-aaba-7e8e5a5bf0fb"> After: <img width="541" alt="image" src="https://github.com/pytorch/pytorch/assets/6355099/423f179e-76f5-457b-8064-ee8a70247534"> After fixing strides:  Pull Request resolved: https://github.com/pytorch/pytorch/pull/129013 Approved by: https://github.com/drisspg, https://github.com/yanboliang ghstack dependencies: #128938 |
|||
f73b451e78 |
Revert "Improved flexattention bwd perf + added configurations for benchmarks (#129013)"
This reverts commit ff89ebc50a738c734496393dc25313cf197fd0b4.
Reverted https://github.com/pytorch/pytorch/pull/129013 on behalf of https://github.com/huydhn due to Sorry for reverting your change but one of the test_torchinductor_opinfo test starts to fail after this commit
|
|||
ff89ebc50a |
Improved flexattention bwd perf + added configurations for benchmarks (#129013)
Before: <img width="519" alt="image" src="https://github.com/pytorch/pytorch/assets/6355099/6f4a9b37-4aff-48d3-aaba-7e8e5a5bf0fb"> After: <img width="541" alt="image" src="https://github.com/pytorch/pytorch/assets/6355099/423f179e-76f5-457b-8064-ee8a70247534"> After fixing strides:  Pull Request resolved: https://github.com/pytorch/pytorch/pull/129013 Approved by: https://github.com/drisspg, https://github.com/yanboliang ghstack dependencies: #128938 |
|||
832fc35211 |
Revert "Improved flexattention bwd perf + added configurations for benchmarks (#129013)"
This reverts commit 6d2b3c90f144d7b77d51da27e6696192b2b97ebd.
Reverted https://github.com/pytorch/pytorch/pull/129013 on behalf of https://github.com/ZainRizvi due to Sorry but this is causing a flexattention test to fail on ROCm. Can you please fix that test before remerging this in? See
|
|||
6d2b3c90f1 |
Improved flexattention bwd perf + added configurations for benchmarks (#129013)
Before: <img width="519" alt="image" src="https://github.com/pytorch/pytorch/assets/6355099/6f4a9b37-4aff-48d3-aaba-7e8e5a5bf0fb"> After: <img width="541" alt="image" src="https://github.com/pytorch/pytorch/assets/6355099/423f179e-76f5-457b-8064-ee8a70247534"> After fixing strides:  Pull Request resolved: https://github.com/pytorch/pytorch/pull/129013 Approved by: https://github.com/drisspg, https://github.com/yanboliang ghstack dependencies: #128938 |
|||
eb9f4da11e |
Modified template indexing to broadcast indices to out instead of mask and some other flexattention micro-opts (#128938)
For headdim=64 and headdim=128 Old: <img width="656" alt="image" src="https://github.com/pytorch/pytorch/assets/6355099/2c5d1613-96dc-4300-8dc0-dccaef59e73c"> New: <img width="644" alt="image" src="https://github.com/pytorch/pytorch/assets/6355099/730004a8-6d5f-46a5-82a0-2594feb5e192"> Note, this does regress headdim=256. We can unregress it by special casing `headdim=256`, but ehh.... we can do it later Pull Request resolved: https://github.com/pytorch/pytorch/pull/128938 Approved by: https://github.com/drisspg |
|||
26f4f10ac8 |
[5/N][Easy] fix typo for usort config in pyproject.toml (kown -> known ): sort torch (#127126)
The `usort` config in `pyproject.toml` has no effect due to a typo. Fixing the typo make `usort` do more and generate the changes in the PR. Except `pyproject.toml`, all changes are generated by `lintrunner -a --take UFMT --all-files`. Pull Request resolved: https://github.com/pytorch/pytorch/pull/127126 Approved by: https://github.com/kit1980 |
|||
55c0ab2887 |
Revert "[5/N][Easy] fix typo for usort config in pyproject.toml (kown -> known ): sort torch (#127126)"
This reverts commit 7763c83af67eebfdd5185dbe6ce15ece2b992a0f. Reverted https://github.com/pytorch/pytorch/pull/127126 on behalf of https://github.com/XuehaiPan due to Broken CI ([comment](https://github.com/pytorch/pytorch/pull/127126#issuecomment-2133044286)) |
|||
7763c83af6 |
[5/N][Easy] fix typo for usort config in pyproject.toml (kown -> known ): sort torch (#127126)
The `usort` config in `pyproject.toml` has no effect due to a typo. Fixing the typo make `usort` do more and generate the changes in the PR. Except `pyproject.toml`, all changes are generated by `lintrunner -a --take UFMT --all-files`. Pull Request resolved: https://github.com/pytorch/pytorch/pull/127126 Approved by: https://github.com/kit1980 ghstack dependencies: #127122, #127123, #127124, #127125 |
|||
762ce6f062 |
Add Lowering for FlexAttention Backwards (#125515)
# Summary #### What does this PR do? It enables Inductor to actually generate the fused flex attention kernel for the backwards I did some other things along the way: - Abstract out the 'build_subgraph_buffer' subroutine and make it reusable between flex attention and flex_attention backwards. In total we need too build 3 subgraphs for fwd + bwd. 1 for the fwd graph and then 2 in the bwd. The FAv2 algorithm recomputes the parts of the forward (more efficiently since we already have the row_max via logsumexp), therefore we need to inline both the fwd graph and the joint graph in the bwds kernel. - The version of the backwards kernel is from a somewhat older version of the triton tutorial implementation. I think that we should update in a follow up to a newer version. Notably the blocks need to be square for this to work as currently implemented. I am sure there are many opportunities for optimization. - I didnt correctly register the decomp table + IndexMode when I landed: https://github.com/pytorch/pytorch/pull/123902, this remedies that. - The rel_bias helper func was reversed in terms of causality. I updated and then add a test specific for "future causal" attention. - This PRs but the main point that I think still needs to be worked out is the store_output call. I have it hacked up to be 'fake' but I dont think we want to land that and likely want to just have a mutated 'dq' and a stored_output 'dk' - I also needed to update the `TritonTemplateKernel` to actually accept multiple subgraphs (modifications) - I updated the benchmark to also profile bwds performance ### Benchmark Numbers: _The current implementation is not parallelizing over ctx length in the bwd_ FWD Speedups | Type | Speedup | shape | score_mod | dtype | |---------|-----------|--------------------|-------------|----------------| | Average | 0.991 | | | | | Max | 1.182 | (16, 16, 4096, 64) | noop | torch.bfloat16 | | Min | 0.796 | (2, 16, 512, 256) | head_bias | torch.bfloat16 | BWD Speedups | Type | Speedup | shape | score_mod | dtype | |---------|-----------|--------------------|-------------|----------------| | Average | 0.291 | | | | | Max | 0.652 | (8, 16, 512, 64) | head_bias | torch.bfloat16 | | Min | 0.073 | (2, 16, 4096, 128) | head_bias | torch.bfloat16 | <details> <summary>Full Data</summary> | shape | score_mod | dtype | fwd_eager_time | fwd_compiled_time | bwd_eager_time | bwd_compiled_time | fwd_speedup | bwd_speedup | |---------------------|---------------|----------------|------------------|---------------------|------------------|---------------------|---------------|---------------| | (2, 16, 512, 64) | noop | torch.bfloat16 | 19.936 | 19.092 | 57.851 | 193.564 | 1.044 | 0.299 | | (2, 16, 512, 64) | causal_mask | torch.bfloat16 | 19.955 | 19.497 | 57.662 | 206.278 | 1.024 | 0.280 | | (2, 16, 512, 64) | relative_bias | torch.bfloat16 | 19.455 | 21.297 | 57.674 | 195.219 | 0.913 | 0.295 | | (2, 16, 512, 64) | head_bias | torch.bfloat16 | 19.958 | 21.289 | 57.674 | 193.859 | 0.938 | 0.298 | | (2, 16, 512, 128) | noop | torch.bfloat16 | 28.157 | 28.615 | 82.831 | 454.211 | 0.984 | 0.182 | | (2, 16, 512, 128) | causal_mask | torch.bfloat16 | 28.154 | 28.444 | 83.091 | 432.083 | 0.990 | 0.192 | | (2, 16, 512, 128) | relative_bias | torch.bfloat16 | 28.722 | 27.897 | 83.175 | 446.789 | 1.030 | 0.186 | | (2, 16, 512, 128) | head_bias | torch.bfloat16 | 28.299 | 27.673 | 83.052 | 459.179 | 1.023 | 0.181 | | (2, 16, 512, 256) | noop | torch.bfloat16 | 41.167 | 50.504 | 175.019 | 1083.545 | 0.815 | 0.162 | | (2, 16, 512, 256) | causal_mask | torch.bfloat16 | 41.656 | 51.933 | 175.078 | 1171.176 | 0.802 | 0.149 | | (2, 16, 512, 256) | relative_bias | torch.bfloat16 | 41.697 | 50.722 | 175.159 | 1097.312 | 0.822 | 0.160 | | (2, 16, 512, 256) | head_bias | torch.bfloat16 | 41.690 | 52.387 | 175.184 | 1097.336 | 0.796 | 0.160 | | (2, 16, 1024, 64) | noop | torch.bfloat16 | 39.232 | 37.454 | 127.847 | 612.430 | 1.047 | 0.209 | | (2, 16, 1024, 64) | causal_mask | torch.bfloat16 | 39.930 | 39.599 | 127.755 | 665.359 | 1.008 | 0.192 | | (2, 16, 1024, 64) | relative_bias | torch.bfloat16 | 39.417 | 41.304 | 127.902 | 614.990 | 0.954 | 0.208 | | (2, 16, 1024, 64) | head_bias | torch.bfloat16 | 39.965 | 42.034 | 127.953 | 613.273 | 0.951 | 0.209 | | (2, 16, 1024, 128) | noop | torch.bfloat16 | 63.964 | 71.024 | 226.510 | 1637.669 | 0.901 | 0.138 | | (2, 16, 1024, 128) | causal_mask | torch.bfloat16 | 63.843 | 72.451 | 226.750 | 1558.949 | 0.881 | 0.145 | | (2, 16, 1024, 128) | relative_bias | torch.bfloat16 | 64.301 | 70.487 | 226.651 | 1610.063 | 0.912 | 0.141 | | (2, 16, 1024, 128) | head_bias | torch.bfloat16 | 64.033 | 71.394 | 226.676 | 1668.511 | 0.897 | 0.136 | | (2, 16, 1024, 256) | noop | torch.bfloat16 | 129.348 | 141.390 | 507.337 | 4405.175 | 0.915 | 0.115 | | (2, 16, 1024, 256) | causal_mask | torch.bfloat16 | 129.538 | 145.680 | 507.178 | 4768.874 | 0.889 | 0.106 | | (2, 16, 1024, 256) | relative_bias | torch.bfloat16 | 129.438 | 142.782 | 507.004 | 4401.002 | 0.907 | 0.115 | | (2, 16, 1024, 256) | head_bias | torch.bfloat16 | 129.058 | 146.242 | 507.547 | 4434.251 | 0.883 | 0.114 | | (2, 16, 4096, 64) | noop | torch.bfloat16 | 481.606 | 409.120 | 1440.890 | 14147.269 | 1.177 | 0.102 | | (2, 16, 4096, 64) | causal_mask | torch.bfloat16 | 480.227 | 438.847 | 1434.419 | 14973.386 | 1.094 | 0.096 | | (2, 16, 4096, 64) | relative_bias | torch.bfloat16 | 480.831 | 458.104 | 1432.935 | 14193.253 | 1.050 | 0.101 | | (2, 16, 4096, 64) | head_bias | torch.bfloat16 | 480.749 | 452.497 | 1437.040 | 14084.869 | 1.062 | 0.102 | | (2, 16, 4096, 128) | noop | torch.bfloat16 | 872.534 | 848.275 | 2600.895 | 35156.849 | 1.029 | 0.074 | | (2, 16, 4096, 128) | causal_mask | torch.bfloat16 | 872.647 | 868.279 | 2587.581 | 31919.531 | 1.005 | 0.081 | | (2, 16, 4096, 128) | relative_bias | torch.bfloat16 | 871.484 | 827.644 | 2593.989 | 34805.634 | 1.053 | 0.075 | | (2, 16, 4096, 128) | head_bias | torch.bfloat16 | 871.422 | 856.437 | 2602.482 | 35708.591 | 1.017 | 0.073 | | (2, 16, 4096, 256) | noop | torch.bfloat16 | 1904.497 | 1758.183 | 6122.416 | 66754.593 | 1.083 | 0.092 | | (2, 16, 4096, 256) | causal_mask | torch.bfloat16 | 1911.174 | 1762.821 | 6113.207 | 72759.392 | 1.084 | 0.084 | | (2, 16, 4096, 256) | relative_bias | torch.bfloat16 | 1911.254 | 1727.108 | 6123.530 | 66577.988 | 1.107 | 0.092 | | (2, 16, 4096, 256) | head_bias | torch.bfloat16 | 1916.977 | 1801.804 | 6118.158 | 67359.680 | 1.064 | 0.091 | | (8, 16, 512, 64) | noop | torch.bfloat16 | 44.984 | 43.974 | 170.276 | 262.259 | 1.023 | 0.649 | | (8, 16, 512, 64) | causal_mask | torch.bfloat16 | 45.001 | 46.265 | 170.509 | 274.893 | 0.973 | 0.620 | | (8, 16, 512, 64) | relative_bias | torch.bfloat16 | 45.466 | 48.211 | 170.606 | 262.759 | 0.943 | 0.649 | | (8, 16, 512, 64) | head_bias | torch.bfloat16 | 45.481 | 48.435 | 170.267 | 261.265 | 0.939 | 0.652 | | (8, 16, 512, 128) | noop | torch.bfloat16 | 72.565 | 74.736 | 313.220 | 773.126 | 0.971 | 0.405 | | (8, 16, 512, 128) | causal_mask | torch.bfloat16 | 72.015 | 75.755 | 313.311 | 775.513 | 0.951 | 0.404 | | (8, 16, 512, 128) | relative_bias | torch.bfloat16 | 72.105 | 74.189 | 313.806 | 769.238 | 0.972 | 0.408 | | (8, 16, 512, 128) | head_bias | torch.bfloat16 | 72.005 | 74.364 | 313.509 | 775.237 | 0.968 | 0.404 | | (8, 16, 512, 256) | noop | torch.bfloat16 | 138.656 | 165.453 | 663.707 | 2672.067 | 0.838 | 0.248 | | (8, 16, 512, 256) | causal_mask | torch.bfloat16 | 139.096 | 172.613 | 663.593 | 2926.538 | 0.806 | 0.227 | | (8, 16, 512, 256) | relative_bias | torch.bfloat16 | 139.500 | 168.417 | 663.938 | 2658.629 | 0.828 | 0.250 | | (8, 16, 512, 256) | head_bias | torch.bfloat16 | 139.776 | 173.549 | 662.920 | 2667.266 | 0.805 | 0.249 | | (8, 16, 1024, 64) | noop | torch.bfloat16 | 134.883 | 125.004 | 484.706 | 1195.254 | 1.079 | 0.406 | | (8, 16, 1024, 64) | causal_mask | torch.bfloat16 | 134.297 | 132.875 | 485.420 | 1234.953 | 1.011 | 0.393 | | (8, 16, 1024, 64) | relative_bias | torch.bfloat16 | 134.839 | 139.231 | 485.470 | 1198.556 | 0.968 | 0.405 | | (8, 16, 1024, 64) | head_bias | torch.bfloat16 | 133.822 | 136.449 | 485.608 | 1189.198 | 0.981 | 0.408 | | (8, 16, 1024, 128) | noop | torch.bfloat16 | 235.470 | 234.765 | 886.094 | 2662.944 | 1.003 | 0.333 | | (8, 16, 1024, 128) | causal_mask | torch.bfloat16 | 236.305 | 241.382 | 886.293 | 2646.984 | 0.979 | 0.335 | | (8, 16, 1024, 128) | relative_bias | torch.bfloat16 | 236.414 | 233.980 | 885.250 | 2642.178 | 1.010 | 0.335 | | (8, 16, 1024, 128) | head_bias | torch.bfloat16 | 237.176 | 239.040 | 885.754 | 2665.242 | 0.992 | 0.332 | | (8, 16, 1024, 256) | noop | torch.bfloat16 | 504.445 | 517.855 | 1978.956 | 9592.906 | 0.974 | 0.206 | | (8, 16, 1024, 256) | causal_mask | torch.bfloat16 | 502.428 | 536.002 | 1978.611 | 10607.342 | 0.937 | 0.187 | | (8, 16, 1024, 256) | relative_bias | torch.bfloat16 | 503.396 | 523.960 | 1977.993 | 9539.284 | 0.961 | 0.207 | | (8, 16, 1024, 256) | head_bias | torch.bfloat16 | 503.818 | 536.014 | 1980.131 | 9576.262 | 0.940 | 0.207 | | (8, 16, 4096, 64) | noop | torch.bfloat16 | 1970.139 | 1674.930 | 5750.940 | 16724.134 | 1.176 | 0.344 | | (8, 16, 4096, 64) | causal_mask | torch.bfloat16 | 1959.036 | 1775.056 | 5780.512 | 17390.350 | 1.104 | 0.332 | | (8, 16, 4096, 64) | relative_bias | torch.bfloat16 | 1947.198 | 1773.869 | 5780.643 | 16779.699 | 1.098 | 0.345 | | (8, 16, 4096, 64) | head_bias | torch.bfloat16 | 1963.935 | 1829.502 | 5780.018 | 16703.259 | 1.073 | 0.346 | | (8, 16, 4096, 128) | noop | torch.bfloat16 | 3582.711 | 3362.623 | 10436.069 | 36415.565 | 1.065 | 0.287 | | (8, 16, 4096, 128) | causal_mask | torch.bfloat16 | 3581.504 | 3499.472 | 10346.869 | 36164.959 | 1.023 | 0.286 | | (8, 16, 4096, 128) | relative_bias | torch.bfloat16 | 3589.779 | 3337.849 | 10529.621 | 36261.696 | 1.075 | 0.290 | | (8, 16, 4096, 128) | head_bias | torch.bfloat16 | 3602.265 | 3436.444 | 10458.660 | 36507.790 | 1.048 | 0.286 | | (8, 16, 4096, 256) | noop | torch.bfloat16 | 7695.923 | 7126.275 | 24643.009 | 140949.081 | 1.080 | 0.175 | | (8, 16, 4096, 256) | causal_mask | torch.bfloat16 | 7679.939 | 7186.252 | 24538.105 | 157156.067 | 1.069 | 0.156 | | (8, 16, 4096, 256) | relative_bias | torch.bfloat16 | 7681.374 | 6994.832 | 24549.713 | 140077.179 | 1.098 | 0.175 | | (8, 16, 4096, 256) | head_bias | torch.bfloat16 | 7679.822 | 7212.278 | 24627.823 | 140675.003 | 1.065 | 0.175 | | (16, 16, 512, 64) | noop | torch.bfloat16 | 80.126 | 78.291 | 333.719 | 541.165 | 1.023 | 0.617 | | (16, 16, 512, 64) | causal_mask | torch.bfloat16 | 80.065 | 81.696 | 333.779 | 551.113 | 0.980 | 0.606 | | (16, 16, 512, 64) | relative_bias | torch.bfloat16 | 80.138 | 86.715 | 333.364 | 542.118 | 0.924 | 0.615 | | (16, 16, 512, 64) | head_bias | torch.bfloat16 | 80.415 | 85.204 | 333.294 | 536.840 | 0.944 | 0.621 | | (16, 16, 512, 128) | noop | torch.bfloat16 | 134.964 | 138.025 | 607.093 | 1333.102 | 0.978 | 0.455 | | (16, 16, 512, 128) | causal_mask | torch.bfloat16 | 134.192 | 141.523 | 606.269 | 1424.318 | 0.948 | 0.426 | | (16, 16, 512, 128) | relative_bias | torch.bfloat16 | 135.711 | 138.639 | 606.283 | 1327.974 | 0.979 | 0.457 | | (16, 16, 512, 128) | head_bias | torch.bfloat16 | 135.552 | 140.555 | 607.107 | 1347.370 | 0.964 | 0.451 | | (16, 16, 512, 256) | noop | torch.bfloat16 | 275.113 | 315.144 | 1301.583 | 5268.153 | 0.873 | 0.247 | | (16, 16, 512, 256) | causal_mask | torch.bfloat16 | 274.867 | 328.106 | 1302.513 | 5770.594 | 0.838 | 0.226 | | (16, 16, 512, 256) | relative_bias | torch.bfloat16 | 276.052 | 321.770 | 1302.904 | 5241.920 | 0.858 | 0.249 | | (16, 16, 512, 256) | head_bias | torch.bfloat16 | 271.409 | 328.839 | 1302.142 | 5266.037 | 0.825 | 0.247 | | (16, 16, 1024, 64) | noop | torch.bfloat16 | 260.489 | 237.463 | 955.884 | 1817.558 | 1.097 | 0.526 | | (16, 16, 1024, 64) | causal_mask | torch.bfloat16 | 262.378 | 254.350 | 955.280 | 1843.807 | 1.032 | 0.518 | | (16, 16, 1024, 64) | relative_bias | torch.bfloat16 | 261.338 | 268.253 | 956.038 | 1820.036 | 0.974 | 0.525 | | (16, 16, 1024, 64) | head_bias | torch.bfloat16 | 262.153 | 264.156 | 956.023 | 1810.076 | 0.992 | 0.528 | | (16, 16, 1024, 128) | noop | torch.bfloat16 | 476.475 | 461.413 | 1760.578 | 4306.521 | 1.033 | 0.409 | | (16, 16, 1024, 128) | causal_mask | torch.bfloat16 | 473.794 | 479.178 | 1761.277 | 4619.439 | 0.989 | 0.381 | | (16, 16, 1024, 128) | relative_bias | torch.bfloat16 | 473.839 | 463.282 | 1758.692 | 4290.562 | 1.023 | 0.410 | | (16, 16, 1024, 128) | head_bias | torch.bfloat16 | 472.979 | 472.896 | 1763.086 | 4367.931 | 1.000 | 0.404 | | (16, 16, 1024, 256) | noop | torch.bfloat16 | 1014.184 | 1026.764 | 3922.997 | 19104.147 | 0.988 | 0.205 | | (16, 16, 1024, 256) | causal_mask | torch.bfloat16 | 1013.217 | 1039.046 | 3928.382 | 21086.281 | 0.975 | 0.186 | | (16, 16, 1024, 256) | relative_bias | torch.bfloat16 | 1008.519 | 1015.278 | 3922.133 | 18980.652 | 0.993 | 0.207 | | (16, 16, 1024, 256) | head_bias | torch.bfloat16 | 1011.360 | 1047.542 | 3931.245 | 19069.172 | 0.965 | 0.206 | | (16, 16, 4096, 64) | noop | torch.bfloat16 | 3929.850 | 3325.667 | 11411.704 | 23344.280 | 1.182 | 0.489 | | (16, 16, 4096, 64) | causal_mask | torch.bfloat16 | 3885.262 | 3581.544 | 11390.515 | 23725.639 | 1.085 | 0.480 | | (16, 16, 4096, 64) | relative_bias | torch.bfloat16 | 3865.737 | 3537.308 | 11489.901 | 23406.330 | 1.093 | 0.491 | | (16, 16, 4096, 64) | head_bias | torch.bfloat16 | 3880.530 | 3665.249 | 11484.411 | 23299.496 | 1.059 | 0.493 | | (16, 16, 4096, 128) | noop | torch.bfloat16 | 7030.306 | 6745.715 | 20621.264 | 57464.096 | 1.042 | 0.359 | | (16, 16, 4096, 128) | causal_mask | torch.bfloat16 | 7095.414 | 7034.385 | 20410.656 | 61660.511 | 1.009 | 0.331 | | (16, 16, 4096, 128) | relative_bias | torch.bfloat16 | 7084.779 | 6686.497 | 20315.161 | 57243.969 | 1.060 | 0.355 | | (16, 16, 4096, 128) | head_bias | torch.bfloat16 | 7075.367 | 6863.305 | 20494.385 | 58481.953 | 1.031 | 0.350 | | (16, 16, 4096, 256) | noop | torch.bfloat16 | 15612.741 | 14297.482 | 55306.847 | 281161.865 | 1.092 | 0.197 | | (16, 16, 4096, 256) | causal_mask | torch.bfloat16 | 15326.592 | 14263.878 | 55227.806 | 313063.232 | 1.075 | 0.176 | | (16, 16, 4096, 256) | relative_bias | torch.bfloat16 | 15297.963 | 14007.379 | 54558.029 | 279529.175 | 1.092 | 0.195 | | (16, 16, 4096, 256) | head_bias | torch.bfloat16 | 15216.160 | 14276.027 | 55081.581 | 280996.826 | 1.066 | 0.196 | </details> Pull Request resolved: https://github.com/pytorch/pytorch/pull/125515 Approved by: https://github.com/Chillee |
|||
0716f75cfb |
Revert "Add Lowering for FlexAttention Backwards (#125515)"
This reverts commit 95b9e981c3ab68fc17f78b8a6bbfd9569745ae4c.
Reverted https://github.com/pytorch/pytorch/pull/125515 on behalf of https://github.com/huydhn due to Sorry for reverting your change but the newly added test runs out of memory
|
|||
95b9e981c3 |
Add Lowering for FlexAttention Backwards (#125515)
# Summary #### What does this PR do? It enables Inductor to actually generate the fused flex attention kernel for the backwards I did some other things along the way: - Abstract out the 'build_subgraph_buffer' subroutine and make it reusable between flex attention and flex_attention backwards. In total we need too build 3 subgraphs for fwd + bwd. 1 for the fwd graph and then 2 in the bwd. The FAv2 algorithm recomputes the parts of the forward (more efficiently since we already have the row_max via logsumexp), therefore we need to inline both the fwd graph and the joint graph in the bwds kernel. - The version of the backwards kernel is from a somewhat older version of the triton tutorial implementation. I think that we should update in a follow up to a newer version. Notably the blocks need to be square for this to work as currently implemented. I am sure there are many opportunities for optimization. - I didnt correctly register the decomp table + IndexMode when I landed: https://github.com/pytorch/pytorch/pull/123902, this remedies that. - The rel_bias helper func was reversed in terms of causality. I updated and then add a test specific for "future causal" attention. - This PRs but the main point that I think still needs to be worked out is the store_output call. I have it hacked up to be 'fake' but I dont think we want to land that and likely want to just have a mutated 'dq' and a stored_output 'dk' - I also needed to update the `TritonTemplateKernel` to actually accept multiple subgraphs (modifications) - I updated the benchmark to also profile bwds performance ### Benchmark Numbers: _The current implementation is not parallelizing over ctx length in the bwd_ FWD Speedups | Type | Speedup | shape | score_mod | dtype | |---------|-----------|--------------------|-------------|----------------| | Average | 0.991 | | | | | Max | 1.182 | (16, 16, 4096, 64) | noop | torch.bfloat16 | | Min | 0.796 | (2, 16, 512, 256) | head_bias | torch.bfloat16 | BWD Speedups | Type | Speedup | shape | score_mod | dtype | |---------|-----------|--------------------|-------------|----------------| | Average | 0.291 | | | | | Max | 0.652 | (8, 16, 512, 64) | head_bias | torch.bfloat16 | | Min | 0.073 | (2, 16, 4096, 128) | head_bias | torch.bfloat16 | <details> <summary>Full Data</summary> | shape | score_mod | dtype | fwd_eager_time | fwd_compiled_time | bwd_eager_time | bwd_compiled_time | fwd_speedup | bwd_speedup | |---------------------|---------------|----------------|------------------|---------------------|------------------|---------------------|---------------|---------------| | (2, 16, 512, 64) | noop | torch.bfloat16 | 19.936 | 19.092 | 57.851 | 193.564 | 1.044 | 0.299 | | (2, 16, 512, 64) | causal_mask | torch.bfloat16 | 19.955 | 19.497 | 57.662 | 206.278 | 1.024 | 0.280 | | (2, 16, 512, 64) | relative_bias | torch.bfloat16 | 19.455 | 21.297 | 57.674 | 195.219 | 0.913 | 0.295 | | (2, 16, 512, 64) | head_bias | torch.bfloat16 | 19.958 | 21.289 | 57.674 | 193.859 | 0.938 | 0.298 | | (2, 16, 512, 128) | noop | torch.bfloat16 | 28.157 | 28.615 | 82.831 | 454.211 | 0.984 | 0.182 | | (2, 16, 512, 128) | causal_mask | torch.bfloat16 | 28.154 | 28.444 | 83.091 | 432.083 | 0.990 | 0.192 | | (2, 16, 512, 128) | relative_bias | torch.bfloat16 | 28.722 | 27.897 | 83.175 | 446.789 | 1.030 | 0.186 | | (2, 16, 512, 128) | head_bias | torch.bfloat16 | 28.299 | 27.673 | 83.052 | 459.179 | 1.023 | 0.181 | | (2, 16, 512, 256) | noop | torch.bfloat16 | 41.167 | 50.504 | 175.019 | 1083.545 | 0.815 | 0.162 | | (2, 16, 512, 256) | causal_mask | torch.bfloat16 | 41.656 | 51.933 | 175.078 | 1171.176 | 0.802 | 0.149 | | (2, 16, 512, 256) | relative_bias | torch.bfloat16 | 41.697 | 50.722 | 175.159 | 1097.312 | 0.822 | 0.160 | | (2, 16, 512, 256) | head_bias | torch.bfloat16 | 41.690 | 52.387 | 175.184 | 1097.336 | 0.796 | 0.160 | | (2, 16, 1024, 64) | noop | torch.bfloat16 | 39.232 | 37.454 | 127.847 | 612.430 | 1.047 | 0.209 | | (2, 16, 1024, 64) | causal_mask | torch.bfloat16 | 39.930 | 39.599 | 127.755 | 665.359 | 1.008 | 0.192 | | (2, 16, 1024, 64) | relative_bias | torch.bfloat16 | 39.417 | 41.304 | 127.902 | 614.990 | 0.954 | 0.208 | | (2, 16, 1024, 64) | head_bias | torch.bfloat16 | 39.965 | 42.034 | 127.953 | 613.273 | 0.951 | 0.209 | | (2, 16, 1024, 128) | noop | torch.bfloat16 | 63.964 | 71.024 | 226.510 | 1637.669 | 0.901 | 0.138 | | (2, 16, 1024, 128) | causal_mask | torch.bfloat16 | 63.843 | 72.451 | 226.750 | 1558.949 | 0.881 | 0.145 | | (2, 16, 1024, 128) | relative_bias | torch.bfloat16 | 64.301 | 70.487 | 226.651 | 1610.063 | 0.912 | 0.141 | | (2, 16, 1024, 128) | head_bias | torch.bfloat16 | 64.033 | 71.394 | 226.676 | 1668.511 | 0.897 | 0.136 | | (2, 16, 1024, 256) | noop | torch.bfloat16 | 129.348 | 141.390 | 507.337 | 4405.175 | 0.915 | 0.115 | | (2, 16, 1024, 256) | causal_mask | torch.bfloat16 | 129.538 | 145.680 | 507.178 | 4768.874 | 0.889 | 0.106 | | (2, 16, 1024, 256) | relative_bias | torch.bfloat16 | 129.438 | 142.782 | 507.004 | 4401.002 | 0.907 | 0.115 | | (2, 16, 1024, 256) | head_bias | torch.bfloat16 | 129.058 | 146.242 | 507.547 | 4434.251 | 0.883 | 0.114 | | (2, 16, 4096, 64) | noop | torch.bfloat16 | 481.606 | 409.120 | 1440.890 | 14147.269 | 1.177 | 0.102 | | (2, 16, 4096, 64) | causal_mask | torch.bfloat16 | 480.227 | 438.847 | 1434.419 | 14973.386 | 1.094 | 0.096 | | (2, 16, 4096, 64) | relative_bias | torch.bfloat16 | 480.831 | 458.104 | 1432.935 | 14193.253 | 1.050 | 0.101 | | (2, 16, 4096, 64) | head_bias | torch.bfloat16 | 480.749 | 452.497 | 1437.040 | 14084.869 | 1.062 | 0.102 | | (2, 16, 4096, 128) | noop | torch.bfloat16 | 872.534 | 848.275 | 2600.895 | 35156.849 | 1.029 | 0.074 | | (2, 16, 4096, 128) | causal_mask | torch.bfloat16 | 872.647 | 868.279 | 2587.581 | 31919.531 | 1.005 | 0.081 | | (2, 16, 4096, 128) | relative_bias | torch.bfloat16 | 871.484 | 827.644 | 2593.989 | 34805.634 | 1.053 | 0.075 | | (2, 16, 4096, 128) | head_bias | torch.bfloat16 | 871.422 | 856.437 | 2602.482 | 35708.591 | 1.017 | 0.073 | | (2, 16, 4096, 256) | noop | torch.bfloat16 | 1904.497 | 1758.183 | 6122.416 | 66754.593 | 1.083 | 0.092 | | (2, 16, 4096, 256) | causal_mask | torch.bfloat16 | 1911.174 | 1762.821 | 6113.207 | 72759.392 | 1.084 | 0.084 | | (2, 16, 4096, 256) | relative_bias | torch.bfloat16 | 1911.254 | 1727.108 | 6123.530 | 66577.988 | 1.107 | 0.092 | | (2, 16, 4096, 256) | head_bias | torch.bfloat16 | 1916.977 | 1801.804 | 6118.158 | 67359.680 | 1.064 | 0.091 | | (8, 16, 512, 64) | noop | torch.bfloat16 | 44.984 | 43.974 | 170.276 | 262.259 | 1.023 | 0.649 | | (8, 16, 512, 64) | causal_mask | torch.bfloat16 | 45.001 | 46.265 | 170.509 | 274.893 | 0.973 | 0.620 | | (8, 16, 512, 64) | relative_bias | torch.bfloat16 | 45.466 | 48.211 | 170.606 | 262.759 | 0.943 | 0.649 | | (8, 16, 512, 64) | head_bias | torch.bfloat16 | 45.481 | 48.435 | 170.267 | 261.265 | 0.939 | 0.652 | | (8, 16, 512, 128) | noop | torch.bfloat16 | 72.565 | 74.736 | 313.220 | 773.126 | 0.971 | 0.405 | | (8, 16, 512, 128) | causal_mask | torch.bfloat16 | 72.015 | 75.755 | 313.311 | 775.513 | 0.951 | 0.404 | | (8, 16, 512, 128) | relative_bias | torch.bfloat16 | 72.105 | 74.189 | 313.806 | 769.238 | 0.972 | 0.408 | | (8, 16, 512, 128) | head_bias | torch.bfloat16 | 72.005 | 74.364 | 313.509 | 775.237 | 0.968 | 0.404 | | (8, 16, 512, 256) | noop | torch.bfloat16 | 138.656 | 165.453 | 663.707 | 2672.067 | 0.838 | 0.248 | | (8, 16, 512, 256) | causal_mask | torch.bfloat16 | 139.096 | 172.613 | 663.593 | 2926.538 | 0.806 | 0.227 | | (8, 16, 512, 256) | relative_bias | torch.bfloat16 | 139.500 | 168.417 | 663.938 | 2658.629 | 0.828 | 0.250 | | (8, 16, 512, 256) | head_bias | torch.bfloat16 | 139.776 | 173.549 | 662.920 | 2667.266 | 0.805 | 0.249 | | (8, 16, 1024, 64) | noop | torch.bfloat16 | 134.883 | 125.004 | 484.706 | 1195.254 | 1.079 | 0.406 | | (8, 16, 1024, 64) | causal_mask | torch.bfloat16 | 134.297 | 132.875 | 485.420 | 1234.953 | 1.011 | 0.393 | | (8, 16, 1024, 64) | relative_bias | torch.bfloat16 | 134.839 | 139.231 | 485.470 | 1198.556 | 0.968 | 0.405 | | (8, 16, 1024, 64) | head_bias | torch.bfloat16 | 133.822 | 136.449 | 485.608 | 1189.198 | 0.981 | 0.408 | | (8, 16, 1024, 128) | noop | torch.bfloat16 | 235.470 | 234.765 | 886.094 | 2662.944 | 1.003 | 0.333 | | (8, 16, 1024, 128) | causal_mask | torch.bfloat16 | 236.305 | 241.382 | 886.293 | 2646.984 | 0.979 | 0.335 | | (8, 16, 1024, 128) | relative_bias | torch.bfloat16 | 236.414 | 233.980 | 885.250 | 2642.178 | 1.010 | 0.335 | | (8, 16, 1024, 128) | head_bias | torch.bfloat16 | 237.176 | 239.040 | 885.754 | 2665.242 | 0.992 | 0.332 | | (8, 16, 1024, 256) | noop | torch.bfloat16 | 504.445 | 517.855 | 1978.956 | 9592.906 | 0.974 | 0.206 | | (8, 16, 1024, 256) | causal_mask | torch.bfloat16 | 502.428 | 536.002 | 1978.611 | 10607.342 | 0.937 | 0.187 | | (8, 16, 1024, 256) | relative_bias | torch.bfloat16 | 503.396 | 523.960 | 1977.993 | 9539.284 | 0.961 | 0.207 | | (8, 16, 1024, 256) | head_bias | torch.bfloat16 | 503.818 | 536.014 | 1980.131 | 9576.262 | 0.940 | 0.207 | | (8, 16, 4096, 64) | noop | torch.bfloat16 | 1970.139 | 1674.930 | 5750.940 | 16724.134 | 1.176 | 0.344 | | (8, 16, 4096, 64) | causal_mask | torch.bfloat16 | 1959.036 | 1775.056 | 5780.512 | 17390.350 | 1.104 | 0.332 | | (8, 16, 4096, 64) | relative_bias | torch.bfloat16 | 1947.198 | 1773.869 | 5780.643 | 16779.699 | 1.098 | 0.345 | | (8, 16, 4096, 64) | head_bias | torch.bfloat16 | 1963.935 | 1829.502 | 5780.018 | 16703.259 | 1.073 | 0.346 | | (8, 16, 4096, 128) | noop | torch.bfloat16 | 3582.711 | 3362.623 | 10436.069 | 36415.565 | 1.065 | 0.287 | | (8, 16, 4096, 128) | causal_mask | torch.bfloat16 | 3581.504 | 3499.472 | 10346.869 | 36164.959 | 1.023 | 0.286 | | (8, 16, 4096, 128) | relative_bias | torch.bfloat16 | 3589.779 | 3337.849 | 10529.621 | 36261.696 | 1.075 | 0.290 | | (8, 16, 4096, 128) | head_bias | torch.bfloat16 | 3602.265 | 3436.444 | 10458.660 | 36507.790 | 1.048 | 0.286 | | (8, 16, 4096, 256) | noop | torch.bfloat16 | 7695.923 | 7126.275 | 24643.009 | 140949.081 | 1.080 | 0.175 | | (8, 16, 4096, 256) | causal_mask | torch.bfloat16 | 7679.939 | 7186.252 | 24538.105 | 157156.067 | 1.069 | 0.156 | | (8, 16, 4096, 256) | relative_bias | torch.bfloat16 | 7681.374 | 6994.832 | 24549.713 | 140077.179 | 1.098 | 0.175 | | (8, 16, 4096, 256) | head_bias | torch.bfloat16 | 7679.822 | 7212.278 | 24627.823 | 140675.003 | 1.065 | 0.175 | | (16, 16, 512, 64) | noop | torch.bfloat16 | 80.126 | 78.291 | 333.719 | 541.165 | 1.023 | 0.617 | | (16, 16, 512, 64) | causal_mask | torch.bfloat16 | 80.065 | 81.696 | 333.779 | 551.113 | 0.980 | 0.606 | | (16, 16, 512, 64) | relative_bias | torch.bfloat16 | 80.138 | 86.715 | 333.364 | 542.118 | 0.924 | 0.615 | | (16, 16, 512, 64) | head_bias | torch.bfloat16 | 80.415 | 85.204 | 333.294 | 536.840 | 0.944 | 0.621 | | (16, 16, 512, 128) | noop | torch.bfloat16 | 134.964 | 138.025 | 607.093 | 1333.102 | 0.978 | 0.455 | | (16, 16, 512, 128) | causal_mask | torch.bfloat16 | 134.192 | 141.523 | 606.269 | 1424.318 | 0.948 | 0.426 | | (16, 16, 512, 128) | relative_bias | torch.bfloat16 | 135.711 | 138.639 | 606.283 | 1327.974 | 0.979 | 0.457 | | (16, 16, 512, 128) | head_bias | torch.bfloat16 | 135.552 | 140.555 | 607.107 | 1347.370 | 0.964 | 0.451 | | (16, 16, 512, 256) | noop | torch.bfloat16 | 275.113 | 315.144 | 1301.583 | 5268.153 | 0.873 | 0.247 | | (16, 16, 512, 256) | causal_mask | torch.bfloat16 | 274.867 | 328.106 | 1302.513 | 5770.594 | 0.838 | 0.226 | | (16, 16, 512, 256) | relative_bias | torch.bfloat16 | 276.052 | 321.770 | 1302.904 | 5241.920 | 0.858 | 0.249 | | (16, 16, 512, 256) | head_bias | torch.bfloat16 | 271.409 | 328.839 | 1302.142 | 5266.037 | 0.825 | 0.247 | | (16, 16, 1024, 64) | noop | torch.bfloat16 | 260.489 | 237.463 | 955.884 | 1817.558 | 1.097 | 0.526 | | (16, 16, 1024, 64) | causal_mask | torch.bfloat16 | 262.378 | 254.350 | 955.280 | 1843.807 | 1.032 | 0.518 | | (16, 16, 1024, 64) | relative_bias | torch.bfloat16 | 261.338 | 268.253 | 956.038 | 1820.036 | 0.974 | 0.525 | | (16, 16, 1024, 64) | head_bias | torch.bfloat16 | 262.153 | 264.156 | 956.023 | 1810.076 | 0.992 | 0.528 | | (16, 16, 1024, 128) | noop | torch.bfloat16 | 476.475 | 461.413 | 1760.578 | 4306.521 | 1.033 | 0.409 | | (16, 16, 1024, 128) | causal_mask | torch.bfloat16 | 473.794 | 479.178 | 1761.277 | 4619.439 | 0.989 | 0.381 | | (16, 16, 1024, 128) | relative_bias | torch.bfloat16 | 473.839 | 463.282 | 1758.692 | 4290.562 | 1.023 | 0.410 | | (16, 16, 1024, 128) | head_bias | torch.bfloat16 | 472.979 | 472.896 | 1763.086 | 4367.931 | 1.000 | 0.404 | | (16, 16, 1024, 256) | noop | torch.bfloat16 | 1014.184 | 1026.764 | 3922.997 | 19104.147 | 0.988 | 0.205 | | (16, 16, 1024, 256) | causal_mask | torch.bfloat16 | 1013.217 | 1039.046 | 3928.382 | 21086.281 | 0.975 | 0.186 | | (16, 16, 1024, 256) | relative_bias | torch.bfloat16 | 1008.519 | 1015.278 | 3922.133 | 18980.652 | 0.993 | 0.207 | | (16, 16, 1024, 256) | head_bias | torch.bfloat16 | 1011.360 | 1047.542 | 3931.245 | 19069.172 | 0.965 | 0.206 | | (16, 16, 4096, 64) | noop | torch.bfloat16 | 3929.850 | 3325.667 | 11411.704 | 23344.280 | 1.182 | 0.489 | | (16, 16, 4096, 64) | causal_mask | torch.bfloat16 | 3885.262 | 3581.544 | 11390.515 | 23725.639 | 1.085 | 0.480 | | (16, 16, 4096, 64) | relative_bias | torch.bfloat16 | 3865.737 | 3537.308 | 11489.901 | 23406.330 | 1.093 | 0.491 | | (16, 16, 4096, 64) | head_bias | torch.bfloat16 | 3880.530 | 3665.249 | 11484.411 | 23299.496 | 1.059 | 0.493 | | (16, 16, 4096, 128) | noop | torch.bfloat16 | 7030.306 | 6745.715 | 20621.264 | 57464.096 | 1.042 | 0.359 | | (16, 16, 4096, 128) | causal_mask | torch.bfloat16 | 7095.414 | 7034.385 | 20410.656 | 61660.511 | 1.009 | 0.331 | | (16, 16, 4096, 128) | relative_bias | torch.bfloat16 | 7084.779 | 6686.497 | 20315.161 | 57243.969 | 1.060 | 0.355 | | (16, 16, 4096, 128) | head_bias | torch.bfloat16 | 7075.367 | 6863.305 | 20494.385 | 58481.953 | 1.031 | 0.350 | | (16, 16, 4096, 256) | noop | torch.bfloat16 | 15612.741 | 14297.482 | 55306.847 | 281161.865 | 1.092 | 0.197 | | (16, 16, 4096, 256) | causal_mask | torch.bfloat16 | 15326.592 | 14263.878 | 55227.806 | 313063.232 | 1.075 | 0.176 | | (16, 16, 4096, 256) | relative_bias | torch.bfloat16 | 15297.963 | 14007.379 | 54558.029 | 279529.175 | 1.092 | 0.195 | | (16, 16, 4096, 256) | head_bias | torch.bfloat16 | 15216.160 | 14276.027 | 55081.581 | 280996.826 | 1.066 | 0.196 | </details> Pull Request resolved: https://github.com/pytorch/pytorch/pull/125515 Approved by: https://github.com/Chillee |
|||
dfab69fdf1 |
[Inductor] Flex attention supports dynamic shape (#125994)
## static shapes perf ``` | Type | Speedup | batch_size | num_heads | q_seq_len | k_seq_len | head_dim | score_mod | dtype | |---------|-----------|--------------|-------------|-------------|-------------|------------|-------------|----------------| | Average | 0.692 | | | | | | | | | Max | 0.855 | 16 | 16 | 4096 | 4096 | 64 | head_bias | torch.bfloat16 | | Min | 0.419 | 8 | 16 | 512 | 512 | 256 | noop | torch.bfloat16 | ``` ## dynamic shapes perf ``` | Type | Speedup | batch_size | num_heads | q_seq_len | k_seq_len | head_dim | score_mod | dtype | |---------|-----------|--------------|-------------|-------------|-------------|------------|---------------|----------------| | Average | 0.670 | | | | | | | | | Max | 0.864 | 16 | 16 | 4096 | 4096 | 64 | relative_bias | torch.bfloat16 | | Min | 0.376 | 8 | 16 | 512 | 512 | 256 | relative_bias | torch.bfloat16 | ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/125994 Approved by: https://github.com/Chillee |
|||
3b5f6b10ad |
[Inductor] default block size for head_dim = 256 for flex attention (#125380)
## H100 ### torch.bfloat16 No major change, as expected. ``` | Type | Speedup | batch_size | num_heads | q_seq_len | k_seq_len | head_dim | score_mod | dtype | |---------|-----------|--------------|-------------|-------------|-------------|------------|-------------|----------------| | Average | 1.122 | | | | | | | | | Max | 1.437 | 1 | 16 | 512 | 512 | 128 | head_bias | torch.bfloat16 | | Min | 0.895 | 1 | 16 | 1024 | 1024 | 64 | head_bias | torch.bfloat16 | ``` ### torch.float32 Before: OOM when ```head_dim``` = 256 After: ``` | Type | Speedup | batch_size | num_heads | q_seq_len | k_seq_len | head_dim | score_mod | dtype | |---------|-----------|--------------|-------------|-------------|-------------|------------|-------------|---------------| | Average | 2.231 | | | | | | | | | Max | 3.760 | 16 | 16 | 4096 | 4096 | 64 | noop | torch.float32 | | Min | 1.532 | 1 | 16 | 512 | 512 | 256 | causal_mask | torch.float32 | ``` ## A100 ### torch.bfloat16 Before: ``` | Type | Speedup | batch_size | num_heads | q_seq_len | k_seq_len | head_dim | score_mod | dtype | |---------|-----------|--------------|-------------|-------------|-------------|------------|---------------|----------------| | Average | 0.587 | | | | | | | | | Max | 0.960 | 1 | 16 | 512 | 512 | 64 | noop | torch.bfloat16 | | Min | 0.017 | 8 | 16 | 4096 | 4096 | 256 | relative_bias | torch.bfloat16 | ``` After: ``` | Type | Speedup | batch_size | num_heads | q_seq_len | k_seq_len | head_dim | score_mod | dtype | |---------|-----------|--------------|-------------|-------------|-------------|------------|-------------|----------------| | Average | 0.756 | | | | | | | | | Max | 0.931 | 1 | 16 | 512 | 512 | 64 | noop | torch.bfloat16 | | Min | 0.467 | 16 | 16 | 1024 | 1024 | 256 | noop | torch.bfloat16 | ``` ### torch.float32 Before: OOM when ```head_dim``` = 256 After: ``` | Type | Speedup | batch_size | num_heads | q_seq_len | k_seq_len | head_dim | score_mod | dtype | |---------|-----------|--------------|-------------|-------------|-------------|------------|-------------|---------------| | Average | 2.386 | | | | | | | | | Max | 7.584 | 16 | 16 | 512 | 512 | 64 | noop | torch.float32 | | Min | 0.948 | 1 | 16 | 512 | 512 | 256 | causal_mask | torch.float32 | ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/125380 Approved by: https://github.com/drisspg |
|||
25691558d9 |
Change templated_attention -> flex_attention (#125251)
# Summary Change all the names Pull Request resolved: https://github.com/pytorch/pytorch/pull/125251 Approved by: https://github.com/Chillee, https://github.com/yanboliang |
|||
80046c315b |
Add templated attention BLOCK_M & BLOCK_N default size for different head_dim (#125139)
Run different head_dims [64, 128], which are the most popular ones across major GPT models. Enumerate different ```BLOCK_M``` and ```BLOCK_N``` candidates [16, 32, 64, 128], and get the best config as default one. ## Before ``` | Type | Speedup | batch_size | num_heads | q_seq_len | k_seq_len | head_dim | score_mod | dtype | |---------|-----------|--------------|-------------|-------------|-------------|------------|-------------|----------------| | Average | 0.704 | | | | | | | | | Max | 0.953 | 1 | 16 | 512 | 512 | 64 | noop | torch.bfloat16 | | Min | 0.482 | 1 | 16 | 4096 | 4096 | 128 | causal_mask | torch.bfloat16 | ``` ## After ``` | Type | Speedup | batch_size | num_heads | q_seq_len | k_seq_len | head_dim | score_mod | dtype | |---------|-----------|--------------|-------------|-------------|-------------|------------|-------------|----------------| | Average | 0.823 | | | | | | | | | Max | 0.926 | 1 | 16 | 512 | 512 | 64 | noop | torch.bfloat16 | | Min | 0.723 | 1 | 16 | 512 | 512 | 128 | causal_mask | torch.bfloat16 | ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/125139 Approved by: https://github.com/Chillee |
|||
e620c3e814 |
Optimized templated attention to use exp2 (#124356)
0.705 (vs. FA2) to 0.860 after this change. <img width="1270" alt="image" src="https://github.com/pytorch/pytorch/assets/6355099/d58f57ba-e50e-44ea-8a8a-4f13b8650adf"> to <img width="1277" alt="image" src="https://github.com/pytorch/pytorch/assets/6355099/f1945b67-0cfc-463c-a2f6-5812b90677fe"> Pull Request resolved: https://github.com/pytorch/pytorch/pull/124356 Approved by: https://github.com/drisspg |
|||
f4e2a226aa |
ScoreMod API (#121845)
# Summary This PR adds a new higher-order_op: `templated_attention`. This op is designed to extend the functionality of torch.nn.fucntional.scaled_dot_product_attention. PyTorch has efficient pre-written fused-attention kernels. However, users want to modify how scores are computed (a substep inside attention) -- this traditionally requires the user to write their own attention kernel. One such modification to attention scores that is not currently supported by the top level SDPA op is:[ Attention with Linear Biases (ALiBi](https://arxiv.org/abs/2108.12409)). This higher-order op will instead accept a callable( 'score_mod') function that is through torch.compile will be used to create an efficient attention kernel instantiation. ### Details This HOP utilizes the existing fx and HOP infra to capture and convert the User `score-mod` function and convert to an FX graph module. Inductor then consumes this HOP that has a `ir.Subgraph` input. It will inline this lowered subgraph into a triton kernel which performs fused attention with the modification to the scores matrix inlined. ### API The API for a score_mod function should be as follows: ```Python def score_mod(score: torch.Tensor, batch: torch.Tensor, head: torch.Tensor, token_1: torch.Tensor, token_kv: torch.Tensor) -> torch.Tensor ``` This function receives five parameters: - `score`: A scalar tensor representing the attention score, with the same data type and device as the query, key, and value tensors. - `batch`, `head`, `seq_len_q`, `seq_len_kv`: Scalar tensors indicating the batch index, head index, query index, and key/value index, respectively, with torch.int data type and located on the same device as the score tensor. Consider inputs query, key, value of shapes (2, 4, 16, 8), leading to an intermediate attention score matrix of shape (2, 4, 16, 16) The score_mod function will be vectorized over each element of this matrix. For instance, modifying the score at the position corresponding to the 0th batch, 2nd head, between the 8th query and the 9th key element, would be invoked as: ```Python score_mod(score[0,2,8,9], torch.tensor(0), torch.tensor(2), torch.tensor(8), torch.tensor(9)) ``` ### Examples ```Python import torch from torch.nn.attention.templated_attention import templated_attention torch.manual_seed(0) # Lets create some input tensors # The input tensor has shape (batch_size, num_heads, seq_len, head_dim) query = torch.randn(8, 8, 2048, 64, device="cuda", dtype=torch.float32) key = torch.randn(8, 8, 2048, 64, device="cuda", dtype=torch.float32) value = torch.randn(8, 8, 2048, 64, device="cuda", dtype=torch.float32) # Lets create a fun new score_modification! I will call this # Checkerboard. It will reduce the score for neighboring tokens (1 step apart) # in the sequence. And increase the score for tokens 2 steps apart. For everything # else, the score will remain the same. def checkerboard(score, batch, head, token_q, token_kv): score = torch.where(torch.abs(token_kv - token_q) == 1, score * 0.5, score) score = torch.where(torch.abs(token_kv - token_q) == 2, score * 2.0, score) return score # Lets call templated_attention with this new score modification output = templated_attention(query, key, value, score_mod=checkerboard) compiled_templated_attention = torch.compile(templated_attention) out_compiled = compiled_templated_attention(query, key, value, score_mod=checkerboard) torch.testing.assert_close(output, out_compiled, atol=2e-2, rtol=2e-2) ``` ### Future Work - This PR is currently only forward only. However the triton kernel for backwards where score_modifications to not rely on external buffers has been explored here: https://github.com/drisspg/transformer_nuggets/blob/main/transformer_nuggets/flash/flash_attention.py - Kernel Improvements; There are has been some larger updates to the fused attention implementation that Triton uses in its tutorials. The implementation of this kernel is based on a prior version and should be updated. - We may want to unify this API under the top level SDPA API and leave that as a follow up once this is more stable - Should we error on CPU? - There are some issues with dynamic shapes - Capturing of free variables and lifting to inputs to the subgraph is not working correctly today ### Performance Comparisons generated by this benchmark: | Type | Speedup | batch_size | num_heads | q_seq_len | k_seq_len | head_dim | score_mod | dtype | |---------|-----------|--------------|-------------|-------------|-------------|------------|---------------|----------------| | Average | 5.412 | | | | | | | | | Max | 8.882 | 16 | 16 | 4096 | 4096 | 64 | relative_bias | torch.bfloat16 | | Min | 3.645 | 8 | 16 | 512 | 512 | 64 | causal_mask | torch.bfloat16 | | Min | 0.345 | 1 | 16 | 1024 | 1024 | 64 | pathological | torch.bfloat16 | For reference | Configuration | Forward Time (µ seconds) | Backend | Speedup | |-----------------------------------------------|--------------------------|------------------|---------| | Fastest Config in Sweep (`8 16 4096 4096 64 relative_bias torch.bfloat16`) | 3608 | Templated Attention | 1.0 | | Compiled SDPA (No Mask) | 9928 | Math | 2.75x | | Compiled SDPA (With Mask) | 11898 | Math | 3.29x | | Compiled SDPA (With Mask) | 8704 | Memory Efficient Attention | 2.42x | | Compiled SDPA (No Mask) | 2548 | FlashAttention2 | 0.706x | The speedups are measuring compiled templated attention speed versus different calls to torch.nn.functional.sdpa <details> <summary> FULL PERFORMANCE SWEEP NUMBERS </summary> | batch_size | num_heads | q_seq_len | k_seq_len | head_dim | score_mod | dtype | eager_time | compiled_time | speedup | |--------------|-------------|-------------|-------------|------------|---------------|----------------|--------------|-----------------|-----------| | 1 | 16 | 512 | 512 | 64 | causal_mask | torch.bfloat16 | 331.444 | 67.221 | 4.931 | | 1 | 16 | 512 | 512 | 64 | relative_bias | torch.bfloat16 | 335.300 | 64.187 | 5.224 | | 1 | 16 | 512 | 512 | 64 | head_bias | torch.bfloat16 | 352.039 | 63.806 | 5.517 | | 1 | 16 | 512 | 512 | 64 | pathological | torch.bfloat16 | 371.699 | 711.349 | 0.523 | | 1 | 16 | 1024 | 1024 | 64 | causal_mask | torch.bfloat16 | 333.488 | 86.455 | 3.857 | | 1 | 16 | 1024 | 1024 | 64 | relative_bias | torch.bfloat16 | 322.363 | 82.469 | 3.909 | | 1 | 16 | 1024 | 1024 | 64 | head_bias | torch.bfloat16 | 349.967 | 82.233 | 4.256 | | 1 | 16 | 1024 | 1024 | 64 | pathological | torch.bfloat16 | 486.359 | 1412.453 | 0.344 | | 1 | 16 | 4096 | 4096 | 64 | causal_mask | torch.bfloat16 | 2794.597 | 551.188 | 5.070 | | 1 | 16 | 4096 | 4096 | 64 | relative_bias | torch.bfloat16 | 3965.150 | 513.101 | 7.728 | | 1 | 16 | 4096 | 4096 | 64 | head_bias | torch.bfloat16 | 2408.013 | 504.759 | 4.771 | | 1 | 16 | 4096 | 4096 | 64 | pathological | torch.bfloat16 | 6850.531 | 16733.675 | 0.409 | | 8 | 16 | 512 | 512 | 64 | causal_mask | torch.bfloat16 | 441.939 | 123.576 | 3.576 | | 8 | 16 | 512 | 512 | 64 | relative_bias | torch.bfloat16 | 560.379 | 116.710 | 4.801 | | 8 | 16 | 512 | 512 | 64 | head_bias | torch.bfloat16 | 421.172 | 115.825 | 3.636 | | 8 | 16 | 512 | 512 | 64 | pathological | torch.bfloat16 | 994.492 | 2132.806 | 0.466 | | 8 | 16 | 1024 | 1024 | 64 | causal_mask | torch.bfloat16 | 1436.430 | 309.495 | 4.641 | | 8 | 16 | 1024 | 1024 | 64 | relative_bias | torch.bfloat16 | 1892.216 | 290.186 | 6.521 | | 8 | 16 | 1024 | 1024 | 64 | head_bias | torch.bfloat16 | 1360.665 | 282.956 | 4.809 | | 8 | 16 | 1024 | 1024 | 64 | pathological | torch.bfloat16 | 3525.532 | 8359.702 | 0.422 | | 8 | 16 | 4096 | 4096 | 64 | causal_mask | torch.bfloat16 | 22026.839 | 3864.604 | 5.700 | | 8 | 16 | 4096 | 4096 | 64 | relative_bias | torch.bfloat16 | 31262.746 | 3609.551 | 8.661 | | 8 | 16 | 4096 | 4096 | 64 | head_bias | torch.bfloat16 | 20219.079 | 3480.402 | 5.809 | | 8 | 16 | 4096 | 4096 | 64 | pathological | torch.bfloat16 | 54654.647 | 116652.357 | 0.469 | | 16 | 16 | 512 | 512 | 64 | causal_mask | torch.bfloat16 | 820.606 | 188.683 | 4.349 | | 16 | 16 | 512 | 512 | 64 | relative_bias | torch.bfloat16 | 1058.362 | 179.295 | 5.903 | | 16 | 16 | 512 | 512 | 64 | head_bias | torch.bfloat16 | 784.372 | 175.714 | 4.464 | | 16 | 16 | 512 | 512 | 64 | pathological | torch.bfloat16 | 1890.792 | 4212.877 | 0.449 | | 16 | 16 | 1024 | 1024 | 64 | causal_mask | torch.bfloat16 | 2781.830 | 557.017 | 4.994 | | 16 | 16 | 1024 | 1024 | 64 | relative_bias | torch.bfloat16 | 3694.050 | 525.249 | 7.033 | | 16 | 16 | 1024 | 1024 | 64 | head_bias | torch.bfloat16 | 2634.164 | 507.613 | 5.189 | | 16 | 16 | 1024 | 1024 | 64 | pathological | torch.bfloat16 | 6959.917 | 15331.116 | 0.454 | | 16 | 16 | 4096 | 4096 | 64 | causal_mask | torch.bfloat16 | 43889.096 | 7582.018 | 5.789 | | 16 | 16 | 4096 | 4096 | 64 | relative_bias | torch.bfloat16 | 62784.293 | 7075.846 | 8.873 | | 16 | 16 | 4096 | 4096 | 64 | head_bias | torch.bfloat16 | 40308.606 | 6829.587 | 5.902 | | 16 | 16 | 4096 | 4096 | 64 | pathological | torch.bfloat16 | 108892.137 | 233090.953 | 0.467 | </details> Pull Request resolved: https://github.com/pytorch/pytorch/pull/121845 Approved by: https://github.com/Chillee, https://github.com/zou3519 |