Make test_torch.py pass cuda-memcheck (#29243)

Summary:
Make the following changes:
- When there are more than 10k errors, cuda-memcheck only shows 10k errors, in this case we shouldn't raise an Exception
- Add UNDER_CUDA_MEMCHECK environment to allow disabling `pin_memory` tests when running cuda-memcheck.
- Add a `--ci` command option, when turned on, then this script would run output to stdout instead of writing a file, and exit with an error if cuda-memcheck fails
- Add a `--nohang` command option. When turned on, then hang would be treated as pass instead of error
- Do simple filtering on the test to run: if `'cpu'` in the test name but not `'cuda'` is not in the test name
- Add `--split` and `--rank` to allowing splitting the work (NVIDIA CI has a limitation of 3 hours, we have to split the work to satisfy this limitation)
- The error summary could be `ERROR SUMMARY: 1 error`, or `ERROR SUMMARY: 2 errors`, the tail could be `error` or `errors`, it is not of the same length. The script is fixed to handle this case.
- Ignore errors from `cufft`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29243

Differential Revision: D18941701

Pulled By: mruberry

fbshipit-source-id: 2048428f32b66ef50c67444c03ce4dd9491179d2
This commit is contained in:
Xiang Gao
2019-12-14 16:01:40 -08:00
committed by Facebook Github Bot
parent 701e05dcbb
commit ffe0c1ae4d
4 changed files with 60 additions and 11 deletions

View File

@ -9,15 +9,20 @@ class ParseError(Exception):
class Report:
"""A report is a container of errors, and a summary on how many errors are found"""
HEAD = 'ERROR SUMMARY: '
TAIL = ' errors'
def __init__(self, text, errors):
# text is something like
# ERROR SUMMARY: 1 error
# or
# ERROR SUMMARY: 2 errors
self.text = text
self.num_errors = int(text[len(self.HEAD):len(text) - len(self.TAIL)])
self.num_errors = int(text.strip().split()[2])
self.errors = errors
if len(errors) != self.num_errors:
raise ParseError("Number of errors does not match")
if len(errors) == 10000 and self.num_errors > 10000:
# When there are more than 10k errors, cuda-memcheck only display 10k
self.num_errors = 10000
else:
raise ParseError("Number of errors does not match")
class Error:

View File

@ -18,7 +18,8 @@ import multiprocessing
import argparse
import subprocess
import tqdm
import re
import os
import sys
import cuda_memcheck_common as cmc
ALL_TESTS = []
@ -35,6 +36,13 @@ parser.add_argument('--nproc', type=int, default=multiprocessing.cpu_count(),
help='Number of processes running tests, default to number of cores in the system')
parser.add_argument('--gpus', default='all',
help='GPU assignments for each process, it could be "all", or : separated list like "1,2:3,4:5,6"')
parser.add_argument('--ci', action='store_true',
help='Whether this script is executed in CI. When executed inside a CI, this script fails when '
'an error is detected. Also, it will not show tqdm progress bar, but directly print the error'
'to stdout instead.')
parser.add_argument('--nohang', action='store_true', help='Treat timeout as success')
parser.add_argument('--split', type=int, default=1, help='Split the job into pieces')
parser.add_argument('--rank', type=int, default=0, help='Which piece this process should pick')
args = parser.parse_args()
# Filters that ignores cublas/cudnn errors
@ -48,10 +56,13 @@ def is_ignored_only(output):
return False
count_ignored_errors = 0
for e in report.errors:
if 'libcublas' in ''.join(e.stack) or 'libcudnn' in ''.join(e.stack):
if 'libcublas' in ''.join(e.stack) or 'libcudnn' in ''.join(e.stack) or 'libcufft' in ''.join(e.stack):
count_ignored_errors += 1
return count_ignored_errors == report.num_errors
# Set environment PYTORCH_CUDA_MEMCHECK=1 to allow skipping some tests
os.environ['PYTORCH_CUDA_MEMCHECK'] = '1'
# Discover tests:
# To get a list of tests, run:
# pytest --setup-only test/test_torch.py
@ -66,6 +77,21 @@ for line in lines:
line = line.replace('::', '.')
ALL_TESTS.append(line)
# Do a simple filtering:
# if 'cpu' or 'CPU' is in the name and 'cuda' or 'CUDA' is not in the name, then skip it
def is_cpu_only(name):
name = name.lower()
return ('cpu' in name) and not ('cuda' in name)
ALL_TESTS = [x for x in ALL_TESTS if not is_cpu_only(x)]
# Split all tests into chunks, and only on the selected chunk
ALL_TESTS.sort()
chunk_size = (len(ALL_TESTS) + args.split - 1) // args.split
start = chunk_size * args.rank
end = chunk_size * (args.rank + 1)
ALL_TESTS = ALL_TESTS[start:end]
# Run tests:
# Since running cuda-memcheck on PyTorch unit tests is very slow, these tests must be run in parallel.
# This is done by using the coroutine feature in new Python versions. A number of coroutines are created;
@ -74,8 +100,17 @@ for line in lines:
# These subprocesses are balanced across different GPUs on the system by assigning one devices per process,
# or as specified by the user
progress = 0
logfile = open('result.log', 'w')
progressbar = tqdm.tqdm(total=len(ALL_TESTS))
if not args.ci:
logfile = open('result.log', 'w')
progressbar = tqdm.tqdm(total=len(ALL_TESTS))
else:
logfile = sys.stdout
# create a fake progress bar that does not display anything
class ProgressbarStub:
def update(*args):
return
progressbar = ProgressbarStub()
async def run1(coroutine_id):
global progress
@ -97,6 +132,8 @@ async def run1(coroutine_id):
except asyncio.TimeoutError:
print('Timeout:', test, file=logfile)
proc.kill()
if args.ci and not args.nohang:
sys.exit("Hang detected on cuda-memcheck")
else:
if proc.returncode == 0:
print('Success:', test, file=logfile)
@ -108,13 +145,15 @@ async def run1(coroutine_id):
print('Fail:', test, file=logfile)
print(stdout, file=logfile)
print(stderr, file=logfile)
if args.ci:
sys.exit("Failure detected on cuda-memcheck")
else:
print('Ignored:', test, file=logfile)
del proc
progressbar.update(1)
async def main():
tasks = [asyncio.create_task(run1(i)) for i in range(args.nproc)]
tasks = [asyncio.ensure_future(run1(i)) for i in range(args.nproc)]
for t in tasks:
await t