mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
[nativert] Move Executor to PyTorch core (#157514)
Test Plan: CI Rollback Plan: Differential Revision: D77693984 Pull Request resolved: https://github.com/pytorch/pytorch/pull/157514 Approved by: https://github.com/zhxchen17
This commit is contained in:
committed by
PyTorch MergeBot
parent
ad86c05b78
commit
f7130c097e
@ -601,6 +601,7 @@ libtorch_nativert_sources = [
|
||||
"torch/nativert/executor/Placement.cpp",
|
||||
"torch/nativert/executor/ExecutionPlanner.cpp",
|
||||
"torch/nativert/executor/ExecutionFrame.cpp",
|
||||
"torch/nativert/executor/Executor.cpp",
|
||||
"torch/nativert/executor/GraphExecutorBase.cpp",
|
||||
"torch/nativert/executor/ConstantFolder.cpp",
|
||||
"torch/nativert/executor/OpKernel.cpp",
|
||||
|
387
torch/nativert/executor/Executor.cpp
Normal file
387
torch/nativert/executor/Executor.cpp
Normal file
@ -0,0 +1,387 @@
|
||||
#include <memory>
|
||||
|
||||
#include <c10/util/Enumerate.h>
|
||||
#include <c10/util/Synchronized.h>
|
||||
#include <torch/nativert/executor/ExecutionFrame.h>
|
||||
#include <torch/nativert/executor/Executor.h>
|
||||
#include <torch/nativert/executor/ParallelGraphExecutor.h>
|
||||
#include <torch/nativert/executor/SerialGraphExecutor.h>
|
||||
#include <torch/nativert/executor/Weights.h>
|
||||
#include <torch/nativert/kernels/C10Kernel.h>
|
||||
#include <torch/nativert/kernels/KernelFactory.h>
|
||||
|
||||
// Maximum number of retries when trying to get a frame from
|
||||
// clearedExecutionFrames_
|
||||
constexpr uint32_t kClearExecutionFrameRetries = 10;
|
||||
|
||||
namespace torch::nativert {
|
||||
|
||||
Executor::Executor(
|
||||
torch::nativert::ExecutorConfig executorConfig,
|
||||
std::shared_ptr<Graph> graph,
|
||||
std::shared_ptr<Weights> weights,
|
||||
const Placement& placement,
|
||||
std::shared_ptr<caffe2::serialize::PyTorchStreamReader> pytorchStreamReader,
|
||||
const MakeProxyExecutorFn& makeProxyExecutorFunc)
|
||||
: executorConfig_(std::move(executorConfig)),
|
||||
graph_(std::move(graph)),
|
||||
placement_(placement),
|
||||
constantFolder_(
|
||||
executorConfig_.runConstFolding
|
||||
? std::optional<ConstantFolder>(*graph_)
|
||||
: std::nullopt),
|
||||
makeProxyExecutorFunc_(makeProxyExecutorFunc),
|
||||
executionFrames_(executorConfig_.maxNumConcurrentThreads),
|
||||
clearedExecutionFrames_(executorConfig_.maxNumConcurrentThreads),
|
||||
numExecutionFrames_(0),
|
||||
lastClearedTimestamp_(getCurrentTimestampSeconds()) {
|
||||
if (weights) {
|
||||
initialize(std::move(weights), std::move(pytorchStreamReader));
|
||||
}
|
||||
}
|
||||
|
||||
void Executor::initialize(
|
||||
std::shared_ptr<Weights> weights,
|
||||
std::shared_ptr<caffe2::serialize::PyTorchStreamReader>
|
||||
pytorchStreamReader) {
|
||||
auto start = std::chrono::high_resolution_clock::now();
|
||||
|
||||
auto executionKernels = KernelFactory().initializeNodeKernels(
|
||||
*graph_,
|
||||
weights,
|
||||
executorConfig_,
|
||||
placement_,
|
||||
std::move(pytorchStreamReader),
|
||||
makeProxyExecutorFunc_);
|
||||
|
||||
if (constantFolder_.has_value()) {
|
||||
constantFolder_->unlinkConstants(executionKernels.nodeKernels);
|
||||
}
|
||||
|
||||
const auto& kernelSchemas = getKernelSchemas(executionKernels.nodeKernels);
|
||||
|
||||
if (executorConfig_.maxParallelOps > 1) {
|
||||
graphExecutor_ = std::make_unique<ParallelGraphExecutor>(
|
||||
*graph_, std::move(executionKernels.nodeKernels), executorConfig_);
|
||||
} else {
|
||||
graphExecutor_ = std::make_unique<torch::nativert::SerialGraphExecutor>(
|
||||
*graph_, std::move(executionKernels.nodeKernels), executorConfig_);
|
||||
}
|
||||
|
||||
delegateExecutors_ = std::move(executionKernels.delegateExecutors);
|
||||
constFoldingExecutions_ = std::move(executionKernels.constFoldingExecutions);
|
||||
|
||||
// initialize weights_
|
||||
processWeights(weights);
|
||||
atomicSwapWeights(weights);
|
||||
|
||||
if (executorConfig_.layoutPlannerSettings.enabled()) {
|
||||
layoutPlanner_ = std::make_unique<LayoutPlanner>(
|
||||
*graph_,
|
||||
kernelSchemas,
|
||||
ExecutionFrame::getPersistentValueMask(*graph_, weights.get()),
|
||||
executorConfig_.layoutPlannerSettings);
|
||||
}
|
||||
|
||||
auto end = std::chrono::high_resolution_clock::now();
|
||||
LOG(INFO) << "Initialization completed in "
|
||||
<< std::chrono::duration_cast<std::chrono::milliseconds>(
|
||||
end - start)
|
||||
.count()
|
||||
<< " ms";
|
||||
}
|
||||
|
||||
/* static */ c10::
|
||||
FastMap<std::string /* target */, torch::nativert::FunctionSchema>
|
||||
Executor::getKernelSchemas(
|
||||
const std::vector<std::unique_ptr<OpKernel>>& kernels) {
|
||||
c10::FastMap<std::string, torch::nativert::FunctionSchema> output;
|
||||
for (const auto& kernel : kernels) {
|
||||
if (const auto* casted = dynamic_cast<C10Kernel*>(kernel.get()); casted) {
|
||||
output.insert({std::string(kernel->node()->target()), casted->schema()});
|
||||
}
|
||||
}
|
||||
return output;
|
||||
}
|
||||
|
||||
void Executor::atomicSwapWeights(std::shared_ptr<Weights> weights) {
|
||||
weights_.withLock([&](auto& w) { w = std::move(weights); });
|
||||
|
||||
// update weights in delegate executors
|
||||
for (auto& delegateExecutor : delegateExecutors_) {
|
||||
delegateExecutor->commitWeights();
|
||||
}
|
||||
}
|
||||
|
||||
void Executor::maybeRunConstantFolding(std::shared_ptr<Weights> weights) {
|
||||
for (auto& execution : constFoldingExecutions_) {
|
||||
ExecutionFrame constFoldingFrame(execution.executor->graph());
|
||||
std::vector<c10::IValue> inputs;
|
||||
inputs.reserve(graph_->signature().inputsToWeights().size());
|
||||
for (const auto& [_, name] : graph_->signature().inputsToWeights()) {
|
||||
inputs.push_back(weights->at(name));
|
||||
}
|
||||
|
||||
auto outputs = execution.executor->execute(constFoldingFrame, inputs);
|
||||
for (const auto& [idx, value] :
|
||||
c10::enumerate(execution.executor->graph().outputs())) {
|
||||
weights->updateFoldedConst(value->name(), outputs.at(idx));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Executor::processWeights(std::shared_ptr<Weights> weights) {
|
||||
maybeRunConstantFolding(weights);
|
||||
if (constantFolder_.has_value()) {
|
||||
constantFolder_->evaluate(*weights);
|
||||
}
|
||||
for (auto& delegateExecutor : delegateExecutors_) {
|
||||
delegateExecutor->processWeights(weights);
|
||||
}
|
||||
}
|
||||
|
||||
namespace {
|
||||
void validateInput(
|
||||
const std::string& inputName,
|
||||
const at::Tensor& inputTensor,
|
||||
const torch::nativert::TensorMeta& tensorValueMeta) {
|
||||
CHECK(inputTensor.dtype() == tensorValueMeta.dtype())
|
||||
<< "Input tensor dtype mismatch for " << inputName << ", expecting "
|
||||
<< c10::toString(tensorValueMeta.dtype()) << " but got "
|
||||
<< inputTensor.dtype().name();
|
||||
|
||||
CHECK(inputTensor.device() == tensorValueMeta.device())
|
||||
<< "Input tensor device mismatch for " << inputName << ", expecting "
|
||||
<< tensorValueMeta.device().str() << " but got "
|
||||
<< inputTensor.device().str();
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
// validate input tensor's dtype matches tensorMeta
|
||||
void Executor::validateInputs(const std::vector<c10::IValue>& inputs) const {
|
||||
const auto& inputValues = graph_->userInputs();
|
||||
const auto& tensorValuesMeta = graph_->tensorValuesMeta();
|
||||
TORCH_CHECK(inputs.size() == inputValues.size(), "Input size mismatch");
|
||||
for (auto&& [i, actualInput] : c10::enumerate(inputs)) {
|
||||
if (actualInput.isTensor()) {
|
||||
const auto& inputName = std::string(inputValues[i]->name());
|
||||
auto it = tensorValuesMeta.find(inputName);
|
||||
CHECK(it != tensorValuesMeta.end())
|
||||
<< "Couldn't find " << inputName << " in tensorValuesMeta";
|
||||
validateInput(inputName, actualInput.toTensor(), it->second);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Executor::ExecutorFramePtr Executor::getExecutorFrameFromPool() {
|
||||
std::shared_ptr<Weights> weights;
|
||||
weights_.withLock([&](auto& w) { weights = w; });
|
||||
|
||||
// First try to get a frame from clearedExecutionFrames_ if clearing is in
|
||||
// progress
|
||||
if (C10_UNLIKELY(clearingInProgress_)) {
|
||||
ExecutionFrameEntry frameEntry;
|
||||
uint32_t retry = 0;
|
||||
while (
|
||||
retry <
|
||||
kClearExecutionFrameRetries) { // Limit retries to avoid infinite loop
|
||||
if (clearedExecutionFrames_.readIfNotEmpty(frameEntry)) {
|
||||
if (retry > 0) {
|
||||
VLOG(1) << "Took " << retry
|
||||
<< " retries to pop from clearedExecutionFrames_";
|
||||
}
|
||||
ExecutorFramePtr ptr{std::move(frameEntry.frame), *this};
|
||||
if (ptr->weightVersion() != weights->version()) {
|
||||
ptr->setWeights(*weights);
|
||||
}
|
||||
return ptr;
|
||||
}
|
||||
retry++;
|
||||
}
|
||||
// If we couldn't get a frame from cleared pool after retries, move onto
|
||||
// main pool
|
||||
}
|
||||
|
||||
// Try to get a frame from the main pool or create a new one
|
||||
std::unique_ptr<ExecutionFrame> frame;
|
||||
while (!executionFrames_.readIfNotEmpty(frame)) {
|
||||
int64_t numFrames = numExecutionFrames_.load();
|
||||
if (numFrames < executorConfig_.maxNumConcurrentThreads) {
|
||||
if (numExecutionFrames_.compare_exchange_strong(
|
||||
numFrames, numFrames + 1)) {
|
||||
return ExecutorFramePtr{
|
||||
std::make_unique<ExecutionFrame>(
|
||||
*graph_, *weights, executorConfig_, layoutPlanner_.get()),
|
||||
*this};
|
||||
}
|
||||
} else {
|
||||
sem_.acquire();
|
||||
}
|
||||
}
|
||||
ExecutorFramePtr ptr{std::move(frame), *this};
|
||||
|
||||
if (ptr->weightVersion() != weights->version()) {
|
||||
ptr->setWeights(*weights);
|
||||
}
|
||||
return ptr;
|
||||
}
|
||||
|
||||
void Executor::clearStaleExecutionFrames() {
|
||||
if (!cleanupLock_.try_lock()) {
|
||||
// Another thread is already doing cleanup
|
||||
return;
|
||||
}
|
||||
// Update timestamp first to minimize contention
|
||||
lastClearedTimestamp_ = getCurrentTimestampSeconds();
|
||||
|
||||
int numPopped = 0;
|
||||
std::unique_ptr<ExecutionFrame> frame;
|
||||
|
||||
// Move frames from executionFrames_ to clearedExecutionFrames_
|
||||
while (executionFrames_.readIfNotEmpty(frame)) {
|
||||
++numPopped;
|
||||
// Keep the first popped entries up to minimum size
|
||||
if (numPopped > executorConfig_.minNumExecutionFrames) {
|
||||
// Discard stale frames
|
||||
frame.reset();
|
||||
numExecutionFrames_ -= 1;
|
||||
continue;
|
||||
}
|
||||
|
||||
ExecutionFrameEntry entry;
|
||||
entry.used = false;
|
||||
entry.frame = std::move(frame);
|
||||
clearedExecutionFrames_.writeIfNotFull(std::move(entry));
|
||||
// Enable clients to pop from clearedExecutionFrames_ while clearing is in
|
||||
// progress
|
||||
clearingInProgress_ = true;
|
||||
}
|
||||
|
||||
uint32_t numPushed = 0;
|
||||
ExecutionFrameEntry frameEntry;
|
||||
// Move frames back from clearedExecutionFrames_ to executionFrames_
|
||||
while (clearedExecutionFrames_.readIfNotEmpty(frameEntry)) {
|
||||
++numPushed;
|
||||
executionFrames_.writeIfNotFull(std::move(frameEntry.frame));
|
||||
clearingInProgress_ = false;
|
||||
}
|
||||
|
||||
clearingInProgress_ = false;
|
||||
VLOG(1) << "Cleared " << (numPopped - numPushed) << " out of " << numPopped
|
||||
<< " ExecutionFrame instances in the pool";
|
||||
|
||||
cleanupLock_.unlock();
|
||||
}
|
||||
|
||||
void Executor::returnExecutorFrameToPool(
|
||||
std::unique_ptr<ExecutionFrame> frame) {
|
||||
// Check if it's time to clean up stale frames
|
||||
if (executorConfig_.doExecutionFrameCleanup &&
|
||||
lastClearedTimestamp_ +
|
||||
executorConfig_.executionFramePoolCleanupIntervalSec <
|
||||
getCurrentTimestampSeconds()) {
|
||||
clearStaleExecutionFrames();
|
||||
}
|
||||
|
||||
try {
|
||||
frame->destroyBorrowedIValues();
|
||||
|
||||
// Create an entry with used=true
|
||||
if (C10_UNLIKELY(!clearingInProgress_)) {
|
||||
CHECK(executionFrames_.writeIfNotFull(std::move(frame)))
|
||||
<< "ExecutionFrame pool full";
|
||||
} else {
|
||||
ExecutionFrameEntry frameEntry;
|
||||
frameEntry.used = true;
|
||||
frameEntry.frame = std::move(frame);
|
||||
|
||||
CHECK(clearedExecutionFrames_.writeIfNotFull(std::move(frameEntry)))
|
||||
<< "Cleared ExecutionFrame pool full";
|
||||
}
|
||||
} catch (...) {
|
||||
sem_.release();
|
||||
throw;
|
||||
}
|
||||
sem_.release();
|
||||
}
|
||||
|
||||
std::vector<c10::IValue> Executor::execute(std::vector<c10::IValue> inputs) {
|
||||
if (executorConfig_.validateInputs) {
|
||||
validateInputs(inputs);
|
||||
}
|
||||
|
||||
auto executionFrame = getExecutorFrameFromPool();
|
||||
return graphExecutor_->execute(*executionFrame, std::move(inputs));
|
||||
}
|
||||
|
||||
std::vector<c10::IValue> Executor::execute(
|
||||
const std::vector<c10::IValue>& args,
|
||||
const std::unordered_map<std::string, c10::IValue>& kwargs,
|
||||
const ITreeSpec& inputTreeSpec) {
|
||||
auto executionFrame = getExecutorFrameFromPool();
|
||||
|
||||
std::optional<std::vector<c10::IValue>> outputs;
|
||||
const auto userInputs = graph_->userInputs();
|
||||
const auto& tensorValuesMeta = graph_->tensorValuesMeta();
|
||||
TORCH_CHECK_EQ(userInputs.size(), inputTreeSpec.numIValues());
|
||||
|
||||
auto executionFrameFillUserInputs = [&](const c10::IValue& leaf,
|
||||
const Value* value) {
|
||||
// validate input tensor's dtype and device matches tensorMeta
|
||||
if (executorConfig_.validateInputs && leaf.isTensor()) {
|
||||
const auto& inputName = std::string(value->name());
|
||||
auto it = tensorValuesMeta.find(inputName);
|
||||
CHECK(it != tensorValuesMeta.end())
|
||||
<< "Couldn't find " << inputName << " in tensorValuesMeta";
|
||||
validateInput(inputName, leaf.toTensor(), it->second);
|
||||
}
|
||||
executionFrame->setBorrowedIValue(
|
||||
value->id(), c10::MaybeOwnedTraits<c10::IValue>::createBorrow(leaf));
|
||||
};
|
||||
ivalueApplyFromArgs(
|
||||
executionFrameFillUserInputs, args, kwargs, inputTreeSpec);
|
||||
try {
|
||||
outputs = graphExecutor_->executeWithPrefilledFrame(*executionFrame);
|
||||
} catch (const std::exception& e) {
|
||||
LOG(ERROR) << "Exception during executeWithPrefilledFrame: " << e.what();
|
||||
throw;
|
||||
}
|
||||
|
||||
return std::move(*outputs);
|
||||
}
|
||||
|
||||
ProfileMetrics Executor::benchmarkIndividualNodes(
|
||||
std::vector<std::vector<c10::IValue>> inputsList,
|
||||
const uint32_t warmupRuns,
|
||||
const uint32_t mainRuns) {
|
||||
CHECK(inputsList.size() > 0) << "Need at least one input to benchmark";
|
||||
CHECK(warmupRuns >= 1 && mainRuns >= 1) << "Need at least one run";
|
||||
|
||||
for (const auto& inputs : inputsList) {
|
||||
if (executorConfig_.validateInputs) {
|
||||
validateInputs(inputs);
|
||||
}
|
||||
}
|
||||
auto executionFrame = getExecutorFrameFromPool();
|
||||
auto benchmarkResults = graphExecutor_->benchmarkIndividualNodes(
|
||||
*executionFrame, inputsList, warmupRuns, mainRuns);
|
||||
|
||||
return benchmarkResults;
|
||||
}
|
||||
|
||||
int64_t Executor::getCurrentTimestampSeconds() const {
|
||||
return std::chrono::duration_cast<std::chrono::seconds>(
|
||||
std::chrono::steady_clock::now().time_since_epoch())
|
||||
.count();
|
||||
}
|
||||
|
||||
std::vector<DelegateExecutor*> Executor::getDelegates() {
|
||||
std::vector<DelegateExecutor*> delegates;
|
||||
for (const auto& delegateExecutor : delegateExecutors_) {
|
||||
delegates.push_back(delegateExecutor.get());
|
||||
}
|
||||
return delegates;
|
||||
}
|
||||
|
||||
} // namespace torch::nativert
|
206
torch/nativert/executor/Executor.h
Normal file
206
torch/nativert/executor/Executor.h
Normal file
@ -0,0 +1,206 @@
|
||||
#pragma once
|
||||
|
||||
#include <atomic>
|
||||
#include <memory>
|
||||
|
||||
#include <c10/util/FbcodeMaps.h>
|
||||
#include <c10/util/Logging.h>
|
||||
#include <c10/util/Semaphore.h>
|
||||
#include <c10/util/Synchronized.h>
|
||||
|
||||
#include <torch/nativert/detail/ITree.h>
|
||||
#include <torch/nativert/detail/MPMCQueue.h>
|
||||
#include <torch/nativert/executor/ConstantFolder.h>
|
||||
#include <torch/nativert/executor/DelegateExecutor.h>
|
||||
#include <torch/nativert/executor/ExecutionPlanner.h>
|
||||
#include <torch/nativert/executor/ExecutorConfig.h>
|
||||
#include <torch/nativert/executor/GraphExecutorBase.h>
|
||||
#include <torch/nativert/executor/Placement.h>
|
||||
#include <torch/nativert/executor/memory/FunctionSchema.h>
|
||||
#include <torch/nativert/executor/memory/LayoutPlanner.h>
|
||||
#include <torch/nativert/graph/Graph.h>
|
||||
#include <torch/nativert/graph/GraphSignature.h>
|
||||
#include <torch/nativert/kernels/KernelFactory.h>
|
||||
|
||||
namespace torch::nativert {
|
||||
|
||||
using namespace torch::nativert::detail;
|
||||
|
||||
struct DistributedRunConfig;
|
||||
|
||||
/**
|
||||
* A very dumb executor. Basically just runs each node in order and contains a
|
||||
* giant unordered map for every intermediate, no optimizations applied.
|
||||
*/
|
||||
class Executor {
|
||||
class ExecutorFrameDeleter {
|
||||
public:
|
||||
explicit ExecutorFrameDeleter(Executor& e) : e_(&e) {}
|
||||
ExecutorFrameDeleter(ExecutorFrameDeleter&&) = default;
|
||||
ExecutorFrameDeleter& operator=(ExecutorFrameDeleter&&) = default;
|
||||
ExecutorFrameDeleter(const ExecutorFrameDeleter&) = default;
|
||||
ExecutorFrameDeleter& operator=(const ExecutorFrameDeleter&) = default;
|
||||
~ExecutorFrameDeleter() = default;
|
||||
|
||||
void operator()(ExecutionFrame* p) {
|
||||
e_->returnExecutorFrameToPool(std::unique_ptr<ExecutionFrame>(p));
|
||||
}
|
||||
|
||||
private:
|
||||
Executor* e_;
|
||||
};
|
||||
class ExecutorFramePtr {
|
||||
public:
|
||||
ExecutorFramePtr(std::unique_ptr<ExecutionFrame> ptr, Executor& e)
|
||||
: ptr_(std::unique_ptr<ExecutionFrame, ExecutorFrameDeleter>(
|
||||
ptr.release(),
|
||||
ExecutorFrameDeleter{e})) {}
|
||||
ExecutorFramePtr() = delete;
|
||||
ExecutorFramePtr(ExecutorFramePtr&&) = default;
|
||||
ExecutorFramePtr& operator=(ExecutorFramePtr&&) = default;
|
||||
ExecutorFramePtr(const ExecutorFramePtr&) = delete;
|
||||
ExecutorFramePtr& operator=(const ExecutorFramePtr&) = delete;
|
||||
~ExecutorFramePtr() = default;
|
||||
|
||||
ExecutionFrame& operator*() {
|
||||
return *ptr_;
|
||||
}
|
||||
|
||||
ExecutionFrame* operator->() {
|
||||
return ptr_.get();
|
||||
}
|
||||
|
||||
private:
|
||||
std::unique_ptr<ExecutionFrame, ExecutorFrameDeleter> ptr_;
|
||||
};
|
||||
|
||||
public:
|
||||
// Constrcutor used for Inference Path
|
||||
Executor(
|
||||
torch::nativert::ExecutorConfig executorConfig,
|
||||
std::shared_ptr<Graph> graph,
|
||||
std::shared_ptr<Weights> weights,
|
||||
const Placement& placement = Placement(),
|
||||
std::shared_ptr<caffe2::serialize::PyTorchStreamReader>
|
||||
pytorchStreamReader = nullptr,
|
||||
const MakeProxyExecutorFn& makeProxyExecutorFunc = nullptr);
|
||||
|
||||
std::shared_ptr<Weights> getWeights() {
|
||||
std::shared_ptr<Weights> ret;
|
||||
weights_.withLock([&](auto& w) { ret = w; });
|
||||
return ret;
|
||||
}
|
||||
|
||||
void processWeights(std::shared_ptr<Weights> weights);
|
||||
void atomicSwapWeights(std::shared_ptr<Weights> weights);
|
||||
|
||||
// This API only returns the flattened UserOutputs,
|
||||
// intended to be used for Inference path
|
||||
// TODO Investigate whether we should remove this, still seems
|
||||
// useful for testing.
|
||||
std::vector<c10::IValue> execute(std::vector<c10::IValue> inputs);
|
||||
|
||||
std::vector<c10::IValue> execute(
|
||||
const std::vector<c10::IValue>& args,
|
||||
const std::unordered_map<std::string, c10::IValue>& kwargs,
|
||||
const ITreeSpec& inputTreeSpec);
|
||||
|
||||
ProfileMetrics benchmarkIndividualNodes(
|
||||
std::vector<std::vector<c10::IValue>> inputsList,
|
||||
const uint32_t warmupRuns,
|
||||
const uint32_t mainRuns);
|
||||
|
||||
const torch::nativert::GraphSignature& graphSignature() const {
|
||||
return graph_->signature();
|
||||
}
|
||||
|
||||
static std::string className() {
|
||||
return "Executor.v0";
|
||||
}
|
||||
|
||||
const torch::nativert::ExecutorConfig& executorConfig() const {
|
||||
return executorConfig_;
|
||||
}
|
||||
|
||||
std::vector<DelegateExecutor*> getDelegates();
|
||||
|
||||
// Get the number of execution frames in the pool
|
||||
int getNumExecutionFrames() const {
|
||||
return numExecutionFrames_.load();
|
||||
}
|
||||
|
||||
static c10::FastMap<std::string /* target */, torch::nativert::FunctionSchema>
|
||||
getKernelSchemas(const std::vector<std::unique_ptr<OpKernel>>& kernels);
|
||||
|
||||
protected:
|
||||
torch::nativert::ExecutorConfig executorConfig_;
|
||||
|
||||
std::shared_ptr<Graph> graph_;
|
||||
|
||||
// manages the parameters, buffers and tensor constants
|
||||
c10::Synchronized<std::shared_ptr<Weights>> weights_;
|
||||
|
||||
void initialize(
|
||||
std::shared_ptr<Weights> weights,
|
||||
std::shared_ptr<caffe2::serialize::PyTorchStreamReader>
|
||||
pytorchStreamReader);
|
||||
|
||||
ExecutorFramePtr getExecutorFrameFromPool();
|
||||
void returnExecutorFrameToPool(std::unique_ptr<ExecutionFrame> frame);
|
||||
|
||||
// Clears stale execution frames from the pool
|
||||
void clearStaleExecutionFrames();
|
||||
|
||||
private:
|
||||
// Structure to track execution frame usage
|
||||
struct ExecutionFrameEntry {
|
||||
bool used{false};
|
||||
std::unique_ptr<ExecutionFrame> frame;
|
||||
|
||||
// Add move constructor and assignment operator
|
||||
ExecutionFrameEntry() = default;
|
||||
ExecutionFrameEntry(ExecutionFrameEntry&& other) noexcept
|
||||
: used(other.used), frame(std::move(other.frame)) {}
|
||||
ExecutionFrameEntry& operator=(ExecutionFrameEntry&& other) noexcept {
|
||||
used = other.used;
|
||||
frame = std::move(other.frame);
|
||||
return *this;
|
||||
}
|
||||
// Delete copy constructor and assignment operator
|
||||
ExecutionFrameEntry(const ExecutionFrameEntry&) = delete;
|
||||
ExecutionFrameEntry& operator=(const ExecutionFrameEntry&) = delete;
|
||||
};
|
||||
|
||||
void maybeRunConstantFolding(std::shared_ptr<Weights> weights);
|
||||
void validateInputs(const std::vector<c10::IValue>& inputs) const;
|
||||
|
||||
// Helper method to get current timestamp in seconds
|
||||
int64_t getCurrentTimestampSeconds() const;
|
||||
|
||||
std::unique_ptr<GraphExecutorBase> graphExecutor_;
|
||||
|
||||
const Placement placement_;
|
||||
|
||||
// NOTE: delegateExecutors_ is used by nodeKernels_ inside graphExecutor_.
|
||||
std::vector<std::unique_ptr<DelegateExecutor>> delegateExecutors_;
|
||||
|
||||
std::vector<ConstFoldingExecution> constFoldingExecutions_;
|
||||
|
||||
std::optional<ConstantFolder> constantFolder_;
|
||||
|
||||
MakeProxyExecutorFn makeProxyExecutorFunc_;
|
||||
|
||||
c10::Semaphore sem_;
|
||||
torch::nativert::detail::MPMCQueue<std::unique_ptr<ExecutionFrame>>
|
||||
executionFrames_;
|
||||
torch::nativert::detail::MPMCQueue<ExecutionFrameEntry>
|
||||
clearedExecutionFrames_;
|
||||
std::atomic_int64_t numExecutionFrames_;
|
||||
|
||||
std::unique_ptr<LayoutPlanner> layoutPlanner_;
|
||||
std::atomic_int64_t lastClearedTimestamp_;
|
||||
std::mutex cleanupLock_;
|
||||
std::atomic_bool clearingInProgress_{false};
|
||||
};
|
||||
|
||||
} // namespace torch::nativert
|
Reference in New Issue
Block a user