Reland of #153153, which was incidentally closed.
Update the minimum CMake version to 3.27 because of it provides more CUDA targets such as CUDA::nvperf_host so that it is possible to remove some of our forked CUDA modules. See https://github.com/pytorch/pytorch/pull/153783.
It's also possible to facilitate future third-party updates such as FBGEMM (its current shipped version requires 3.21).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154783
Approved by: https://github.com/ezyang
### Changes
- Detect NVSHMEM install location via `sysconfig.get_path("purelib")`, which typically resolves to `<conda_env>/lib/python/site-packages`, and NVSHMEM include and lib live under `nvidia/nvshmem`
- Added link dir via `target_link_directories`
- Removed direct dependency on mlx5
- Added preload rule (following other other NVIDIA libs)
### Plan of Record
1. End user experience: link against NVSHMEM dynamically (NVSHMEM lib size is 100M, similar to NCCL, thus we'd like users to `pip install nvshmem` than torch carrying the bits)
2. Developer experience: at compile time, prefers wheel dependency than using Git submodule
General rule: submodule for small lib that torch can statically link with
If user pip install a lib, our CI build process should do the same, rather than building from Git submodule (just for its header, for example)
3. Keep `USE_NVSHMEM` to gate non-Linux platforms, like Windows, Mac
4. At configuration time, we should be able to detect whether nvshmem is available, if not, we don't build `NVSHMEMSymmetricMemory` at all.
For now, we have symbol dependency on two particular libs from NVSHMEM:
- libnvshmem_host.so: contains host side APIs;
- libnvshmem_device.a: contains device-side global variables AND device function impls.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/153010
Approved by: https://github.com/ngimel, https://github.com/fduwjj, https://github.com/Skylion007
Changes by apply order:
1. Replace all `".."` and `os.pardir` usage with `os.path.dirname(...)`.
2. Replace nested `os.path.dirname(os.path.dirname(...))` call with `str(Path(...).parent.parent)`.
3. Reorder `.absolute()` ~/ `.resolve()`~ and `.parent`: always resolve the path first.
`.parent{...}.absolute()` -> `.absolute().parent{...}`
4. Replace chained `.parent x N` with `.parents[${N - 1}]`: the code is easier to read (see 5.)
`.parent.parent.parent.parent` -> `.parents[3]`
5. ~Replace `.parents[${N - 1}]` with `.parents[${N} - 1]`: the code is easier to read and does not introduce any runtime overhead.~
~`.parents[3]` -> `.parents[4 - 1]`~
6. ~Replace `.parents[2 - 1]` with `.parent.parent`: because the code is shorter and easier to read.~
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129374
Approved by: https://github.com/justinchuby, https://github.com/malfet
Changes by apply order:
1. Replace all `".."` and `os.pardir` usage with `os.path.dirname(...)`.
2. Replace nested `os.path.dirname(os.path.dirname(...))` call with `str(Path(...).parent.parent)`.
3. Reorder `.absolute()` ~/ `.resolve()`~ and `.parent`: always resolve the path first.
`.parent{...}.absolute()` -> `.absolute().parent{...}`
4. Replace chained `.parent x N` with `.parents[${N - 1}]`: the code is easier to read (see 5.)
`.parent.parent.parent.parent` -> `.parents[3]`
5. ~Replace `.parents[${N - 1}]` with `.parents[${N} - 1]`: the code is easier to read and does not introduce any runtime overhead.~
~`.parents[3]` -> `.parents[4 - 1]`~
6. ~Replace `.parents[2 - 1]` with `.parent.parent`: because the code is shorter and easier to read.~
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129374
Approved by: https://github.com/justinchuby, https://github.com/malfet
Changes by apply order:
1. Replace all `".."` and `os.pardir` usage with `os.path.dirname(...)`.
2. Replace nested `os.path.dirname(os.path.dirname(...))` call with `str(Path(...).parent.parent)`.
3. Reorder `.absolute()` ~/ `.resolve()`~ and `.parent`: always resolve the path first.
`.parent{...}.absolute()` -> `.absolute().parent{...}`
4. Replace chained `.parent x N` with `.parents[${N - 1}]`: the code is easier to read (see 5.)
`.parent.parent.parent.parent` -> `.parents[3]`
5. ~Replace `.parents[${N - 1}]` with `.parents[${N} - 1]`: the code is easier to read and does not introduce any runtime overhead.~
~`.parents[3]` -> `.parents[4 - 1]`~
6. ~Replace `.parents[2 - 1]` with `.parent.parent`: because the code is shorter and easier to read.~
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129374
Approved by: https://github.com/justinchuby, https://github.com/malfet
Changes by apply order:
1. Replace all `".."` and `os.pardir` usage with `os.path.dirname(...)`.
2. Replace nested `os.path.dirname(os.path.dirname(...))` call with `str(Path(...).parent.parent)`.
3. Reorder `.absolute()` ~/ `.resolve()`~ and `.parent`: always resolve the path first.
`.parent{...}.absolute()` -> `.absolute().parent{...}`
4. Replace chained `.parent x N` with `.parents[${N - 1}]`: the code is easier to read (see 5.)
`.parent.parent.parent.parent` -> `.parents[3]`
5. ~Replace `.parents[${N - 1}]` with `.parents[${N} - 1]`: the code is easier to read and does not introduce any runtime overhead.~
~`.parents[3]` -> `.parents[4 - 1]`~
6. ~Replace `.parents[2 - 1]` with `.parent.parent`: because the code is shorter and easier to read.~
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129374
Approved by: https://github.com/justinchuby, https://github.com/malfet
As FindPythonInterp and FindPythonLibs has been deprecated since cmake-3.12
Replace `PYTHON_EXECUTABLE` with `Python_EXECUTABLE` everywhere (CMake variable names are case-sensitive)
This makes PyTorch buildable with python3 binary shipped with XCode on MacOS
TODO: Get rid of `FindNumpy` as its part of Python package
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124613
Approved by: https://github.com/cyyever, https://github.com/Skylion007
The warning complains that `TORCH_CUDA_ARCH_LIST` is set on the environment
instead of being defined as a build variable, which is fixed by the change to
`tools/setup_helpers/cmake.py`.
However, I still see the warning even with this fix because
```cmake
if((NOT EXISTS ${TORCH_CUDA_ARCH_LIST}) ...
```
is actually checking whether a file exists called "7.5" (or whatever arch is
being requested). Instead we want to check if the variable is defined.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104680
Approved by: https://github.com/albanD
If `CMAKE_GENERATOR=Visual Studio 16 2019` then the build will fail if `USE_NINJA=False` not set.
This PR changes that if CMAKE_GENERATOR is set an not equal to ninja then it won't use Ninja.
This is just for easier setting another generator.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98605
Approved by: https://github.com/kit1980
Summary: Currently, the model tracer build is broken because of 2 reasons:
1. A few source files are missing, resulting in missing link time symbols
2. The `TRACING_BASED` flag isn't passed correctly from the command line (specified as an evnironment variable) as a CMake flag
Both these issues were fixed.
Test Plan: Ran this command: `USE_CUDA=0 TRACING_BASED=1 python setup.py develop --cmake`
and saw that the tracer binary was built at `build/bin/model_tracer` - also ran it to ensure that it can generate a YAML file.
Differential Revision: [D39391270](https://our.internmc.facebook.com/intern/diff/D39391270)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84755
Approved by: https://github.com/cccclai
To fix#78540 I committed #78983 which is reverted due to internal CI failure. Then I comitted #79215 which was only fixing the failure but didn't have the full feature of #78983. This PR is another try.
This PR adds script to dump all operators from test models and automatically write into `lightweight_dispatch_ops.yaml`. This way we don't have to manually update the yaml file.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80791
Approved by: https://github.com/raziel
With ufmt in place https://github.com/pytorch/pytorch/pull/81157, we can now use it to gradually format all files. I'm breaking this down into multiple smaller batches to avoid too many merge conflicts later on.
This batch (as copied from the current BLACK linter config):
* `tools/**/*.py`
Upcoming batchs:
* `torchgen/**/*.py`
* `torch/package/**/*.py`
* `torch/onnx/**/*.py`
* `torch/_refs/**/*.py`
* `torch/_prims/**/*.py`
* `torch/_meta_registrations.py`
* `torch/_decomp/**/*.py`
* `test/onnx/**/*.py`
Once they are all formatted, BLACK linter will be removed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81285
Approved by: https://github.com/suo
This PR introduces selective build to lightweight dispatch CI job. By doing so we can't run the `test_lite_intepreter_runtime` test suite anymore because it requires some other operators.
From now on, if we are adding a new unit test in `test_codegen_unboxing`, we will have to export the operators for the unit test model and add them into `lightweight_dispatch_ops.yaml`. This can be automated by introducing tracing based selective build, but that's for next PR to do.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78983
Approved by: https://github.com/kit1980
Allows to choose the BLAS backend with Eigen. Previously this was a CMake option only and the env variable was ignored.
Related to f1f3c8b0fa
The claimed options BLAS=BLIS WITH_BLAS=blis are misleading: When BLAS=BLIS is set the WITH_BLAS option does not matter at all, it would only matter for BLAS=Eigen hence this issue went undetected so far.
Supersedes #59220
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78037
Approved by: https://github.com/adamjstewart, https://github.com/janeyx99