Update (base update)

[ghstack-poisoned]
This commit is contained in:
Xuehai Pan
2024-10-20 02:09:32 +08:00
487 changed files with 7261 additions and 3811 deletions

View File

@ -363,3 +363,8 @@ setuptools
ninja==1.11.1 ; platform_machine == "aarch64"
scons==4.5.2 ; platform_machine == "aarch64"
pulp==2.9.0 ; python_version >= "3.8"
#Description: required for testing ilp formulaiton under torch/distributed/_tools
#Pinned versions: 2.9.0
#test that import: test_sac_ilp.py

10
.ci/libtorch/build.sh Normal file
View File

@ -0,0 +1,10 @@
#!/usr/bin/env bash
# This is mostly just a shim to manywheel/build.sh
# TODO: Make this a dedicated script to build just libtorch
set -ex
SCRIPTPATH="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
USE_CUSPARSELT=0 BUILD_PYTHONLESS=1 DESIRED_PYTHON="3.9" ${SCRIPTPATH}/../manywheel/build.sh

21
.ci/manywheel/LICENSE Normal file
View File

@ -0,0 +1,21 @@
The MIT License (MIT)
Copyright (c) 2016 manylinux
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

25
.ci/manywheel/build.sh Executable file
View File

@ -0,0 +1,25 @@
#!/usr/bin/env bash
set -ex
SCRIPTPATH="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
case "${GPU_ARCH_TYPE:-BLANK}" in
BLANK)
# Legacy behavior for CircleCI
bash "${SCRIPTPATH}/build_cuda.sh"
;;
cuda)
bash "${SCRIPTPATH}/build_cuda.sh"
;;
rocm)
bash "${SCRIPTPATH}/build_rocm.sh"
;;
cpu | cpu-cxx11-abi | cpu-s390x | xpu)
bash "${SCRIPTPATH}/build_cpu.sh"
;;
*)
echo "Un-recognized GPU_ARCH_TYPE '${GPU_ARCH_TYPE}', exiting..."
exit 1
;;
esac

View File

@ -0,0 +1,505 @@
#!/usr/bin/env bash
# meant to be called only from the neighboring build.sh and build_cpu.sh scripts
set -ex
SOURCE_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null && pwd )"
# Require only one python installation
if [[ -z "$DESIRED_PYTHON" ]]; then
echo "Need to set DESIRED_PYTHON env variable"
exit 1
fi
if [[ -n "$BUILD_PYTHONLESS" && -z "$LIBTORCH_VARIANT" ]]; then
echo "BUILD_PYTHONLESS is set, so need LIBTORCH_VARIANT to also be set"
echo "LIBTORCH_VARIANT should be one of shared-with-deps shared-without-deps static-with-deps static-without-deps"
exit 1
fi
# Function to retry functions that sometimes timeout or have flaky failures
retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
}
# TODO move this into the Docker images
OS_NAME=$(awk -F= '/^NAME/{print $2}' /etc/os-release)
if [[ "$OS_NAME" == *"CentOS Linux"* ]]; then
retry yum install -q -y zip openssl
elif [[ "$OS_NAME" == *"AlmaLinux"* ]]; then
retry yum install -q -y zip openssl
elif [[ "$OS_NAME" == *"Red Hat Enterprise Linux"* ]]; then
retry dnf install -q -y zip openssl
elif [[ "$OS_NAME" == *"Ubuntu"* ]]; then
# TODO: Remove this once nvidia package repos are back online
# Comment out nvidia repositories to prevent them from getting apt-get updated, see https://github.com/pytorch/pytorch/issues/74968
# shellcheck disable=SC2046
sed -i 's/.*nvidia.*/# &/' $(find /etc/apt/ -type f -name "*.list")
retry apt-get update
retry apt-get -y install zip openssl
fi
# We use the package name to test the package by passing this to 'pip install'
# This is the env variable that setup.py uses to name the package. Note that
# pip 'normalizes' the name first by changing all - to _
if [[ -z "$TORCH_PACKAGE_NAME" ]]; then
TORCH_PACKAGE_NAME='torch'
fi
if [[ -z "$TORCH_NO_PYTHON_PACKAGE_NAME" ]]; then
TORCH_NO_PYTHON_PACKAGE_NAME='torch_no_python'
fi
TORCH_PACKAGE_NAME="$(echo $TORCH_PACKAGE_NAME | tr '-' '_')"
TORCH_NO_PYTHON_PACKAGE_NAME="$(echo $TORCH_NO_PYTHON_PACKAGE_NAME | tr '-' '_')"
echo "Expecting the built wheels to all be called '$TORCH_PACKAGE_NAME' or '$TORCH_NO_PYTHON_PACKAGE_NAME'"
# Version: setup.py uses $PYTORCH_BUILD_VERSION.post$PYTORCH_BUILD_NUMBER if
# PYTORCH_BUILD_NUMBER > 1
build_version="$PYTORCH_BUILD_VERSION"
build_number="$PYTORCH_BUILD_NUMBER"
if [[ -n "$OVERRIDE_PACKAGE_VERSION" ]]; then
# This will be the *exact* version, since build_number<1
build_version="$OVERRIDE_PACKAGE_VERSION"
build_number=0
fi
if [[ -z "$build_version" ]]; then
build_version=1.0.0
fi
if [[ -z "$build_number" ]]; then
build_number=1
fi
export PYTORCH_BUILD_VERSION=$build_version
export PYTORCH_BUILD_NUMBER=$build_number
export CMAKE_LIBRARY_PATH="/opt/intel/lib:/lib:$CMAKE_LIBRARY_PATH"
export CMAKE_INCLUDE_PATH="/opt/intel/include:$CMAKE_INCLUDE_PATH"
if [[ -e /opt/openssl ]]; then
export OPENSSL_ROOT_DIR=/opt/openssl
export CMAKE_INCLUDE_PATH="/opt/openssl/include":$CMAKE_INCLUDE_PATH
fi
# If given a python version like 3.6m or 2.7mu, convert this to the format we
# expect. The binary CI jobs pass in python versions like this; they also only
# ever pass one python version, so we assume that DESIRED_PYTHON is not a list
# in this case
if [[ -n "$DESIRED_PYTHON" && $DESIRED_PYTHON =~ ([0-9].[0-9]+)t ]]; then
python_digits="$(echo $DESIRED_PYTHON | tr -cd [:digit:])"
py_majmin="${DESIRED_PYTHON}"
DESIRED_PYTHON="cp${python_digits}-cp${python_digits}t"
elif [[ -n "$DESIRED_PYTHON" && "$DESIRED_PYTHON" != cp* ]]; then
python_nodot="$(echo $DESIRED_PYTHON | tr -d m.u)"
DESIRED_PYTHON="cp${python_nodot}-cp${python_nodot}"
if [[ ${python_nodot} -ge 310 ]]; then
py_majmin="${DESIRED_PYTHON:2:1}.${DESIRED_PYTHON:3:2}"
else
py_majmin="${DESIRED_PYTHON:2:1}.${DESIRED_PYTHON:3:1}"
fi
fi
pydir="/opt/python/$DESIRED_PYTHON"
export PATH="$pydir/bin:$PATH"
echo "Will build for Python version: ${DESIRED_PYTHON} with ${python_installation}"
mkdir -p /tmp/$WHEELHOUSE_DIR
export PATCHELF_BIN=/usr/local/bin/patchelf
patchelf_version=$($PATCHELF_BIN --version)
echo "patchelf version: " $patchelf_version
if [[ "$patchelf_version" == "patchelf 0.9" ]]; then
echo "Your patchelf version is too old. Please use version >= 0.10."
exit 1
fi
########################################################
# Compile wheels as well as libtorch
#######################################################
if [[ -z "$PYTORCH_ROOT" ]]; then
echo "Need to set PYTORCH_ROOT env variable"
exit 1
fi
pushd "$PYTORCH_ROOT"
python setup.py clean
retry pip install -qr requirements.txt
case ${DESIRED_PYTHON} in
cp31*)
retry pip install -q --pre numpy==2.1.0
;;
# Should catch 3.9+
*)
retry pip install -q --pre numpy==2.0.2
;;
esac
if [[ "$DESIRED_DEVTOOLSET" == *"cxx11-abi"* ]]; then
export _GLIBCXX_USE_CXX11_ABI=1
else
export _GLIBCXX_USE_CXX11_ABI=0
fi
if [[ "$DESIRED_CUDA" == *"rocm"* ]]; then
echo "Calling build_amd.py at $(date)"
python tools/amd_build/build_amd.py
fi
# This value comes from binary_linux_build.sh (and should only be set to true
# for master / release branches)
BUILD_DEBUG_INFO=${BUILD_DEBUG_INFO:=0}
if [[ $BUILD_DEBUG_INFO == "1" ]]; then
echo "Building wheel and debug info"
else
echo "BUILD_DEBUG_INFO was not set, skipping debug info"
fi
if [[ "$DISABLE_RCCL" = 1 ]]; then
echo "Disabling NCCL/RCCL in pyTorch"
USE_RCCL=0
USE_NCCL=0
USE_KINETO=0
else
USE_RCCL=1
USE_NCCL=1
USE_KINETO=1
fi
echo "Calling setup.py bdist at $(date)"
if [[ "$USE_SPLIT_BUILD" == "true" ]]; then
echo "Calling setup.py bdist_wheel for split build (BUILD_LIBTORCH_WHL)"
time EXTRA_CAFFE2_CMAKE_FLAGS=${EXTRA_CAFFE2_CMAKE_FLAGS[@]} \
BUILD_LIBTORCH_WHL=1 BUILD_PYTHON_ONLY=0 \
BUILD_LIBTORCH_CPU_WITH_DEBUG=$BUILD_DEBUG_INFO \
USE_NCCL=${USE_NCCL} USE_RCCL=${USE_RCCL} USE_KINETO=${USE_KINETO} \
python setup.py bdist_wheel -d /tmp/$WHEELHOUSE_DIR
echo "Finished setup.py bdist_wheel for split build (BUILD_LIBTORCH_WHL)"
echo "Calling setup.py bdist_wheel for split build (BUILD_PYTHON_ONLY)"
time EXTRA_CAFFE2_CMAKE_FLAGS=${EXTRA_CAFFE2_CMAKE_FLAGS[@]} \
BUILD_LIBTORCH_WHL=0 BUILD_PYTHON_ONLY=1 \
BUILD_LIBTORCH_CPU_WITH_DEBUG=$BUILD_DEBUG_INFO \
USE_NCCL=${USE_NCCL} USE_RCCL=${USE_RCCL} USE_KINETO=${USE_KINETO} \
python setup.py bdist_wheel -d /tmp/$WHEELHOUSE_DIR --cmake
echo "Finished setup.py bdist_wheel for split build (BUILD_PYTHON_ONLY)"
else
time CMAKE_ARGS=${CMAKE_ARGS[@]} \
EXTRA_CAFFE2_CMAKE_FLAGS=${EXTRA_CAFFE2_CMAKE_FLAGS[@]} \
BUILD_LIBTORCH_CPU_WITH_DEBUG=$BUILD_DEBUG_INFO \
USE_NCCL=${USE_NCCL} USE_RCCL=${USE_RCCL} USE_KINETO=${USE_KINETO} \
python setup.py bdist_wheel -d /tmp/$WHEELHOUSE_DIR
fi
echo "Finished setup.py bdist at $(date)"
# Build libtorch packages
if [[ -n "$BUILD_PYTHONLESS" ]]; then
# Now build pythonless libtorch
# Note - just use whichever python we happen to be on
python setup.py clean
if [[ $LIBTORCH_VARIANT = *"static"* ]]; then
STATIC_CMAKE_FLAG="-DTORCH_STATIC=1"
fi
mkdir -p build
pushd build
echo "Calling tools/build_libtorch.py at $(date)"
time CMAKE_ARGS=${CMAKE_ARGS[@]} \
EXTRA_CAFFE2_CMAKE_FLAGS="${EXTRA_CAFFE2_CMAKE_FLAGS[@]} $STATIC_CMAKE_FLAG" \
python ../tools/build_libtorch.py
echo "Finished tools/build_libtorch.py at $(date)"
popd
mkdir -p libtorch/{lib,bin,include,share}
cp -r build/build/lib libtorch/
# for now, the headers for the libtorch package will just be copied in
# from one of the wheels (this is from when this script built multiple
# wheels at once)
ANY_WHEEL=$(ls /tmp/$WHEELHOUSE_DIR/torch*.whl | head -n1)
unzip -d any_wheel $ANY_WHEEL
if [[ -d any_wheel/torch/include ]]; then
cp -r any_wheel/torch/include libtorch/
else
cp -r any_wheel/torch/lib/include libtorch/
fi
cp -r any_wheel/torch/share/cmake libtorch/share/
rm -rf any_wheel
echo $PYTORCH_BUILD_VERSION > libtorch/build-version
echo "$(pushd $PYTORCH_ROOT && git rev-parse HEAD)" > libtorch/build-hash
mkdir -p /tmp/$LIBTORCH_HOUSE_DIR
if [[ "$DESIRED_DEVTOOLSET" == *"cxx11-abi"* ]]; then
LIBTORCH_ABI="cxx11-abi-"
else
LIBTORCH_ABI=
fi
zip -rq /tmp/$LIBTORCH_HOUSE_DIR/libtorch-$LIBTORCH_ABI$LIBTORCH_VARIANT-$PYTORCH_BUILD_VERSION.zip libtorch
cp /tmp/$LIBTORCH_HOUSE_DIR/libtorch-$LIBTORCH_ABI$LIBTORCH_VARIANT-$PYTORCH_BUILD_VERSION.zip \
/tmp/$LIBTORCH_HOUSE_DIR/libtorch-$LIBTORCH_ABI$LIBTORCH_VARIANT-latest.zip
fi
popd
#######################################################################
# ADD DEPENDENCIES INTO THE WHEEL
#
# auditwheel repair doesn't work correctly and is buggy
# so manually do the work of copying dependency libs and patchelfing
# and fixing RECORDS entries correctly
######################################################################
fname_with_sha256() {
HASH=$(sha256sum $1 | cut -c1-8)
DIRNAME=$(dirname $1)
BASENAME=$(basename $1)
# Do not rename nvrtc-builtins.so as they are dynamically loaded
# by libnvrtc.so
# Similarly don't mangle libcudnn and libcublas library names
if [[ $BASENAME == "libnvrtc-builtins.s"* || $BASENAME == "libcudnn"* || $BASENAME == "libcublas"* ]]; then
echo $1
else
INITNAME=$(echo $BASENAME | cut -f1 -d".")
ENDNAME=$(echo $BASENAME | cut -f 2- -d".")
echo "$DIRNAME/$INITNAME-$HASH.$ENDNAME"
fi
}
fname_without_so_number() {
LINKNAME=$(echo $1 | sed -e 's/\.so.*/.so/g')
echo "$LINKNAME"
}
make_wheel_record() {
FPATH=$1
if echo $FPATH | grep RECORD >/dev/null 2>&1; then
# if the RECORD file, then
echo "$FPATH,,"
else
HASH=$(openssl dgst -sha256 -binary $FPATH | openssl base64 | sed -e 's/+/-/g' | sed -e 's/\//_/g' | sed -e 's/=//g')
FSIZE=$(ls -nl $FPATH | awk '{print $5}')
echo "$FPATH,sha256=$HASH,$FSIZE"
fi
}
replace_needed_sofiles() {
find $1 -name '*.so*' | while read sofile; do
origname=$2
patchedname=$3
if [[ "$origname" != "$patchedname" ]] || [[ "$DESIRED_CUDA" == *"rocm"* ]]; then
set +e
origname=$($PATCHELF_BIN --print-needed $sofile | grep "$origname.*")
ERRCODE=$?
set -e
if [ "$ERRCODE" -eq "0" ]; then
echo "patching $sofile entry $origname to $patchedname"
$PATCHELF_BIN --replace-needed $origname $patchedname $sofile
fi
fi
done
}
echo 'Built this wheel:'
ls /tmp/$WHEELHOUSE_DIR
mkdir -p "/$WHEELHOUSE_DIR"
mv /tmp/$WHEELHOUSE_DIR/torch*linux*.whl /$WHEELHOUSE_DIR/
if [[ "$USE_SPLIT_BUILD" == "true" ]]; then
mv /tmp/$WHEELHOUSE_DIR/torch_no_python*.whl /$WHEELHOUSE_DIR/ || true
fi
if [[ -n "$BUILD_PYTHONLESS" ]]; then
mkdir -p /$LIBTORCH_HOUSE_DIR
mv /tmp/$LIBTORCH_HOUSE_DIR/*.zip /$LIBTORCH_HOUSE_DIR
rm -rf /tmp/$LIBTORCH_HOUSE_DIR
fi
rm -rf /tmp/$WHEELHOUSE_DIR
rm -rf /tmp_dir
mkdir /tmp_dir
pushd /tmp_dir
for pkg in /$WHEELHOUSE_DIR/torch_no_python*.whl /$WHEELHOUSE_DIR/torch*linux*.whl /$LIBTORCH_HOUSE_DIR/libtorch*.zip; do
# if the glob didn't match anything
if [[ ! -e $pkg ]]; then
continue
fi
rm -rf tmp
mkdir -p tmp
cd tmp
cp $pkg .
unzip -q $(basename $pkg)
rm -f $(basename $pkg)
if [[ -d torch ]]; then
PREFIX=torch
else
PREFIX=libtorch
fi
if [[ $pkg != *"without-deps"* ]]; then
# copy over needed dependent .so files over and tag them with their hash
patched=()
for filepath in "${DEPS_LIST[@]}"; do
filename=$(basename $filepath)
destpath=$PREFIX/lib/$filename
if [[ "$filepath" != "$destpath" ]]; then
cp $filepath $destpath
fi
# ROCm workaround for roctracer dlopens
if [[ "$DESIRED_CUDA" == *"rocm"* ]]; then
patchedpath=$(fname_without_so_number $destpath)
# Keep the so number for XPU dependencies
elif [[ "$DESIRED_CUDA" == *"xpu"* ]]; then
patchedpath=$destpath
else
patchedpath=$(fname_with_sha256 $destpath)
fi
patchedname=$(basename $patchedpath)
if [[ "$destpath" != "$patchedpath" ]]; then
mv $destpath $patchedpath
fi
patched+=("$patchedname")
echo "Copied $filepath to $patchedpath"
done
echo "patching to fix the so names to the hashed names"
for ((i=0;i<${#DEPS_LIST[@]};++i)); do
replace_needed_sofiles $PREFIX ${DEPS_SONAME[i]} ${patched[i]}
# do the same for caffe2, if it exists
if [[ -d caffe2 ]]; then
replace_needed_sofiles caffe2 ${DEPS_SONAME[i]} ${patched[i]}
fi
done
# copy over needed auxiliary files
for ((i=0;i<${#DEPS_AUX_SRCLIST[@]};++i)); do
srcpath=${DEPS_AUX_SRCLIST[i]}
dstpath=$PREFIX/${DEPS_AUX_DSTLIST[i]}
mkdir -p $(dirname $dstpath)
cp $srcpath $dstpath
done
fi
# set RPATH of _C.so and similar to $ORIGIN, $ORIGIN/lib
find $PREFIX -maxdepth 1 -type f -name "*.so*" | while read sofile; do
echo "Setting rpath of $sofile to ${C_SO_RPATH:-'$ORIGIN:$ORIGIN/lib'}"
$PATCHELF_BIN --set-rpath ${C_SO_RPATH:-'$ORIGIN:$ORIGIN/lib'} ${FORCE_RPATH:-} $sofile
$PATCHELF_BIN --print-rpath $sofile
done
# set RPATH of lib/ files to $ORIGIN
find $PREFIX/lib -maxdepth 1 -type f -name "*.so*" | while read sofile; do
echo "Setting rpath of $sofile to ${LIB_SO_RPATH:-'$ORIGIN'}"
$PATCHELF_BIN --set-rpath ${LIB_SO_RPATH:-'$ORIGIN'} ${FORCE_RPATH:-} $sofile
$PATCHELF_BIN --print-rpath $sofile
done
# regenerate the RECORD file with new hashes
record_file=$(echo $(basename $pkg) | sed -e 's/-cp.*$/.dist-info\/RECORD/g')
if [[ -e $record_file ]]; then
echo "Generating new record file $record_file"
: > "$record_file"
# generate records for folders in wheel
find * -type f | while read fname; do
make_wheel_record "$fname" >>"$record_file"
done
fi
if [[ $BUILD_DEBUG_INFO == "1" ]]; then
pushd "$PREFIX/lib"
# Duplicate library into debug lib
cp libtorch_cpu.so libtorch_cpu.so.dbg
# Keep debug symbols on debug lib
strip --only-keep-debug libtorch_cpu.so.dbg
# Remove debug info from release lib
strip --strip-debug libtorch_cpu.so
objcopy libtorch_cpu.so --add-gnu-debuglink=libtorch_cpu.so.dbg
# Zip up debug info
mkdir -p /tmp/debug
mv libtorch_cpu.so.dbg /tmp/debug/libtorch_cpu.so.dbg
CRC32=$(objcopy --dump-section .gnu_debuglink=>(tail -c4 | od -t x4 -An | xargs echo) libtorch_cpu.so)
pushd /tmp
PKG_NAME=$(basename "$pkg" | sed 's/\.whl$//g')
zip /tmp/debug-whl-libtorch-"$PKG_NAME"-"$CRC32".zip /tmp/debug/libtorch_cpu.so.dbg
cp /tmp/debug-whl-libtorch-"$PKG_NAME"-"$CRC32".zip "$PYTORCH_FINAL_PACKAGE_DIR"
popd
popd
fi
# zip up the wheel back
zip -rq $(basename $pkg) $PREIX*
# replace original wheel
rm -f $pkg
mv $(basename $pkg) $pkg
cd ..
rm -rf tmp
done
# Copy wheels to host machine for persistence before testing
if [[ -n "$PYTORCH_FINAL_PACKAGE_DIR" ]]; then
mkdir -p "$PYTORCH_FINAL_PACKAGE_DIR" || true
if [[ -n "$BUILD_PYTHONLESS" ]]; then
cp /$LIBTORCH_HOUSE_DIR/libtorch*.zip "$PYTORCH_FINAL_PACKAGE_DIR"
else
cp /$WHEELHOUSE_DIR/torch*.whl "$PYTORCH_FINAL_PACKAGE_DIR"
fi
fi
# remove stuff before testing
rm -rf /opt/rh
if ls /usr/local/cuda* >/dev/null 2>&1; then
rm -rf /usr/local/cuda*
fi
# Test that all the wheels work
if [[ -z "$BUILD_PYTHONLESS" ]]; then
export OMP_NUM_THREADS=4 # on NUMA machines this takes too long
pushd $PYTORCH_ROOT/test
# Install the wheel for this Python version
if [[ "$USE_SPLIT_BUILD" == "true" ]]; then
pip uninstall -y "$TORCH_NO_PYTHON_PACKAGE_NAME" || true
fi
pip uninstall -y "$TORCH_PACKAGE_NAME"
if [[ "$USE_SPLIT_BUILD" == "true" ]]; then
pip install "$TORCH_NO_PYTHON_PACKAGE_NAME" --no-index -f /$WHEELHOUSE_DIR --no-dependencies -v
fi
pip install "$TORCH_PACKAGE_NAME" --no-index -f /$WHEELHOUSE_DIR --no-dependencies -v
# Print info on the libraries installed in this wheel
# Rather than adjust find command to skip non-library files with an embedded *.so* in their name,
# since this is only for reporting purposes, we add the || true to the ldd command.
installed_libraries=($(find "$pydir/lib/python${py_majmin}/site-packages/torch/" -name '*.so*'))
echo "The wheel installed all of the libraries: ${installed_libraries[@]}"
for installed_lib in "${installed_libraries[@]}"; do
ldd "$installed_lib" || true
done
# Run the tests
echo "$(date) :: Running tests"
pushd "$PYTORCH_ROOT"
#TODO: run_tests.sh and check_binary.sh should be moved to pytorch/pytorch project
LD_LIBRARY_PATH=/usr/local/nvidia/lib64 \
"/builder/run_tests.sh" manywheel "${py_majmin}" "$DESIRED_CUDA"
popd
echo "$(date) :: Finished tests"
fi

99
.ci/manywheel/build_cpu.sh Executable file
View File

@ -0,0 +1,99 @@
#!/usr/bin/env bash
set -ex
GPU_ARCH_TYPE=${GPU_ARCH_TYPE:-cpu}
export TH_BINARY_BUILD=1
export USE_CUDA=0
# Keep an array of cmake variables to add to
if [[ -z "$CMAKE_ARGS" ]]; then
# These are passed to tools/build_pytorch_libs.sh::build()
CMAKE_ARGS=()
fi
if [[ -z "$EXTRA_CAFFE2_CMAKE_FLAGS" ]]; then
# These are passed to tools/build_pytorch_libs.sh::build_caffe2()
EXTRA_CAFFE2_CMAKE_FLAGS=()
fi
DIR_SUFFIX=cpu
if [[ "$GPU_ARCH_TYPE" == "xpu" ]]; then
DIR_SUFFIX=xpu
# Refer https://www.intel.com/content/www/us/en/developer/articles/tool/pytorch-prerequisites-for-intel-gpu/2-5.html
source /opt/intel/oneapi/pytorch-gpu-dev-0.5/oneapi-vars.sh
source /opt/intel/oneapi/pti/latest/env/vars.sh
export USE_STATIC_MKL=1
fi
WHEELHOUSE_DIR="wheelhouse$DIR_SUFFIX"
LIBTORCH_HOUSE_DIR="libtorch_house$DIR_SUFFIX"
if [[ -z "$PYTORCH_FINAL_PACKAGE_DIR" ]]; then
if [[ -z "$BUILD_PYTHONLESS" ]]; then
PYTORCH_FINAL_PACKAGE_DIR="/remote/wheelhouse$DIR_SUFFIX"
else
PYTORCH_FINAL_PACKAGE_DIR="/remote/libtorch_house$DIR_SUFFIX"
fi
fi
mkdir -p "$PYTORCH_FINAL_PACKAGE_DIR" || true
OS_NAME=$(awk -F= '/^NAME/{print $2}' /etc/os-release)
if [[ "$OS_NAME" == *"CentOS Linux"* ]]; then
LIBGOMP_PATH="/usr/lib64/libgomp.so.1"
elif [[ "$OS_NAME" == *"Red Hat Enterprise Linux"* ]]; then
LIBGOMP_PATH="/usr/lib64/libgomp.so.1"
elif [[ "$OS_NAME" == *"AlmaLinux"* ]]; then
LIBGOMP_PATH="/usr/lib64/libgomp.so.1"
elif [[ "$OS_NAME" == *"Ubuntu"* ]]; then
if [[ "$(uname -m)" == "s390x" ]]; then
LIBGOMP_PATH="/usr/lib/s390x-linux-gnu/libgomp.so.1"
else
LIBGOMP_PATH="/usr/lib/x86_64-linux-gnu/libgomp.so.1"
fi
fi
DEPS_LIST=(
"$LIBGOMP_PATH"
)
DEPS_SONAME=(
"libgomp.so.1"
)
if [[ "$GPU_ARCH_TYPE" == "xpu" ]]; then
echo "Bundling with xpu support package libs."
DEPS_LIST+=(
"/opt/intel/oneapi/compiler/latest/lib/libsycl-preview.so.7"
"/opt/intel/oneapi/compiler/latest/lib/libOpenCL.so.1"
"/opt/intel/oneapi/compiler/latest/lib/libxptifw.so"
"/opt/intel/oneapi/compiler/latest/lib/libsvml.so"
"/opt/intel/oneapi/compiler/latest/lib/libirng.so"
"/opt/intel/oneapi/compiler/latest/lib/libimf.so"
"/opt/intel/oneapi/compiler/latest/lib/libintlc.so.5"
"/opt/intel/oneapi/compiler/latest/lib/libpi_level_zero.so"
"/opt/intel/oneapi/pti/latest/lib/libpti_view.so.0.9"
"/opt/intel/oneapi/pti/latest/lib/libpti.so.0.9"
)
DEPS_SONAME+=(
"libsycl-preview.so.7"
"libOpenCL.so.1"
"libxptifw.so"
"libsvml.so"
"libirng.so"
"libimf.so"
"libintlc.so.5"
"libpi_level_zero.so"
"libpti_view.so.0.9"
"libpti.so.0.9"
)
fi
rm -rf /usr/local/cuda*
SOURCE_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null && pwd )"
if [[ -z "$BUILD_PYTHONLESS" ]]; then
BUILD_SCRIPT=build_common.sh
else
BUILD_SCRIPT=build_libtorch.sh
fi
source ${SOURCE_DIR}/${BUILD_SCRIPT}

290
.ci/manywheel/build_cuda.sh Normal file
View File

@ -0,0 +1,290 @@
#!/usr/bin/env bash
set -ex
SCRIPTPATH="$( cd "$(dirname "$0")" ; pwd -P ))"
export TORCH_NVCC_FLAGS="-Xfatbin -compress-all"
export NCCL_ROOT_DIR=/usr/local/cuda
export TH_BINARY_BUILD=1
export USE_STATIC_CUDNN=1
export USE_STATIC_NCCL=1
export ATEN_STATIC_CUDA=1
export USE_CUDA_STATIC_LINK=1
export INSTALL_TEST=0 # dont install test binaries into site-packages
export USE_CUPTI_SO=0
export USE_CUSPARSELT=${USE_CUSPARSELT:-1} # Enable if not disabled by libtorch build
# Keep an array of cmake variables to add to
if [[ -z "$CMAKE_ARGS" ]]; then
# These are passed to tools/build_pytorch_libs.sh::build()
CMAKE_ARGS=()
fi
if [[ -z "$EXTRA_CAFFE2_CMAKE_FLAGS" ]]; then
# These are passed to tools/build_pytorch_libs.sh::build_caffe2()
EXTRA_CAFFE2_CMAKE_FLAGS=()
fi
# Determine CUDA version and architectures to build for
#
# NOTE: We should first check `DESIRED_CUDA` when determining `CUDA_VERSION`,
# because in some cases a single Docker image can have multiple CUDA versions
# on it, and `nvcc --version` might not show the CUDA version we want.
if [[ -n "$DESIRED_CUDA" ]]; then
# If the DESIRED_CUDA already matches the format that we expect
if [[ ${DESIRED_CUDA} =~ ^[0-9]+\.[0-9]+$ ]]; then
CUDA_VERSION=${DESIRED_CUDA}
else
# cu90, cu92, cu100, cu101
if [[ ${#DESIRED_CUDA} -eq 4 ]]; then
CUDA_VERSION="${DESIRED_CUDA:2:1}.${DESIRED_CUDA:3:1}"
elif [[ ${#DESIRED_CUDA} -eq 5 ]]; then
CUDA_VERSION="${DESIRED_CUDA:2:2}.${DESIRED_CUDA:4:1}"
fi
fi
echo "Using CUDA $CUDA_VERSION as determined by DESIRED_CUDA"
# There really has to be a better way to do this - eli
# Possibly limiting builds to specific cuda versions be delimiting images would be a choice
if [[ "$OS_NAME" == *"Ubuntu"* ]]; then
echo "Switching to CUDA version ${DESIRED_CUDA}"
/builder/conda/switch_cuda_version.sh "${DESIRED_CUDA}"
fi
else
CUDA_VERSION=$(nvcc --version|grep release|cut -f5 -d" "|cut -f1 -d",")
echo "CUDA $CUDA_VERSION Detected"
fi
cuda_version_nodot=$(echo $CUDA_VERSION | tr -d '.')
TORCH_CUDA_ARCH_LIST="5.0;6.0;7.0;7.5;8.0;8.6"
case ${CUDA_VERSION} in
12.4)
if [[ "$GPU_ARCH_TYPE" = "cuda-aarch64" ]]; then
TORCH_CUDA_ARCH_LIST="9.0"
else
TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST};9.0+PTX"
fi
EXTRA_CAFFE2_CMAKE_FLAGS+=("-DATEN_NO_TEST=ON")
;;
12.1)
TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST};9.0"
EXTRA_CAFFE2_CMAKE_FLAGS+=("-DATEN_NO_TEST=ON")
;;
11.8)
TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST};3.7;9.0"
EXTRA_CAFFE2_CMAKE_FLAGS+=("-DATEN_NO_TEST=ON")
;;
11.[67])
TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST};3.7"
EXTRA_CAFFE2_CMAKE_FLAGS+=("-DATEN_NO_TEST=ON")
;;
*)
echo "unknown cuda version $CUDA_VERSION"
exit 1
;;
esac
export TORCH_CUDA_ARCH_LIST=${TORCH_CUDA_ARCH_LIST}
echo "${TORCH_CUDA_ARCH_LIST}"
# Package directories
WHEELHOUSE_DIR="wheelhouse$cuda_version_nodot"
LIBTORCH_HOUSE_DIR="libtorch_house$cuda_version_nodot"
if [[ -z "$PYTORCH_FINAL_PACKAGE_DIR" ]]; then
if [[ -z "$BUILD_PYTHONLESS" ]]; then
PYTORCH_FINAL_PACKAGE_DIR="/remote/wheelhouse$cuda_version_nodot"
else
PYTORCH_FINAL_PACKAGE_DIR="/remote/libtorch_house$cuda_version_nodot"
fi
fi
mkdir -p "$PYTORCH_FINAL_PACKAGE_DIR" || true
OS_NAME=$(awk -F= '/^NAME/{print $2}' /etc/os-release)
if [[ "$OS_NAME" == *"CentOS Linux"* ]]; then
LIBGOMP_PATH="/usr/lib64/libgomp.so.1"
elif [[ "$OS_NAME" == *"AlmaLinux"* ]]; then
LIBGOMP_PATH="/usr/lib64/libgomp.so.1"
elif [[ "$OS_NAME" == *"Red Hat Enterprise Linux"* ]]; then
LIBGOMP_PATH="/usr/lib64/libgomp.so.1"
elif [[ "$OS_NAME" == *"Ubuntu"* ]]; then
LIBGOMP_PATH="/usr/lib/x86_64-linux-gnu/libgomp.so.1"
fi
DEPS_LIST=(
"$LIBGOMP_PATH"
)
DEPS_SONAME=(
"libgomp.so.1"
)
if [[ $USE_CUSPARSELT == "1" ]]; then
DEPS_SONAME+=(
"libcusparseLt.so.0"
)
DEPS_LIST+=(
"/usr/local/cuda/lib64/libcusparseLt.so.0"
)
fi
if [[ $CUDA_VERSION == "12.1" || $CUDA_VERSION == "12.4" ]]; then
export USE_STATIC_CUDNN=0
# Try parallelizing nvcc as well
export TORCH_NVCC_FLAGS="-Xfatbin -compress-all --threads 2"
if [[ -z "$PYTORCH_EXTRA_INSTALL_REQUIREMENTS" ]]; then
echo "Bundling with cudnn and cublas."
DEPS_LIST+=(
"/usr/local/cuda/lib64/libcudnn_adv.so.9"
"/usr/local/cuda/lib64/libcudnn_cnn.so.9"
"/usr/local/cuda/lib64/libcudnn_graph.so.9"
"/usr/local/cuda/lib64/libcudnn_ops.so.9"
"/usr/local/cuda/lib64/libcudnn_engines_runtime_compiled.so.9"
"/usr/local/cuda/lib64/libcudnn_engines_precompiled.so.9"
"/usr/local/cuda/lib64/libcudnn_heuristic.so.9"
"/usr/local/cuda/lib64/libcudnn.so.9"
"/usr/local/cuda/lib64/libcublas.so.12"
"/usr/local/cuda/lib64/libcublasLt.so.12"
"/usr/local/cuda/lib64/libcudart.so.12"
"/usr/local/cuda/lib64/libnvToolsExt.so.1"
"/usr/local/cuda/lib64/libnvrtc.so.12"
"/usr/local/cuda/lib64/libnvrtc-builtins.so"
)
DEPS_SONAME+=(
"libcudnn_adv.so.9"
"libcudnn_cnn.so.9"
"libcudnn_graph.so.9"
"libcudnn_ops.so.9"
"libcudnn_engines_runtime_compiled.so.9"
"libcudnn_engines_precompiled.so.9"
"libcudnn_heuristic.so.9"
"libcudnn.so.9"
"libcublas.so.12"
"libcublasLt.so.12"
"libcudart.so.12"
"libnvToolsExt.so.1"
"libnvrtc.so.12"
"libnvrtc-builtins.so"
)
else
echo "Using nvidia libs from pypi."
CUDA_RPATHS=(
'$ORIGIN/../../nvidia/cublas/lib'
'$ORIGIN/../../nvidia/cuda_cupti/lib'
'$ORIGIN/../../nvidia/cuda_nvrtc/lib'
'$ORIGIN/../../nvidia/cuda_runtime/lib'
'$ORIGIN/../../nvidia/cudnn/lib'
'$ORIGIN/../../nvidia/cufft/lib'
'$ORIGIN/../../nvidia/curand/lib'
'$ORIGIN/../../nvidia/cusolver/lib'
'$ORIGIN/../../nvidia/cusparse/lib'
'$ORIGIN/../../nvidia/nccl/lib'
'$ORIGIN/../../nvidia/nvtx/lib'
)
CUDA_RPATHS=$(IFS=: ; echo "${CUDA_RPATHS[*]}")
export C_SO_RPATH=$CUDA_RPATHS':$ORIGIN:$ORIGIN/lib'
export LIB_SO_RPATH=$CUDA_RPATHS':$ORIGIN'
export FORCE_RPATH="--force-rpath"
export USE_STATIC_NCCL=0
export USE_SYSTEM_NCCL=1
export ATEN_STATIC_CUDA=0
export USE_CUDA_STATIC_LINK=0
export USE_CUPTI_SO=1
export NCCL_INCLUDE_DIR="/usr/local/cuda/include/"
export NCCL_LIB_DIR="/usr/local/cuda/lib64/"
fi
elif [[ $CUDA_VERSION == "11.8" ]]; then
export USE_STATIC_CUDNN=0
# Try parallelizing nvcc as well
export TORCH_NVCC_FLAGS="-Xfatbin -compress-all --threads 2"
# Bundle ptxas into the wheel, see https://github.com/pytorch/pytorch/pull/119750
export BUILD_BUNDLE_PTXAS=1
if [[ -z "$PYTORCH_EXTRA_INSTALL_REQUIREMENTS" ]]; then
echo "Bundling with cudnn and cublas."
DEPS_LIST+=(
"/usr/local/cuda/lib64/libcudnn_adv.so.9"
"/usr/local/cuda/lib64/libcudnn_cnn.so.9"
"/usr/local/cuda/lib64/libcudnn_graph.so.9"
"/usr/local/cuda/lib64/libcudnn_ops.so.9"
"/usr/local/cuda/lib64/libcudnn_engines_runtime_compiled.so.9"
"/usr/local/cuda/lib64/libcudnn_engines_precompiled.so.9"
"/usr/local/cuda/lib64/libcudnn_heuristic.so.9"
"/usr/local/cuda/lib64/libcudnn.so.9"
"/usr/local/cuda/lib64/libcublas.so.11"
"/usr/local/cuda/lib64/libcublasLt.so.11"
"/usr/local/cuda/lib64/libcudart.so.11.0"
"/usr/local/cuda/lib64/libnvToolsExt.so.1"
"/usr/local/cuda/lib64/libnvrtc.so.11.2" # this is not a mistake, it links to more specific cuda version
"/usr/local/cuda/lib64/libnvrtc-builtins.so.11.8"
)
DEPS_SONAME+=(
"libcudnn_adv.so.9"
"libcudnn_cnn.so.9"
"libcudnn_graph.so.9"
"libcudnn_ops.so.9"
"libcudnn_engines_runtime_compiled.so.9"
"libcudnn_engines_precompiled.so.9"
"libcudnn_heuristic.so.9"
"libcudnn.so.9"
"libcublas.so.11"
"libcublasLt.so.11"
"libcudart.so.11.0"
"libnvToolsExt.so.1"
"libnvrtc.so.11.2"
"libnvrtc-builtins.so.11.8"
)
else
echo "Using nvidia libs from pypi."
CUDA_RPATHS=(
'$ORIGIN/../../nvidia/cublas/lib'
'$ORIGIN/../../nvidia/cuda_cupti/lib'
'$ORIGIN/../../nvidia/cuda_nvrtc/lib'
'$ORIGIN/../../nvidia/cuda_runtime/lib'
'$ORIGIN/../../nvidia/cudnn/lib'
'$ORIGIN/../../nvidia/cufft/lib'
'$ORIGIN/../../nvidia/curand/lib'
'$ORIGIN/../../nvidia/cusolver/lib'
'$ORIGIN/../../nvidia/cusparse/lib'
'$ORIGIN/../../nvidia/nccl/lib'
'$ORIGIN/../../nvidia/nvtx/lib'
)
CUDA_RPATHS=$(IFS=: ; echo "${CUDA_RPATHS[*]}")
export C_SO_RPATH=$CUDA_RPATHS':$ORIGIN:$ORIGIN/lib'
export LIB_SO_RPATH=$CUDA_RPATHS':$ORIGIN'
export FORCE_RPATH="--force-rpath"
export USE_STATIC_NCCL=0
export USE_SYSTEM_NCCL=1
export ATEN_STATIC_CUDA=0
export USE_CUDA_STATIC_LINK=0
export USE_CUPTI_SO=1
export NCCL_INCLUDE_DIR="/usr/local/cuda/include/"
export NCCL_LIB_DIR="/usr/local/cuda/lib64/"
fi
else
echo "Unknown cuda version $CUDA_VERSION"
exit 1
fi
# builder/test.sh requires DESIRED_CUDA to know what tests to exclude
export DESIRED_CUDA="$cuda_version_nodot"
# Switch `/usr/local/cuda` to the desired CUDA version
rm -rf /usr/local/cuda || true
ln -s "/usr/local/cuda-${CUDA_VERSION}" /usr/local/cuda
# Switch `/usr/local/magma` to the desired CUDA version
rm -rf /usr/local/magma || true
ln -s /usr/local/cuda-${CUDA_VERSION}/magma /usr/local/magma
export CUDA_VERSION=$(ls /usr/local/cuda/lib64/libcudart.so.*|sort|tac | head -1 | rev | cut -d"." -f -3 | rev) # 10.0.130
export CUDA_VERSION_SHORT=$(ls /usr/local/cuda/lib64/libcudart.so.*|sort|tac | head -1 | rev | cut -d"." -f -3 | rev | cut -f1,2 -d".") # 10.0
export CUDNN_VERSION=$(ls /usr/local/cuda/lib64/libcudnn.so.*|sort|tac | head -1 | rev | cut -d"." -f -3 | rev)
SCRIPTPATH="$( cd "$(dirname "$0")" ; pwd -P )"
if [[ -z "$BUILD_PYTHONLESS" ]]; then
BUILD_SCRIPT=build_common.sh
else
BUILD_SCRIPT=build_libtorch.sh
fi
source $SCRIPTPATH/${BUILD_SCRIPT}

View File

@ -0,0 +1,353 @@
#!/usr/bin/env bash
# meant to be called only from the neighboring build.sh and build_cpu.sh scripts
set -e pipefail
SOURCE_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null && pwd )"
# Require only one python installation
if [[ -z "$DESIRED_PYTHON" ]]; then
echo "Need to set DESIRED_PYTHON env variable"
exit 1
fi
if [[ -n "$BUILD_PYTHONLESS" && -z "$LIBTORCH_VARIANT" ]]; then
echo "BUILD_PYTHONLESS is set, so need LIBTORCH_VARIANT to also be set"
echo "LIBTORCH_VARIANT should be one of shared-with-deps shared-without-deps static-with-deps static-without-deps"
exit 1
fi
# Function to retry functions that sometimes timeout or have flaky failures
retry () {
$* || (sleep 1 && $*) || (sleep 2 && $*) || (sleep 4 && $*) || (sleep 8 && $*)
}
# TODO move this into the Docker images
OS_NAME=`awk -F= '/^NAME/{print $2}' /etc/os-release`
if [[ "$OS_NAME" == *"CentOS Linux"* ]]; then
retry yum install -q -y zip openssl
elif [[ "$OS_NAME" == *"AlmaLinux"* ]]; then
retry yum install -q -y zip openssl
elif [[ "$OS_NAME" == *"Red Hat Enterprise Linux"* ]]; then
retry dnf install -q -y zip openssl
elif [[ "$OS_NAME" == *"Ubuntu"* ]]; then
# TODO: Remove this once nvidia package repos are back online
# Comment out nvidia repositories to prevent them from getting apt-get updated, see https://github.com/pytorch/pytorch/issues/74968
# shellcheck disable=SC2046
sed -i 's/.*nvidia.*/# &/' $(find /etc/apt/ -type f -name "*.list")
retry apt-get update
retry apt-get -y install zip openssl
fi
# Version: setup.py uses $PYTORCH_BUILD_VERSION.post$PYTORCH_BUILD_NUMBER if
# PYTORCH_BUILD_NUMBER > 1
build_version="$PYTORCH_BUILD_VERSION"
build_number="$PYTORCH_BUILD_NUMBER"
if [[ -n "$OVERRIDE_PACKAGE_VERSION" ]]; then
# This will be the *exact* version, since build_number<1
build_version="$OVERRIDE_PACKAGE_VERSION"
build_number=0
fi
if [[ -z "$build_version" ]]; then
build_version=1.0.0
fi
if [[ -z "$build_number" ]]; then
build_number=1
fi
export PYTORCH_BUILD_VERSION=$build_version
export PYTORCH_BUILD_NUMBER=$build_number
export CMAKE_LIBRARY_PATH="/opt/intel/lib:/lib:$CMAKE_LIBRARY_PATH"
export CMAKE_INCLUDE_PATH="/opt/intel/include:$CMAKE_INCLUDE_PATH"
# set OPENSSL_ROOT_DIR=/opt/openssl if it exists
if [[ -e /opt/openssl ]]; then
export OPENSSL_ROOT_DIR=/opt/openssl
export CMAKE_INCLUDE_PATH="/opt/openssl/include":$CMAKE_INCLUDE_PATH
fi
# If given a python version like 3.6m or 2.7mu, convert this to the format we
# expect. The binary CI jobs pass in python versions like this; they also only
# ever pass one python version, so we assume that DESIRED_PYTHON is not a list
# in this case
if [[ -n "$DESIRED_PYTHON" && "$DESIRED_PYTHON" != cp* ]]; then
python_nodot="$(echo $DESIRED_PYTHON | tr -d m.u)"
DESIRED_PYTHON="cp${python_nodot}-cp${python_nodot}"
fi
pydir="/opt/python/$DESIRED_PYTHON"
export PATH="$pydir/bin:$PATH"
export PATCHELF_BIN=/usr/local/bin/patchelf
patchelf_version=`$PATCHELF_BIN --version`
echo "patchelf version: " $patchelf_version
if [[ "$patchelf_version" == "patchelf 0.9" ]]; then
echo "Your patchelf version is too old. Please use version >= 0.10."
exit 1
fi
########################################################
# Compile wheels as well as libtorch
#######################################################
if [[ -z "$PYTORCH_ROOT" ]]; then
echo "Need to set PYTORCH_ROOT env variable"
exit 1
fi
pushd "$PYTORCH_ROOT"
python setup.py clean
retry pip install -qr requirements.txt
retry pip install -q numpy==2.0.1
if [[ "$DESIRED_DEVTOOLSET" == *"cxx11-abi"* ]]; then
export _GLIBCXX_USE_CXX11_ABI=1
else
export _GLIBCXX_USE_CXX11_ABI=0
fi
if [[ "$DESIRED_CUDA" == *"rocm"* ]]; then
echo "Calling build_amd.py at $(date)"
python tools/amd_build/build_amd.py
# TODO remove this work-around once pytorch sources are updated
export ROCclr_DIR=/opt/rocm/rocclr/lib/cmake/rocclr
fi
echo "Calling setup.py install at $(date)"
if [[ $LIBTORCH_VARIANT = *"static"* ]]; then
STATIC_CMAKE_FLAG="-DTORCH_STATIC=1"
fi
(
set -x
mkdir -p build
time CMAKE_ARGS=${CMAKE_ARGS[@]} \
EXTRA_CAFFE2_CMAKE_FLAGS="${EXTRA_CAFFE2_CMAKE_FLAGS[@]} $STATIC_CMAKE_FLAG" \
# TODO: Remove this flag once https://github.com/pytorch/pytorch/issues/55952 is closed
CFLAGS='-Wno-deprecated-declarations' \
BUILD_LIBTORCH_CPU_WITH_DEBUG=1 \
python setup.py install
mkdir -p libtorch/{lib,bin,include,share}
# Make debug folder separate so it doesn't get zipped up with the rest of
# libtorch
mkdir debug
# Copy over all lib files
cp -rv build/lib/* libtorch/lib/
cp -rv build/lib*/torch/lib/* libtorch/lib/
# Copy over all include files
cp -rv build/include/* libtorch/include/
cp -rv build/lib*/torch/include/* libtorch/include/
# Copy over all of the cmake files
cp -rv build/lib*/torch/share/* libtorch/share/
# Split libtorch into debug / release version
cp libtorch/lib/libtorch_cpu.so libtorch/lib/libtorch_cpu.so.dbg
# Keep debug symbols on debug lib
strip --only-keep-debug libtorch/lib/libtorch_cpu.so.dbg
# Remove debug info from release lib
strip --strip-debug libtorch/lib/libtorch_cpu.so
# Add a debug link to the release lib to the debug lib (debuggers will then
# search for symbols in a file called libtorch_cpu.so.dbg in some
# predetermined locations) and embed a CRC32 of the debug library into the .so
cd libtorch/lib
objcopy libtorch_cpu.so --add-gnu-debuglink=libtorch_cpu.so.dbg
cd ../..
# Move the debug symbols to its own directory so it doesn't get processed /
# zipped with all the other libraries
mv libtorch/lib/libtorch_cpu.so.dbg debug/libtorch_cpu.so.dbg
echo "${PYTORCH_BUILD_VERSION}" > libtorch/build-version
echo "$(pushd $PYTORCH_ROOT && git rev-parse HEAD)" > libtorch/build-hash
)
if [[ "$DESIRED_DEVTOOLSET" == *"cxx11-abi"* ]]; then
LIBTORCH_ABI="cxx11-abi-"
else
LIBTORCH_ABI=
fi
(
set -x
mkdir -p /tmp/$LIBTORCH_HOUSE_DIR
# objcopy installs a CRC32 into libtorch_cpu above so, so add that to the name here
CRC32=$(objcopy --dump-section .gnu_debuglink=>(tail -c4 | od -t x4 -An | xargs echo) libtorch/lib/libtorch_cpu.so)
# Zip debug symbols
zip /tmp/$LIBTORCH_HOUSE_DIR/debug-libtorch-$LIBTORCH_ABI$LIBTORCH_VARIANT-$PYTORCH_BUILD_VERSION-$CRC32.zip debug/libtorch_cpu.so.dbg
# Zip and copy libtorch
zip -rq /tmp/$LIBTORCH_HOUSE_DIR/libtorch-$LIBTORCH_ABI$LIBTORCH_VARIANT-$PYTORCH_BUILD_VERSION.zip libtorch
cp /tmp/$LIBTORCH_HOUSE_DIR/libtorch-$LIBTORCH_ABI$LIBTORCH_VARIANT-$PYTORCH_BUILD_VERSION.zip \
/tmp/$LIBTORCH_HOUSE_DIR/libtorch-$LIBTORCH_ABI$LIBTORCH_VARIANT-latest.zip
)
popd
#######################################################################
# ADD DEPENDENCIES INTO THE WHEEL
#
# auditwheel repair doesn't work correctly and is buggy
# so manually do the work of copying dependency libs and patchelfing
# and fixing RECORDS entries correctly
######################################################################
fname_with_sha256() {
HASH=$(sha256sum $1 | cut -c1-8)
DIRNAME=$(dirname $1)
BASENAME=$(basename $1)
if [[ $BASENAME == "libnvrtc-builtins.so" || $BASENAME == "libcudnn"* ]]; then
echo $1
else
INITNAME=$(echo $BASENAME | cut -f1 -d".")
ENDNAME=$(echo $BASENAME | cut -f 2- -d".")
echo "$DIRNAME/$INITNAME-$HASH.$ENDNAME"
fi
}
fname_without_so_number() {
LINKNAME=$(echo $1 | sed -e 's/\.so.*/.so/g')
echo "$LINKNAME"
}
make_wheel_record() {
FPATH=$1
if echo $FPATH | grep RECORD >/dev/null 2>&1; then
# if the RECORD file, then
echo "$FPATH,,"
else
HASH=$(openssl dgst -sha256 -binary $FPATH | openssl base64 | sed -e 's/+/-/g' | sed -e 's/\//_/g' | sed -e 's/=//g')
FSIZE=$(ls -nl $FPATH | awk '{print $5}')
echo "$FPATH,sha256=$HASH,$FSIZE"
fi
}
echo 'Built this package:'
(
set -x
mkdir -p /$LIBTORCH_HOUSE_DIR
mv /tmp/$LIBTORCH_HOUSE_DIR/*.zip /$LIBTORCH_HOUSE_DIR
rm -rf /tmp/$LIBTORCH_HOUSE_DIR
)
TMP_DIR=$(mktemp -d)
trap "rm -rf ${TMP_DIR}" EXIT
pushd "${TMP_DIR}"
for pkg in /$LIBTORCH_HOUSE_DIR/libtorch*.zip; do
# if the glob didn't match anything
if [[ ! -e $pkg ]]; then
continue
fi
rm -rf tmp
mkdir -p tmp
cd tmp
cp $pkg .
unzip -q $(basename $pkg)
rm -f $(basename $pkg)
PREFIX=libtorch
if [[ $pkg != *"without-deps"* ]]; then
# copy over needed dependent .so files over and tag them with their hash
patched=()
for filepath in "${DEPS_LIST[@]}"; do
filename=$(basename $filepath)
destpath=$PREFIX/lib/$filename
if [[ "$filepath" != "$destpath" ]]; then
cp $filepath $destpath
fi
if [[ "$DESIRED_CUDA" == *"rocm"* ]]; then
patchedpath=$(fname_without_so_number $destpath)
else
patchedpath=$(fname_with_sha256 $destpath)
fi
patchedname=$(basename $patchedpath)
if [[ "$destpath" != "$patchedpath" ]]; then
mv $destpath $patchedpath
fi
patched+=("$patchedname")
echo "Copied $filepath to $patchedpath"
done
echo "patching to fix the so names to the hashed names"
for ((i=0;i<${#DEPS_LIST[@]};++i)); do
find $PREFIX -name '*.so*' | while read sofile; do
origname=${DEPS_SONAME[i]}
patchedname=${patched[i]}
if [[ "$origname" != "$patchedname" ]] || [[ "$DESIRED_CUDA" == *"rocm"* ]]; then
set +e
origname=$($PATCHELF_BIN --print-needed $sofile | grep "$origname.*")
ERRCODE=$?
set -e
if [ "$ERRCODE" -eq "0" ]; then
echo "patching $sofile entry $origname to $patchedname"
$PATCHELF_BIN --replace-needed $origname $patchedname $sofile
fi
fi
done
done
# copy over needed auxiliary files
for ((i=0;i<${#DEPS_AUX_SRCLIST[@]};++i)); do
srcpath=${DEPS_AUX_SRCLIST[i]}
dstpath=$PREFIX/${DEPS_AUX_DSTLIST[i]}
mkdir -p $(dirname $dstpath)
cp $srcpath $dstpath
done
fi
# set RPATH of _C.so and similar to $ORIGIN, $ORIGIN/lib
find $PREFIX -maxdepth 1 -type f -name "*.so*" | while read sofile; do
echo "Setting rpath of $sofile to " '$ORIGIN:$ORIGIN/lib'
$PATCHELF_BIN --set-rpath '$ORIGIN:$ORIGIN/lib' $sofile
$PATCHELF_BIN --print-rpath $sofile
done
# set RPATH of lib/ files to $ORIGIN
find $PREFIX/lib -maxdepth 1 -type f -name "*.so*" | while read sofile; do
echo "Setting rpath of $sofile to " '$ORIGIN'
$PATCHELF_BIN --set-rpath '$ORIGIN' $sofile
$PATCHELF_BIN --print-rpath $sofile
done
# regenerate the RECORD file with new hashes
record_file=`echo $(basename $pkg) | sed -e 's/-cp.*$/.dist-info\/RECORD/g'`
if [[ -e $record_file ]]; then
echo "Generating new record file $record_file"
rm -f $record_file
# generate records for folders in wheel
find * -type f | while read fname; do
echo $(make_wheel_record $fname) >>$record_file
done
fi
# zip up the wheel back
zip -rq $(basename $pkg) $PREFIX*
# replace original wheel
rm -f $pkg
mv $(basename $pkg) $pkg
cd ..
rm -rf tmp
done
# Copy wheels to host machine for persistence before testing
if [[ -n "$PYTORCH_FINAL_PACKAGE_DIR" ]]; then
cp /$LIBTORCH_HOUSE_DIR/libtorch*.zip "$PYTORCH_FINAL_PACKAGE_DIR"
cp /$LIBTORCH_HOUSE_DIR/debug-libtorch*.zip "$PYTORCH_FINAL_PACKAGE_DIR"
fi

263
.ci/manywheel/build_rocm.sh Executable file
View File

@ -0,0 +1,263 @@
#!/usr/bin/env bash
set -ex
export ROCM_HOME=/opt/rocm
export MAGMA_HOME=$ROCM_HOME/magma
# TODO: libtorch_cpu.so is broken when building with Debug info
export BUILD_DEBUG_INFO=0
# TODO Are these all used/needed?
export TH_BINARY_BUILD=1
export USE_STATIC_CUDNN=1
export USE_STATIC_NCCL=1
export ATEN_STATIC_CUDA=1
export USE_CUDA_STATIC_LINK=1
export INSTALL_TEST=0 # dont install test binaries into site-packages
# Set RPATH instead of RUNPATH when using patchelf to avoid LD_LIBRARY_PATH override
export FORCE_RPATH="--force-rpath"
# Keep an array of cmake variables to add to
if [[ -z "$CMAKE_ARGS" ]]; then
# These are passed to tools/build_pytorch_libs.sh::build()
CMAKE_ARGS=()
fi
if [[ -z "$EXTRA_CAFFE2_CMAKE_FLAGS" ]]; then
# These are passed to tools/build_pytorch_libs.sh::build_caffe2()
EXTRA_CAFFE2_CMAKE_FLAGS=()
fi
# Determine ROCm version and architectures to build for
#
# NOTE: We should first check `DESIRED_CUDA` when determining `ROCM_VERSION`
if [[ -n "$DESIRED_CUDA" ]]; then
if ! echo "${DESIRED_CUDA}"| grep "^rocm" >/dev/null 2>/dev/null; then
export DESIRED_CUDA="rocm${DESIRED_CUDA}"
fi
# rocm3.7, rocm3.5.1
ROCM_VERSION="$DESIRED_CUDA"
echo "Using $ROCM_VERSION as determined by DESIRED_CUDA"
else
echo "Must set DESIRED_CUDA"
exit 1
fi
# Package directories
WHEELHOUSE_DIR="wheelhouse$ROCM_VERSION"
LIBTORCH_HOUSE_DIR="libtorch_house$ROCM_VERSION"
if [[ -z "$PYTORCH_FINAL_PACKAGE_DIR" ]]; then
if [[ -z "$BUILD_PYTHONLESS" ]]; then
PYTORCH_FINAL_PACKAGE_DIR="/remote/wheelhouse$ROCM_VERSION"
else
PYTORCH_FINAL_PACKAGE_DIR="/remote/libtorch_house$ROCM_VERSION"
fi
fi
mkdir -p "$PYTORCH_FINAL_PACKAGE_DIR" || true
# To make version comparison easier, create an integer representation.
ROCM_VERSION_CLEAN=$(echo ${ROCM_VERSION} | sed s/rocm//)
save_IFS="$IFS"
IFS=. ROCM_VERSION_ARRAY=(${ROCM_VERSION_CLEAN})
IFS="$save_IFS"
if [[ ${#ROCM_VERSION_ARRAY[@]} == 2 ]]; then
ROCM_VERSION_MAJOR=${ROCM_VERSION_ARRAY[0]}
ROCM_VERSION_MINOR=${ROCM_VERSION_ARRAY[1]}
ROCM_VERSION_PATCH=0
elif [[ ${#ROCM_VERSION_ARRAY[@]} == 3 ]]; then
ROCM_VERSION_MAJOR=${ROCM_VERSION_ARRAY[0]}
ROCM_VERSION_MINOR=${ROCM_VERSION_ARRAY[1]}
ROCM_VERSION_PATCH=${ROCM_VERSION_ARRAY[2]}
else
echo "Unhandled ROCM_VERSION ${ROCM_VERSION}"
exit 1
fi
ROCM_INT=$(($ROCM_VERSION_MAJOR * 10000 + $ROCM_VERSION_MINOR * 100 + $ROCM_VERSION_PATCH))
# Required ROCm libraries
ROCM_SO_FILES=(
"libMIOpen.so"
"libamdhip64.so"
"libhipblas.so"
"libhipfft.so"
"libhiprand.so"
"libhipsolver.so"
"libhipsparse.so"
"libhsa-runtime64.so"
"libamd_comgr.so"
"libmagma.so"
"librccl.so"
"librocblas.so"
"librocfft.so"
"librocm_smi64.so"
"librocrand.so"
"librocsolver.so"
"librocsparse.so"
"libroctracer64.so"
"libroctx64.so"
"libhipblaslt.so"
"libhiprtc.so"
)
if [[ $ROCM_INT -ge 60100 ]]; then
ROCM_SO_FILES+=("librocprofiler-register.so")
fi
if [[ $ROCM_INT -ge 60200 ]]; then
ROCM_SO_FILES+=("librocm-core.so")
fi
OS_NAME=`awk -F= '/^NAME/{print $2}' /etc/os-release`
if [[ "$OS_NAME" == *"CentOS Linux"* ]]; then
LIBGOMP_PATH="/usr/lib64/libgomp.so.1"
LIBNUMA_PATH="/usr/lib64/libnuma.so.1"
LIBELF_PATH="/usr/lib64/libelf.so.1"
LIBTINFO_PATH="/usr/lib64/libtinfo.so.5"
LIBDRM_PATH="/opt/amdgpu/lib64/libdrm.so.2"
LIBDRM_AMDGPU_PATH="/opt/amdgpu/lib64/libdrm_amdgpu.so.1"
if [[ $ROCM_INT -ge 60100 ]]; then
# Below libs are direct dependencies of libhipsolver
LIBSUITESPARSE_CONFIG_PATH="/lib64/libsuitesparseconfig.so.4"
LIBCHOLMOD_PATH="/lib64/libcholmod.so.2"
# Below libs are direct dependencies of libcholmod
LIBAMD_PATH="/lib64/libamd.so.2"
LIBCAMD_PATH="/lib64/libcamd.so.2"
LIBCCOLAMD_PATH="/lib64/libccolamd.so.2"
LIBCOLAMD_PATH="/lib64/libcolamd.so.2"
LIBSATLAS_PATH="/lib64/atlas/libsatlas.so.3"
# Below libs are direct dependencies of libsatlas
LIBGFORTRAN_PATH="/lib64/libgfortran.so.3"
LIBQUADMATH_PATH="/lib64/libquadmath.so.0"
fi
MAYBE_LIB64=lib64
elif [[ "$OS_NAME" == *"Ubuntu"* ]]; then
LIBGOMP_PATH="/usr/lib/x86_64-linux-gnu/libgomp.so.1"
LIBNUMA_PATH="/usr/lib/x86_64-linux-gnu/libnuma.so.1"
LIBELF_PATH="/usr/lib/x86_64-linux-gnu/libelf.so.1"
if [[ $ROCM_INT -ge 50300 ]]; then
LIBTINFO_PATH="/lib/x86_64-linux-gnu/libtinfo.so.6"
else
LIBTINFO_PATH="/lib/x86_64-linux-gnu/libtinfo.so.5"
fi
LIBDRM_PATH="/usr/lib/x86_64-linux-gnu/libdrm.so.2"
LIBDRM_AMDGPU_PATH="/usr/lib/x86_64-linux-gnu/libdrm_amdgpu.so.1"
if [[ $ROCM_INT -ge 60100 ]]; then
# Below libs are direct dependencies of libhipsolver
LIBCHOLMOD_PATH="/lib/x86_64-linux-gnu/libcholmod.so.3"
# Below libs are direct dependencies of libcholmod
LIBSUITESPARSE_CONFIG_PATH="/lib/x86_64-linux-gnu/libsuitesparseconfig.so.5"
LIBAMD_PATH="/lib/x86_64-linux-gnu/libamd.so.2"
LIBCAMD_PATH="/lib/x86_64-linux-gnu/libcamd.so.2"
LIBCCOLAMD_PATH="/lib/x86_64-linux-gnu/libccolamd.so.2"
LIBCOLAMD_PATH="/lib/x86_64-linux-gnu/libcolamd.so.2"
LIBMETIS_PATH="/lib/x86_64-linux-gnu/libmetis.so.5"
LIBLAPACK_PATH="/lib/x86_64-linux-gnu/liblapack.so.3"
LIBBLAS_PATH="/lib/x86_64-linux-gnu/libblas.so.3"
# Below libs are direct dependencies of libblas
LIBGFORTRAN_PATH="/lib/x86_64-linux-gnu/libgfortran.so.5"
LIBQUADMATH_PATH="/lib/x86_64-linux-gnu/libquadmath.so.0"
fi
MAYBE_LIB64=lib
fi
OS_SO_PATHS=($LIBGOMP_PATH $LIBNUMA_PATH\
$LIBELF_PATH $LIBTINFO_PATH\
$LIBDRM_PATH $LIBDRM_AMDGPU_PATH\
$LIBSUITESPARSE_CONFIG_PATH\
$LIBCHOLMOD_PATH $LIBAMD_PATH\
$LIBCAMD_PATH $LIBCCOLAMD_PATH\
$LIBCOLAMD_PATH $LIBSATLAS_PATH\
$LIBGFORTRAN_PATH $LIBQUADMATH_PATH\
$LIBMETIS_PATH $LIBLAPACK_PATH\
$LIBBLAS_PATH)
OS_SO_FILES=()
for lib in "${OS_SO_PATHS[@]}"
do
file_name="${lib##*/}" # Substring removal of path to get filename
OS_SO_FILES[${#OS_SO_FILES[@]}]=$file_name # Append lib to array
done
# PyTorch-version specific
# AOTriton dependency only for PyTorch >= 2.4
if (( $(echo "${PYTORCH_VERSION} 2.4" | awk '{print ($1 >= $2)}') )); then
ROCM_SO_FILES+=("libaotriton_v2.so")
fi
# rocBLAS library files
ROCBLAS_LIB_SRC=$ROCM_HOME/lib/rocblas/library
ROCBLAS_LIB_DST=lib/rocblas/library
ARCH=$(echo $PYTORCH_ROCM_ARCH | sed 's/;/|/g') # Replace ; seperated arch list to bar for grep
ARCH_SPECIFIC_FILES=$(ls $ROCBLAS_LIB_SRC | grep -E $ARCH)
OTHER_FILES=$(ls $ROCBLAS_LIB_SRC | grep -v gfx)
ROCBLAS_LIB_FILES=($ARCH_SPECIFIC_FILES $OTHER_FILES)
# hipblaslt library files
HIPBLASLT_LIB_SRC=$ROCM_HOME/lib/hipblaslt/library
HIPBLASLT_LIB_DST=lib/hipblaslt/library
ARCH_SPECIFIC_FILES=$(ls $HIPBLASLT_LIB_SRC | grep -E $ARCH)
OTHER_FILES=$(ls $HIPBLASLT_LIB_SRC | grep -v gfx)
HIPBLASLT_LIB_FILES=($ARCH_SPECIFIC_FILES $OTHER_FILES)
# ROCm library files
ROCM_SO_PATHS=()
for lib in "${ROCM_SO_FILES[@]}"
do
file_path=($(find $ROCM_HOME/lib/ -name "$lib")) # First search in lib
if [[ -z $file_path ]]; then
if [ -d "$ROCM_HOME/lib64/" ]; then
file_path=($(find $ROCM_HOME/lib64/ -name "$lib")) # Then search in lib64
fi
fi
if [[ -z $file_path ]]; then
file_path=($(find $ROCM_HOME/ -name "$lib")) # Then search in ROCM_HOME
fi
if [[ -z $file_path ]]; then
echo "Error: Library file $lib is not found." >&2
exit 1
fi
ROCM_SO_PATHS[${#ROCM_SO_PATHS[@]}]="$file_path" # Append lib to array
done
DEPS_LIST=(
${ROCM_SO_PATHS[*]}
${OS_SO_PATHS[*]}
)
DEPS_SONAME=(
${ROCM_SO_FILES[*]}
${OS_SO_FILES[*]}
)
DEPS_AUX_SRCLIST=(
"${ROCBLAS_LIB_FILES[@]/#/$ROCBLAS_LIB_SRC/}"
"${HIPBLASLT_LIB_FILES[@]/#/$HIPBLASLT_LIB_SRC/}"
"/opt/amdgpu/share/libdrm/amdgpu.ids"
)
DEPS_AUX_DSTLIST=(
"${ROCBLAS_LIB_FILES[@]/#/$ROCBLAS_LIB_DST/}"
"${HIPBLASLT_LIB_FILES[@]/#/$HIPBLASLT_LIB_DST/}"
"share/libdrm/amdgpu.ids"
)
# MIOpen library files
MIOPEN_SHARE_SRC=$ROCM_HOME/share/miopen/db
MIOPEN_SHARE_DST=share/miopen/db
MIOPEN_SHARE_FILES=($(ls $MIOPEN_SHARE_SRC | grep -E $ARCH))
DEPS_AUX_SRCLIST+=(${MIOPEN_SHARE_FILES[@]/#/$MIOPEN_SHARE_SRC/})
DEPS_AUX_DSTLIST+=(${MIOPEN_SHARE_FILES[@]/#/$MIOPEN_SHARE_DST/})
# RCCL library files
RCCL_SHARE_SRC=$ROCM_HOME/share/rccl/msccl-algorithms
RCCL_SHARE_DST=share/rccl/msccl-algorithms
RCCL_SHARE_FILES=($(ls $RCCL_SHARE_SRC))
DEPS_AUX_SRCLIST+=(${RCCL_SHARE_FILES[@]/#/$RCCL_SHARE_SRC/})
DEPS_AUX_DSTLIST+=(${RCCL_SHARE_FILES[@]/#/$RCCL_SHARE_DST/})
echo "PYTORCH_ROCM_ARCH: ${PYTORCH_ROCM_ARCH}"
SCRIPTPATH="$( cd "$(dirname "$0")" ; pwd -P )"
if [[ -z "$BUILD_PYTHONLESS" ]]; then
BUILD_SCRIPT=build_common.sh
else
BUILD_SCRIPT=build_libtorch.sh
fi
source $SCRIPTPATH/${BUILD_SCRIPT}

26
.ci/manywheel/test_wheel.sh Executable file
View File

@ -0,0 +1,26 @@
#!/usr/bin/env bash
set -e
yum install -y wget git
rm -rf /usr/local/cuda*
# Install Anaconda
if ! ls /py
then
echo "Miniconda needs to be installed"
wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda.sh
bash ~/miniconda.sh -b -p /py
else
echo "Miniconda is already installed"
fi
export PATH="/py/bin:$PATH"
# Anaconda token
if ls /remote/token
then
source /remote/token
fi
conda install -y conda-build anaconda-client

View File

@ -205,7 +205,8 @@ fi
if [[ "$BUILD_ENVIRONMENT" == *-clang*-asan* ]]; then
export USE_CUDA=0
export USE_ASAN=1
export UBSAN_FLAGS="-fno-sanitize-recover=all;-fno-sanitize=float-divide-by-zero;-fno-sanitize=float-cast-overflow"
export REL_WITH_DEB_INFO=1
export UBSAN_FLAGS="-fno-sanitize-recover=all"
unset USE_LLVM
fi
@ -273,7 +274,6 @@ else
# set only when building other architectures
# or building non-XLA tests.
if [[ "$BUILD_ENVIRONMENT" != *rocm* &&
"$BUILD_ENVIRONMENT" != *s390x* &&
"$BUILD_ENVIRONMENT" != *xla* ]]; then
if [[ "$BUILD_ENVIRONMENT" != *py3.8* ]]; then
# Install numpy-2.0.2 for builds which are backward compatible with 1.X

View File

@ -320,7 +320,6 @@ test_inductor_distributed() {
python test/run_test.py -i distributed/test_c10d_functional_native.py --verbose
python test/run_test.py -i distributed/_tensor/test_dtensor_compile.py --verbose
python test/run_test.py -i distributed/tensor/parallel/test_micro_pipeline_tp.py --verbose
python test/run_test.py -i distributed/_composable/test_replicate_with_compiler.py --verbose
python test/run_test.py -i distributed/_composable/fsdp/test_fully_shard_comm.py --verbose
python test/run_test.py -i distributed/_composable/fsdp/test_fully_shard_training.py -k test_train_parity_multi_group --verbose
python test/run_test.py -i distributed/_composable/fsdp/test_fully_shard_training.py -k test_train_parity_with_activation_checkpointing --verbose
@ -332,7 +331,6 @@ test_inductor_distributed() {
python test/run_test.py -i distributed/_composable/fsdp/test_fully_shard_mixed_precision.py -k test_compute_dtype --verbose
python test/run_test.py -i distributed/_composable/fsdp/test_fully_shard_mixed_precision.py -k test_reduce_dtype --verbose
python test/run_test.py -i distributed/_composable/fsdp/test_fully_shard_clip_grad_norm_.py -k test_clip_grad_norm_2d --verbose
python test/run_test.py -i distributed/_composable/fsdp/test_fully_shard_compile.py --verbose
python test/run_test.py -i distributed/fsdp/test_fsdp_tp_integration.py -k test_fsdp_tp_integration --verbose
# this runs on both single-gpu and multi-gpu instance. It should be smart about skipping tests that aren't supported

View File

@ -46,6 +46,9 @@ python -m pip install tlparse==0.3.25
# Install parameterized
python -m pip install parameterized==0.8.1
# Install pulp for testing ilps under torch\distributed\_tools
python -m pip install pulp==2.9.0
run_tests() {
# Run nvidia-smi if available
for path in '/c/Program Files/NVIDIA Corporation/NVSMI/nvidia-smi.exe' /c/Windows/System32/nvidia-smi.exe; do

View File

@ -20,7 +20,7 @@ runs:
elif [[ $runner_name_str == *"gcp"* ]]; then
echo "Runner is from Google Cloud Platform, No info on ec2 metadata"
else
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
fi
}
echo "ami-id: $(get_ec2_metadata ami-id)"

View File

@ -18,7 +18,7 @@ runs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"

View File

@ -1 +1 @@
3f0569939c4369bec943fc27d1c9d8dfbc828c26
79047bf6bdec9e32c4cffd0f9835b347781fefbf

View File

@ -1,251 +0,0 @@
# This file is generated by .github/scripts/validate_scale_config.py in test-infra
# It defines runner types that will be provisioned by by LF Self-hosted runners
# scale-config.yml:
# Powers what instance types are available for GHA auto-scaled
# runners. Runners listed here will be available as self hosted
# runners, configuration is directly pulled from the main branch.
#
#
# NOTES:
# - Linux runners are by default non-ephemeral to reduce the amount of CreateInstaces calls
# to avoid RequestLimitExceeded issues
# - When updating this file, run the following command to validate the YAML and to generate
# corresponding versions of scale-config for the pytorch/pytorch repo and merge the
# pytorch/pytorch changes before merging these changes.
# `python .github/scripts/validate_scale_config.py --test-infra-repo-root [path_to_test-infra_root] --pytorch-repo-root [path_to_pytorch_root]``
#
# TODO: Add some documentation on how the auto-scaling works
#
# NOTE: Default values,
#
# runner_types:
# runner_label:
# instance_type: m4.large
# os: linux
# max_available: 20
# disk_size: 50
# is_ephemeral: true
runner_types:
lf.c.linux.12xlarge:
disk_size: 200
instance_type: c5.12xlarge
is_ephemeral: false
max_available: 1000
os: linux
ami: al2023-ami-2023.5.202*-kernel-6.1-x86_64
lf.c.linux.10xlarge.avx2:
disk_size: 200
instance_type: m4.10xlarge
is_ephemeral: false
max_available: 450
os: linux
ami: al2023-ami-2023.5.202*-kernel-6.1-x86_64
lf.c.linux.24xl.spr-metal:
disk_size: 200
instance_type: c7i.metal-24xl
is_ephemeral: false
max_available: 150
os: linux
ami: al2023-ami-2023.5.202*-kernel-6.1-x86_64
lf.c.linux.16xlarge.spr:
disk_size: 200
instance_type: c7i.16xlarge
is_ephemeral: false
max_available: 150
os: linux
ami: al2023-ami-2023.5.202*-kernel-6.1-x86_64
lf.c.linux.9xlarge.ephemeral:
disk_size: 200
instance_type: c5.9xlarge
is_ephemeral: true
max_available: 50
os: linux
ami: al2023-ami-2023.5.202*-kernel-6.1-x86_64
variants:
am2:
ami: amzn2-ami-hvm-2.0.20240306.2-x86_64-ebs
lf.c.linux.12xlarge.ephemeral:
disk_size: 200
instance_type: c5.12xlarge
is_ephemeral: true
max_available: 300
os: linux
ami: al2023-ami-2023.5.202*-kernel-6.1-x86_64
lf.c.linux.16xlarge.nvidia.gpu:
disk_size: 150
instance_type: g3.16xlarge
is_ephemeral: false
max_available: 150
os: linux
ami: al2023-ami-2023.5.202*-kernel-6.1-x86_64
lf.c.linux.24xlarge:
disk_size: 150
instance_type: c5.24xlarge
is_ephemeral: false
max_available: 500
os: linux
ami: al2023-ami-2023.5.202*-kernel-6.1-x86_64
lf.c.linux.24xlarge.ephemeral:
disk_size: 150
instance_type: c5.24xlarge
is_ephemeral: true
max_available: 200
os: linux
ami: al2023-ami-2023.5.202*-kernel-6.1-x86_64
lf.c.linux.2xlarge:
disk_size: 150
instance_type: c5.2xlarge
is_ephemeral: false
max_available: 3120
os: linux
ami: al2023-ami-2023.5.202*-kernel-6.1-x86_64
lf.c.linux.4xlarge:
disk_size: 150
instance_type: c5.4xlarge
is_ephemeral: false
max_available: 1000
os: linux
ami: al2023-ami-2023.5.202*-kernel-6.1-x86_64
lf.c.linux.4xlarge.nvidia.gpu:
disk_size: 150
instance_type: g3.4xlarge
is_ephemeral: false
max_available: 1000
os: linux
ami: al2023-ami-2023.5.202*-kernel-6.1-x86_64
lf.c.linux.8xlarge.nvidia.gpu:
disk_size: 150
instance_type: g3.8xlarge
is_ephemeral: false
max_available: 400
os: linux
ami: al2023-ami-2023.5.202*-kernel-6.1-x86_64
lf.c.linux.g4dn.12xlarge.nvidia.gpu:
disk_size: 150
instance_type: g4dn.12xlarge
is_ephemeral: false
max_available: 250
os: linux
ami: al2023-ami-2023.5.202*-kernel-6.1-x86_64
lf.c.linux.g4dn.metal.nvidia.gpu:
disk_size: 150
instance_type: g4dn.metal
is_ephemeral: false
max_available: 300
os: linux
ami: al2023-ami-2023.5.202*-kernel-6.1-x86_64
lf.c.linux.g5.48xlarge.nvidia.gpu:
disk_size: 150
instance_type: g5.48xlarge
is_ephemeral: false
max_available: 200
os: linux
ami: al2023-ami-2023.5.202*-kernel-6.1-x86_64
lf.c.linux.g5.12xlarge.nvidia.gpu:
disk_size: 150
instance_type: g5.12xlarge
is_ephemeral: false
max_available: 150
os: linux
ami: al2023-ami-2023.5.202*-kernel-6.1-x86_64
lf.c.linux.g5.4xlarge.nvidia.gpu:
disk_size: 150
instance_type: g5.4xlarge
is_ephemeral: false
max_available: 2400
os: linux
ami: al2023-ami-2023.5.202*-kernel-6.1-x86_64
lf.c.linux.g6.4xlarge.experimental.nvidia.gpu:
disk_size: 150
instance_type: g6.4xlarge
is_ephemeral: false
max_available: 50
os: linux
ami: al2023-ami-2023.5.202*-kernel-6.1-x86_64
lf.c.linux.large:
max_available: 1200
disk_size: 15
instance_type: c5.large
is_ephemeral: false
os: linux
ami: al2023-ami-2023.5.202*-kernel-6.1-x86_64
lf.c.linux.arm64.2xlarge:
disk_size: 256
instance_type: t4g.2xlarge
is_ephemeral: false
max_available: 200
os: linux
ami: al2023-ami-2023.5.202*-kernel-6.1-arm64
lf.c.linux.arm64.m7g.4xlarge:
disk_size: 256
instance_type: m7g.4xlarge
is_ephemeral: false
max_available: 200
os: linux
ami: al2023-ami-2023.5.202*-kernel-6.1-arm64
lf.c.linux.arm64.2xlarge.ephemeral:
disk_size: 256
instance_type: t4g.2xlarge
is_ephemeral: true
max_available: 200
os: linux
ami: al2023-ami-2023.5.202*-kernel-6.1-arm64
lf.c.linux.arm64.m7g.4xlarge.ephemeral:
disk_size: 256
instance_type: m7g.4xlarge
is_ephemeral: true
max_available: 200
os: linux
ami: al2023-ami-2023.5.202*-kernel-6.1-arm64
lf.c.linux.arm64.m7g.metal:
disk_size: 256
instance_type: m7g.metal
is_ephemeral: false
max_available: 100
os: linux
ami: al2023-ami-2023.5.202*-kernel-6.1-arm64
lf.c.windows.g4dn.xlarge:
disk_size: 256
instance_type: g4dn.xlarge
is_ephemeral: true
max_available: 100
os: windows
lf.c.windows.g4dn.xlarge.nonephemeral:
disk_size: 256
instance_type: g4dn.xlarge
is_ephemeral: false
max_available: 100
os: windows
lf.c.windows.4xlarge:
disk_size: 256
instance_type: c5d.4xlarge
is_ephemeral: true
max_available: 420
os: windows
lf.c.windows.4xlarge.nonephemeral:
disk_size: 256
instance_type: c5d.4xlarge
is_ephemeral: false
max_available: 420
os: windows
lf.c.windows.8xlarge.nvidia.gpu:
disk_size: 256
instance_type: p3.2xlarge
is_ephemeral: true
max_available: 300
os: windows
lf.c.windows.8xlarge.nvidia.gpu.nonephemeral:
disk_size: 256
instance_type: p3.2xlarge
is_ephemeral: false
max_available: 150
os: windows
lf.c.windows.g5.4xlarge.nvidia.gpu:
disk_size: 256
instance_type: g5.4xlarge
is_ephemeral: false
max_available: 250
os: windows

View File

@ -33,7 +33,7 @@ runner_types:
disk_size: 200
instance_type: c5.12xlarge
is_ephemeral: false
max_available: 1000
max_available: 2000
os: linux
ami: al2023-ami-2023.5.202*-kernel-6.1-x86_64
lf.linux.10xlarge.avx2:
@ -241,7 +241,7 @@ runner_types:
disk_size: 256
instance_type: p3.2xlarge
is_ephemeral: false
max_available: 150
max_available: 300
os: windows
lf.windows.g5.4xlarge.nvidia.gpu:
disk_size: 256

View File

@ -22,6 +22,7 @@ ciflow_push_tags:
- ciflow/unstable
- ciflow/xpu
- ciflow/torchbench
- ciflow/autoformat
retryable_workflows:
- pull
- trunk

View File

@ -41,7 +41,8 @@ RC=0
if ! lintrunner --force-color --tee-json=lint.json ${ADDITIONAL_LINTRUNNER_ARGS} 2> /dev/null; then
echo ""
echo -e "\e[1m\e[36mYou can reproduce these results locally by using \`lintrunner -m origin/main\`. (If you don't get the same results, run \'lintrunner init\' to update your local linter)\e[0m"
echo -e "\e[1m\e[36mSee https://github.com/pytorch/pytorch/wiki/lintrunner for setup instructions.\e[0m"
echo -e "\e[1m\e[36mSee https://github.com/pytorch/pytorch/wiki/lintrunner for setup instructions. To apply suggested patches automatically, use the -a flag. Before pushing another commit,\e[0m"
echo -e "\e[1m\e[36mplease verify locally and ensure everything passes.\e[0m"
RC=1
fi

View File

@ -25,7 +25,7 @@ concurrency:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"

View File

@ -272,6 +272,8 @@ jobs:
docker exec -t -w "${PYTORCH_ROOT}" "${container_name}" bash -c "bash .circleci/scripts/binary_populate_env.sh"
if [[ ${BUILD_ENVIRONMENT} == *"aarch64"* ]]; then
docker exec -t "${container_name}" bash -c "bash /builder/aarch64_linux/aarch64_ci_build.sh"
elif [[ ${{ inputs.PACKAGE_TYPE }} == "manywheel" || ${{ inputs.PACKAGE_TYPE }} == "libtorch" ]]; then
docker exec -t "${container_name}" bash -c "source ${BINARY_ENV_FILE} && bash /pytorch/.ci/${{ inputs.PACKAGE_TYPE }}/build.sh"
else
docker exec -t "${container_name}" bash -c "source ${BINARY_ENV_FILE} && bash /builder/${{ inputs.PACKAGE_TYPE }}/build.sh"
fi

View File

@ -64,7 +64,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -178,7 +178,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -310,7 +310,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -425,7 +425,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -558,7 +558,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -673,7 +673,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -806,7 +806,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -921,7 +921,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -1053,7 +1053,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -1167,7 +1167,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -1299,7 +1299,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -1414,7 +1414,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -1547,7 +1547,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -1662,7 +1662,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -1795,7 +1795,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -1910,7 +1910,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -2042,7 +2042,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -2156,7 +2156,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -2288,7 +2288,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -2403,7 +2403,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -2536,7 +2536,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -2651,7 +2651,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -2784,7 +2784,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -2899,7 +2899,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -3031,7 +3031,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -3145,7 +3145,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -3277,7 +3277,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -3392,7 +3392,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -3525,7 +3525,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -3640,7 +3640,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -3773,7 +3773,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -3888,7 +3888,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"

View File

@ -61,7 +61,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -179,7 +179,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"

View File

@ -68,7 +68,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -186,7 +186,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -326,7 +326,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -445,7 +445,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -586,7 +586,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -705,7 +705,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -846,7 +846,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -965,7 +965,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"

View File

@ -61,7 +61,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -179,7 +179,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"

View File

@ -68,7 +68,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -186,7 +186,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -326,7 +326,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -445,7 +445,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -586,7 +586,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -705,7 +705,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -846,7 +846,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -965,7 +965,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"

View File

@ -65,7 +65,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -179,7 +179,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -312,7 +312,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -427,7 +427,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -561,7 +561,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -676,7 +676,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -810,7 +810,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -925,7 +925,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -1057,7 +1057,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -1171,7 +1171,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -1303,7 +1303,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -1417,7 +1417,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -1550,7 +1550,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -1665,7 +1665,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -1799,7 +1799,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -1914,7 +1914,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -2048,7 +2048,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -2163,7 +2163,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -2295,7 +2295,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -2409,7 +2409,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -2541,7 +2541,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -2655,7 +2655,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -2788,7 +2788,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -2903,7 +2903,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -3037,7 +3037,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -3152,7 +3152,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -3286,7 +3286,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -3401,7 +3401,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -3533,7 +3533,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -3647,7 +3647,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -3779,7 +3779,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -3893,7 +3893,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -4026,7 +4026,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -4141,7 +4141,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -4275,7 +4275,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -4390,7 +4390,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -4524,7 +4524,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -4639,7 +4639,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -4771,7 +4771,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"
@ -4885,7 +4885,7 @@ jobs:
# Pulled from instance metadata endpoint for EC2
# see https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html
category=$1
curl -fsSL "http://169.254.169.254/latest/meta-data/${category}"
curl -H "X-aws-ec2-metadata-token: $(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-metadata-token-ttl-seconds: 30")" -fsSL "http://169.254.169.254/latest/meta-data/${category}"
}
echo "ami-id: $(get_ec2_metadata ami-id)"
echo "instance-id: $(get_ec2_metadata instance-id)"

View File

@ -2,9 +2,9 @@ name: Apply lint suggestions
on:
pull_request:
types: [opened, synchronize, reopened]
branches: [main]
push:
tags:
- ciflow/autoformat/*
jobs:
lintrunner-autoformat:

View File

@ -25,7 +25,9 @@ jobs:
stable-branch: viable/strict
requires: '[\"pull\", \"trunk\", \"lint\", \"linux-binary\"]'
secret-bot-token: ${{ secrets.MERGEBOT_TOKEN }}
rockset-api-key: ${{ secrets.ROCKSET_API_KEY }}
clickhouse-url: ${{ secrets.CLICKHOUSE_URL }}
clickhouse-username: ${{ secrets.CLICKHOUSE_VIABLESTRICT_USERNAME }}
clickhouse-password: ${{ secrets.CLICKHOUSE_VIABLESTRICT_PASSWORD }}
- name: Authenticate to AWS with OIDC
uses: aws-actions/configure-aws-credentials@v4

View File

@ -341,19 +341,6 @@ cmake_dependent_option(
cmake_dependent_option(USE_SYSTEM_UCC "Use system-wide UCC" OFF "USE_UCC" OFF)
cmake_dependent_option(USE_C10D_UCC "USE C10D UCC" ON "USE_DISTRIBUTED;USE_UCC"
OFF)
cmake_dependent_option(
USE_GLOO "Use Gloo. Only available if USE_DISTRIBUTED is on." ON
"USE_DISTRIBUTED" OFF)
cmake_dependent_option(
USE_GLOO_WITH_OPENSSL
"Use Gloo with OpenSSL. Only available if USE_GLOO is on." OFF
"USE_GLOO AND LINUX AND NOT INTERN_BUILD_MOBILE" OFF)
cmake_dependent_option(USE_C10D_GLOO "USE C10D GLOO" ON
"USE_DISTRIBUTED;USE_GLOO" OFF)
cmake_dependent_option(USE_C10D_NCCL "USE C10D NCCL" ON
"USE_DISTRIBUTED;USE_NCCL" OFF)
cmake_dependent_option(USE_C10D_MPI "USE C10D MPI" ON "USE_DISTRIBUTED;USE_MPI"
OFF)
cmake_dependent_option(
USE_GLOO "Use Gloo. Only available if USE_DISTRIBUTED is on." ON
"USE_DISTRIBUTED" OFF)
@ -469,6 +456,7 @@ option(USE_SYSTEM_FXDIV "Use system-provided fxdiv." OFF)
option(USE_SYSTEM_BENCHMARK "Use system-provided google benchmark." OFF)
option(USE_SYSTEM_ONNX "Use system-provided onnx." OFF)
option(USE_SYSTEM_XNNPACK "Use system-provided xnnpack." OFF)
OPTION(USE_SYSTEM_NVTX "Use system-provided nvtx." OFF)
option(USE_GOLD_LINKER "Use ld.gold to link" OFF)
if(USE_SYSTEM_LIBS)
set(USE_SYSTEM_CPUINFO ON)
@ -487,6 +475,7 @@ if(USE_SYSTEM_LIBS)
if(USE_NCCL)
set(USE_SYSTEM_NCCL ON)
endif()
set(USE_SYSTEM_NVTX ON)
endif()
# /Z7 override option When generating debug symbols, CMake default to use the
@ -1096,6 +1085,10 @@ if(NOT MSVC)
append_cxx_flag_if_supported("-fno-math-errno" CMAKE_CXX_FLAGS)
append_cxx_flag_if_supported("-fno-trapping-math" CMAKE_CXX_FLAGS)
append_cxx_flag_if_supported("-Werror=format" CMAKE_CXX_FLAGS)
if(CMAKE_COMPILER_IS_GNUCXX AND CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL 13)
append_cxx_flag_if_supported("-Wno-error=dangling-reference" CMAKE_CXX_FLAGS)
append_cxx_flag_if_supported("-Wno-error=redundant-move" CMAKE_CXX_FLAGS)
endif()
else()
# skip unwanted includes from windows.h
add_compile_definitions(WIN32_LEAN_AND_MEAN)

View File

@ -116,10 +116,10 @@ aten/src/ATen/detail/MTIAHooksInterface.h @egienvalue
torch/csrc/mtia/ @egienvalue
# Profiler
torch/csrc/autograd/profiler* @aaronenyeshi @sraikund16
torch/autograd/profiler* @aaronenyeshi @sraikund16
torch/csrc/profiler/ @aaronenyeshi @sraikund16
torch/profiler/ @aaronenyeshi @sraikund16
torch/csrc/autograd/profiler* @sraikund16
torch/autograd/profiler* @sraikund16
torch/csrc/profiler/ @sraikund16
torch/profiler/ @sraikund16
# AOTDispatch tests
test/functorch/test_aotdispatch.py @ezyang @Chillee

View File

@ -39,8 +39,8 @@ class TORCH_API Context {
const Generator& defaultGenerator(Device device) {
c10::DeviceType device_type = device.type();
initCUDAIfNeeded(device_type);
initHIPIfNeeded(device_type);
lazyInitDevice(device_type);
if (device_type == at::kCPU) {
return at::detail::getDefaultCPUGenerator();
} else if (device_type == at::kCUDA) {
@ -58,6 +58,7 @@ class TORCH_API Context {
AT_ERROR(c10::DeviceTypeName(device_type), " device type not enabled.");
}
}
const AcceleratorHooksInterface& getAcceleratorHooksInterface(
std::optional<c10::DeviceType> opt_device_type = std::nullopt) {
c10::DeviceType device_type = opt_device_type.has_value()
@ -80,16 +81,17 @@ class TORCH_API Context {
c10::DeviceTypeName(device_type), " device type not an accelerator.");
}
}
Device getDeviceFromPtr(void* data, c10::DeviceType device_type) {
initCUDAIfNeeded(device_type);
initHIPIfNeeded(device_type);
initXPUIfNeeded(device_type);
lazyInitDevice(device_type);
if (device_type == at::kCPU) {
return c10::DeviceType::CPU;
} else {
return getAcceleratorHooksInterface(device_type).getDeviceFromPtr(data);
}
}
bool isPinnedPtr(
const void* data,
std::optional<c10::DeviceType> device_type = std::nullopt) {
@ -102,10 +104,20 @@ class TORCH_API Context {
}
return getAcceleratorHooksInterface(opt_device_type).isPinnedPtr(data);
}
Allocator* getPinnedMemoryAllocator(
std::optional<c10::DeviceType> device_type = std::nullopt) {
return getAcceleratorHooksInterface(device_type).getPinnedMemoryAllocator();
}
void lazyInitDevice(c10::DeviceType device_type) {
if (device_type != at::kCPU) {
c10::call_once(init_[static_cast<int8_t>(device_type)], [&] {
getAcceleratorHooksInterface(device_type).init();
});
}
}
static bool hasOpenMP();
static bool hasMKL();
static bool hasLAPACK();
@ -158,27 +170,6 @@ class TORCH_API Context {
static bool hasMAIA() {
return c10::impl::hasDeviceGuardImpl(c10::DeviceType::MAIA);
}
// defined in header so that getNonVariableType has ability to inline
// call_once check. getNonVariableType is called fairly frequently
void lazyInitCUDA() {
c10::call_once(thc_init, [&] { detail::getCUDAHooks().initCUDA(); });
}
void lazyInitHIP() {
c10::call_once(thh_init, [&] { detail::getHIPHooks().initHIP(); });
}
void lazyInitXPU() {
c10::call_once(thx_init, [&] { detail::getXPUHooks().initXPU(); });
}
void lazyInitMTIA() {
c10::call_once(th_mtia_init, [&] { detail::getMTIAHooks().initMTIA(); });
}
void lazyInitPrivateUse1() {
c10::call_once(thp_init, [&] {
if (isPrivateUse1HooksRegistered()) {
at::detail::getPrivateUse1Hooks().initPrivateUse1();
}
});
}
static const at::cuda::NVRTC& getNVRTC() {
return detail::getCUDAHooks().nvrtc();
}
@ -353,28 +344,26 @@ class TORCH_API Context {
bool allowFP16ReductionCPU() const;
void setAllowFP16ReductionCPU(bool);
// Preserved for BC
void lazyInitCUDA() {
lazyInitDevice(at::kCUDA);
}
void lazyInitHIP() {
lazyInitDevice(at::kHIP);
}
void lazyInitXPU() {
lazyInitDevice(at::kXPU);
}
void lazyInitMTIA() {
lazyInitDevice(at::kMTIA);
}
void lazyInitPrivateUse1() {
lazyInitDevice(at::kPrivateUse1);
}
private:
void initCUDAIfNeeded(c10::DeviceType p) {
if (p == c10::DeviceType::CUDA) {
lazyInitCUDA();
}
}
void initHIPIfNeeded(c10::DeviceType p) {
if (p == c10::DeviceType::HIP) {
lazyInitHIP();
}
}
void initXPUIfNeeded(c10::DeviceType p) {
if (p == c10::DeviceType::XPU) {
lazyInitXPU();
}
}
static bool checkCuBLASConfigDeterministic();
c10::once_flag thc_init;
c10::once_flag thh_init;
c10::once_flag thx_init;
c10::once_flag th_mtia_init;
c10::once_flag thp_init;
std::array<c10::once_flag, at::COMPILE_TIME_MAX_DEVICE_TYPES> init_;
bool enabled_cudnn = true;
bool deterministic_cudnn = false;
bool deterministic_mkldnn = false;

View File

@ -22,6 +22,13 @@ DLDataType getDLDataType(const Tensor& t) {
case ScalarType::UInt64:
dtype.code = DLDataTypeCode::kDLUInt;
break;
case ScalarType::Int1:
case ScalarType::Int2:
case ScalarType::Int3:
case ScalarType::Int4:
case ScalarType::Int5:
case ScalarType::Int6:
case ScalarType::Int7:
case ScalarType::Char:
dtype.code = DLDataTypeCode::kDLInt;
break;
@ -49,11 +56,7 @@ DLDataType getDLDataType(const Tensor& t) {
dtype.code = DLDataTypeCode::kDLBool;
break;
case ScalarType::ComplexHalf:
dtype.code = DLDataTypeCode::kDLComplex;
break;
case ScalarType::ComplexFloat:
dtype.code = DLDataTypeCode::kDLComplex;
break;
case ScalarType::ComplexDouble:
dtype.code = DLDataTypeCode::kDLComplex;
break;
@ -90,7 +93,7 @@ DLDataType getDLDataType(const Tensor& t) {
static DLDevice getDLDevice(const Tensor& tensor, c10::DeviceIndex device_id) {
DLDevice ctx;
ctx.device_id = static_cast<int32_t>(device_id);
ctx.device_id = static_cast<int32_t>(static_cast<unsigned char>(device_id));
switch (tensor.device().type()) {
case DeviceType::CPU:
ctx.device_type = DLDeviceType::kDLCPU;
@ -253,10 +256,12 @@ ScalarType toScalarType(const DLDataType& dtype) {
}
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
namespace {
struct ATenDLMTensor {
Tensor handle;
DLManagedTensor tensor;
DLManagedTensor tensor{};
};
} // namespace
static void deleter(DLManagedTensor* arg) {
delete static_cast<ATenDLMTensor*>(arg->manager_ctx);

View File

@ -78,8 +78,8 @@ TORCH_API void record_kernel_function_dtype(std::string name);
AT_PRIVATE_CHECK_SELECTIVE_BUILD(enum_type); \
using scalar_t = scalar_type; \
using underlying_t C10_UNUSED = typename scalar_t::underlying; \
const auto& SCALAR_TYPE C10_UNUSED = enum_type; \
const auto& UNDERLYING_TYPE C10_UNUSED = toUnderlying(enum_type); \
C10_UNUSED const auto& SCALAR_TYPE = enum_type; \
C10_UNUSED const auto& UNDERLYING_TYPE = toUnderlying(enum_type); \
return __VA_ARGS__(); \
}
@ -89,8 +89,8 @@ TORCH_API void record_kernel_function_dtype(std::string name);
AT_PRIVATE_CHECK_SELECTIVE_BUILD(enum_type); \
using scalar_t = scalar_type; \
using underlying_t C10_UNUSED = typename scalar_t::underlying; \
const auto& SCALAR_TYPE C10_UNUSED = enum_type; \
const auto& UNDERLYING_TYPE C10_UNUSED = toUnderlying(enum_type); \
C10_UNUSED const auto& SCALAR_TYPE = enum_type; \
C10_UNUSED const auto& UNDERLYING_TYPE = toUnderlying(enum_type); \
C10_UNUSED int bit_width = bitwidth; \
C10_UNUSED int64_t quant_min = qmin; \
C10_UNUSED int64_t quant_max = qmax; \

View File

@ -112,12 +112,12 @@
// Ensure we never have too many scalar types for the expansion here to
// support. To bump this, you must regenerate the macros below.
static_assert(static_cast<int>(c10::ScalarType::NumOptions) < 45);
static_assert(static_cast<int>(c10::ScalarType::NumOptions) < 60);
// Python code to regenerate generate code below:
#if 0
num_args = 45
num_args = 60
nums = ', '.join(str(i) for i in reversed(range(num_args+1)))
args = ', '.join(f'_{i}' for i in range(1, num_args+1))
@ -135,8 +135,8 @@ for i in range(1, num_args+1):
// Begin generated code
// clang-format off
#define AT_NUM_ARGS(...) AT_EXPAND(AT_NUM_ARGS_AUX(__VA_ARGS__, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0))
#define AT_NUM_ARGS_AUX(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, _41, _42, _43, _44, _45, N, ...) N
#define AT_NUM_ARGS(...) AT_EXPAND(AT_NUM_ARGS_AUX(__VA_ARGS__, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0))
#define AT_NUM_ARGS_AUX(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, _41, _42, _43, _44, _45, _46, _47, _48, _49, _50, _51, _52, _53, _54, _55, _56, _57, _58, _59, _60, N, ...) N
#define AT_AP1(N, _1) AT_DISPATCH_CASE(_1, N)
#define AT_AP2(N, _1, _2) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N)
#define AT_AP3(N, _1, _2, _3) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N)
@ -182,5 +182,21 @@ for i in range(1, num_args+1):
#define AT_AP43(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, _41, _42, _43) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N) AT_DISPATCH_CASE(_26, N) AT_DISPATCH_CASE(_27, N) AT_DISPATCH_CASE(_28, N) AT_DISPATCH_CASE(_29, N) AT_DISPATCH_CASE(_30, N) AT_DISPATCH_CASE(_31, N) AT_DISPATCH_CASE(_32, N) AT_DISPATCH_CASE(_33, N) AT_DISPATCH_CASE(_34, N) AT_DISPATCH_CASE(_35, N) AT_DISPATCH_CASE(_36, N) AT_DISPATCH_CASE(_37, N) AT_DISPATCH_CASE(_38, N) AT_DISPATCH_CASE(_39, N) AT_DISPATCH_CASE(_40, N) AT_DISPATCH_CASE(_41, N) AT_DISPATCH_CASE(_42, N) AT_DISPATCH_CASE(_43, N)
#define AT_AP44(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, _41, _42, _43, _44) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N) AT_DISPATCH_CASE(_26, N) AT_DISPATCH_CASE(_27, N) AT_DISPATCH_CASE(_28, N) AT_DISPATCH_CASE(_29, N) AT_DISPATCH_CASE(_30, N) AT_DISPATCH_CASE(_31, N) AT_DISPATCH_CASE(_32, N) AT_DISPATCH_CASE(_33, N) AT_DISPATCH_CASE(_34, N) AT_DISPATCH_CASE(_35, N) AT_DISPATCH_CASE(_36, N) AT_DISPATCH_CASE(_37, N) AT_DISPATCH_CASE(_38, N) AT_DISPATCH_CASE(_39, N) AT_DISPATCH_CASE(_40, N) AT_DISPATCH_CASE(_41, N) AT_DISPATCH_CASE(_42, N) AT_DISPATCH_CASE(_43, N) AT_DISPATCH_CASE(_44, N)
#define AT_AP45(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, _41, _42, _43, _44, _45) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N) AT_DISPATCH_CASE(_26, N) AT_DISPATCH_CASE(_27, N) AT_DISPATCH_CASE(_28, N) AT_DISPATCH_CASE(_29, N) AT_DISPATCH_CASE(_30, N) AT_DISPATCH_CASE(_31, N) AT_DISPATCH_CASE(_32, N) AT_DISPATCH_CASE(_33, N) AT_DISPATCH_CASE(_34, N) AT_DISPATCH_CASE(_35, N) AT_DISPATCH_CASE(_36, N) AT_DISPATCH_CASE(_37, N) AT_DISPATCH_CASE(_38, N) AT_DISPATCH_CASE(_39, N) AT_DISPATCH_CASE(_40, N) AT_DISPATCH_CASE(_41, N) AT_DISPATCH_CASE(_42, N) AT_DISPATCH_CASE(_43, N) AT_DISPATCH_CASE(_44, N) AT_DISPATCH_CASE(_45, N)
#define AT_AP46(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, _41, _42, _43, _44, _45, _46) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N) AT_DISPATCH_CASE(_26, N) AT_DISPATCH_CASE(_27, N) AT_DISPATCH_CASE(_28, N) AT_DISPATCH_CASE(_29, N) AT_DISPATCH_CASE(_30, N) AT_DISPATCH_CASE(_31, N) AT_DISPATCH_CASE(_32, N) AT_DISPATCH_CASE(_33, N) AT_DISPATCH_CASE(_34, N) AT_DISPATCH_CASE(_35, N) AT_DISPATCH_CASE(_36, N) AT_DISPATCH_CASE(_37, N) AT_DISPATCH_CASE(_38, N) AT_DISPATCH_CASE(_39, N) AT_DISPATCH_CASE(_40, N) AT_DISPATCH_CASE(_41, N) AT_DISPATCH_CASE(_42, N) AT_DISPATCH_CASE(_43, N) AT_DISPATCH_CASE(_44, N) AT_DISPATCH_CASE(_45, N) AT_DISPATCH_CASE(_46, N)
#define AT_AP47(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, _41, _42, _43, _44, _45, _46, _47) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N) AT_DISPATCH_CASE(_26, N) AT_DISPATCH_CASE(_27, N) AT_DISPATCH_CASE(_28, N) AT_DISPATCH_CASE(_29, N) AT_DISPATCH_CASE(_30, N) AT_DISPATCH_CASE(_31, N) AT_DISPATCH_CASE(_32, N) AT_DISPATCH_CASE(_33, N) AT_DISPATCH_CASE(_34, N) AT_DISPATCH_CASE(_35, N) AT_DISPATCH_CASE(_36, N) AT_DISPATCH_CASE(_37, N) AT_DISPATCH_CASE(_38, N) AT_DISPATCH_CASE(_39, N) AT_DISPATCH_CASE(_40, N) AT_DISPATCH_CASE(_41, N) AT_DISPATCH_CASE(_42, N) AT_DISPATCH_CASE(_43, N) AT_DISPATCH_CASE(_44, N) AT_DISPATCH_CASE(_45, N) AT_DISPATCH_CASE(_46, N) AT_DISPATCH_CASE(_47, N)
#define AT_AP48(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, _41, _42, _43, _44, _45, _46, _47, _48) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N) AT_DISPATCH_CASE(_26, N) AT_DISPATCH_CASE(_27, N) AT_DISPATCH_CASE(_28, N) AT_DISPATCH_CASE(_29, N) AT_DISPATCH_CASE(_30, N) AT_DISPATCH_CASE(_31, N) AT_DISPATCH_CASE(_32, N) AT_DISPATCH_CASE(_33, N) AT_DISPATCH_CASE(_34, N) AT_DISPATCH_CASE(_35, N) AT_DISPATCH_CASE(_36, N) AT_DISPATCH_CASE(_37, N) AT_DISPATCH_CASE(_38, N) AT_DISPATCH_CASE(_39, N) AT_DISPATCH_CASE(_40, N) AT_DISPATCH_CASE(_41, N) AT_DISPATCH_CASE(_42, N) AT_DISPATCH_CASE(_43, N) AT_DISPATCH_CASE(_44, N) AT_DISPATCH_CASE(_45, N) AT_DISPATCH_CASE(_46, N) AT_DISPATCH_CASE(_47, N) AT_DISPATCH_CASE(_48, N)
#define AT_AP49(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, _41, _42, _43, _44, _45, _46, _47, _48, _49) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N) AT_DISPATCH_CASE(_26, N) AT_DISPATCH_CASE(_27, N) AT_DISPATCH_CASE(_28, N) AT_DISPATCH_CASE(_29, N) AT_DISPATCH_CASE(_30, N) AT_DISPATCH_CASE(_31, N) AT_DISPATCH_CASE(_32, N) AT_DISPATCH_CASE(_33, N) AT_DISPATCH_CASE(_34, N) AT_DISPATCH_CASE(_35, N) AT_DISPATCH_CASE(_36, N) AT_DISPATCH_CASE(_37, N) AT_DISPATCH_CASE(_38, N) AT_DISPATCH_CASE(_39, N) AT_DISPATCH_CASE(_40, N) AT_DISPATCH_CASE(_41, N) AT_DISPATCH_CASE(_42, N) AT_DISPATCH_CASE(_43, N) AT_DISPATCH_CASE(_44, N) AT_DISPATCH_CASE(_45, N) AT_DISPATCH_CASE(_46, N) AT_DISPATCH_CASE(_47, N) AT_DISPATCH_CASE(_48, N) AT_DISPATCH_CASE(_49, N)
#define AT_AP50(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, _41, _42, _43, _44, _45, _46, _47, _48, _49, _50) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N) AT_DISPATCH_CASE(_26, N) AT_DISPATCH_CASE(_27, N) AT_DISPATCH_CASE(_28, N) AT_DISPATCH_CASE(_29, N) AT_DISPATCH_CASE(_30, N) AT_DISPATCH_CASE(_31, N) AT_DISPATCH_CASE(_32, N) AT_DISPATCH_CASE(_33, N) AT_DISPATCH_CASE(_34, N) AT_DISPATCH_CASE(_35, N) AT_DISPATCH_CASE(_36, N) AT_DISPATCH_CASE(_37, N) AT_DISPATCH_CASE(_38, N) AT_DISPATCH_CASE(_39, N) AT_DISPATCH_CASE(_40, N) AT_DISPATCH_CASE(_41, N) AT_DISPATCH_CASE(_42, N) AT_DISPATCH_CASE(_43, N) AT_DISPATCH_CASE(_44, N) AT_DISPATCH_CASE(_45, N) AT_DISPATCH_CASE(_46, N) AT_DISPATCH_CASE(_47, N) AT_DISPATCH_CASE(_48, N) AT_DISPATCH_CASE(_49, N) AT_DISPATCH_CASE(_50, N)
#define AT_AP51(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, _41, _42, _43, _44, _45, _46, _47, _48, _49, _50, _51) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N) AT_DISPATCH_CASE(_26, N) AT_DISPATCH_CASE(_27, N) AT_DISPATCH_CASE(_28, N) AT_DISPATCH_CASE(_29, N) AT_DISPATCH_CASE(_30, N) AT_DISPATCH_CASE(_31, N) AT_DISPATCH_CASE(_32, N) AT_DISPATCH_CASE(_33, N) AT_DISPATCH_CASE(_34, N) AT_DISPATCH_CASE(_35, N) AT_DISPATCH_CASE(_36, N) AT_DISPATCH_CASE(_37, N) AT_DISPATCH_CASE(_38, N) AT_DISPATCH_CASE(_39, N) AT_DISPATCH_CASE(_40, N) AT_DISPATCH_CASE(_41, N) AT_DISPATCH_CASE(_42, N) AT_DISPATCH_CASE(_43, N) AT_DISPATCH_CASE(_44, N) AT_DISPATCH_CASE(_45, N) AT_DISPATCH_CASE(_46, N) AT_DISPATCH_CASE(_47, N) AT_DISPATCH_CASE(_48, N) AT_DISPATCH_CASE(_49, N) AT_DISPATCH_CASE(_50, N) AT_DISPATCH_CASE(_51, N)
#define AT_AP52(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, _41, _42, _43, _44, _45, _46, _47, _48, _49, _50, _51, _52) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N) AT_DISPATCH_CASE(_26, N) AT_DISPATCH_CASE(_27, N) AT_DISPATCH_CASE(_28, N) AT_DISPATCH_CASE(_29, N) AT_DISPATCH_CASE(_30, N) AT_DISPATCH_CASE(_31, N) AT_DISPATCH_CASE(_32, N) AT_DISPATCH_CASE(_33, N) AT_DISPATCH_CASE(_34, N) AT_DISPATCH_CASE(_35, N) AT_DISPATCH_CASE(_36, N) AT_DISPATCH_CASE(_37, N) AT_DISPATCH_CASE(_38, N) AT_DISPATCH_CASE(_39, N) AT_DISPATCH_CASE(_40, N) AT_DISPATCH_CASE(_41, N) AT_DISPATCH_CASE(_42, N) AT_DISPATCH_CASE(_43, N) AT_DISPATCH_CASE(_44, N) AT_DISPATCH_CASE(_45, N) AT_DISPATCH_CASE(_46, N) AT_DISPATCH_CASE(_47, N) AT_DISPATCH_CASE(_48, N) AT_DISPATCH_CASE(_49, N) AT_DISPATCH_CASE(_50, N) AT_DISPATCH_CASE(_51, N) AT_DISPATCH_CASE(_52, N)
#define AT_AP53(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, _41, _42, _43, _44, _45, _46, _47, _48, _49, _50, _51, _52, _53) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N) AT_DISPATCH_CASE(_26, N) AT_DISPATCH_CASE(_27, N) AT_DISPATCH_CASE(_28, N) AT_DISPATCH_CASE(_29, N) AT_DISPATCH_CASE(_30, N) AT_DISPATCH_CASE(_31, N) AT_DISPATCH_CASE(_32, N) AT_DISPATCH_CASE(_33, N) AT_DISPATCH_CASE(_34, N) AT_DISPATCH_CASE(_35, N) AT_DISPATCH_CASE(_36, N) AT_DISPATCH_CASE(_37, N) AT_DISPATCH_CASE(_38, N) AT_DISPATCH_CASE(_39, N) AT_DISPATCH_CASE(_40, N) AT_DISPATCH_CASE(_41, N) AT_DISPATCH_CASE(_42, N) AT_DISPATCH_CASE(_43, N) AT_DISPATCH_CASE(_44, N) AT_DISPATCH_CASE(_45, N) AT_DISPATCH_CASE(_46, N) AT_DISPATCH_CASE(_47, N) AT_DISPATCH_CASE(_48, N) AT_DISPATCH_CASE(_49, N) AT_DISPATCH_CASE(_50, N) AT_DISPATCH_CASE(_51, N) AT_DISPATCH_CASE(_52, N) AT_DISPATCH_CASE(_53, N)
#define AT_AP54(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, _41, _42, _43, _44, _45, _46, _47, _48, _49, _50, _51, _52, _53, _54) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N) AT_DISPATCH_CASE(_26, N) AT_DISPATCH_CASE(_27, N) AT_DISPATCH_CASE(_28, N) AT_DISPATCH_CASE(_29, N) AT_DISPATCH_CASE(_30, N) AT_DISPATCH_CASE(_31, N) AT_DISPATCH_CASE(_32, N) AT_DISPATCH_CASE(_33, N) AT_DISPATCH_CASE(_34, N) AT_DISPATCH_CASE(_35, N) AT_DISPATCH_CASE(_36, N) AT_DISPATCH_CASE(_37, N) AT_DISPATCH_CASE(_38, N) AT_DISPATCH_CASE(_39, N) AT_DISPATCH_CASE(_40, N) AT_DISPATCH_CASE(_41, N) AT_DISPATCH_CASE(_42, N) AT_DISPATCH_CASE(_43, N) AT_DISPATCH_CASE(_44, N) AT_DISPATCH_CASE(_45, N) AT_DISPATCH_CASE(_46, N) AT_DISPATCH_CASE(_47, N) AT_DISPATCH_CASE(_48, N) AT_DISPATCH_CASE(_49, N) AT_DISPATCH_CASE(_50, N) AT_DISPATCH_CASE(_51, N) AT_DISPATCH_CASE(_52, N) AT_DISPATCH_CASE(_53, N) AT_DISPATCH_CASE(_54, N)
#define AT_AP55(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, _41, _42, _43, _44, _45, _46, _47, _48, _49, _50, _51, _52, _53, _54, _55) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N) AT_DISPATCH_CASE(_26, N) AT_DISPATCH_CASE(_27, N) AT_DISPATCH_CASE(_28, N) AT_DISPATCH_CASE(_29, N) AT_DISPATCH_CASE(_30, N) AT_DISPATCH_CASE(_31, N) AT_DISPATCH_CASE(_32, N) AT_DISPATCH_CASE(_33, N) AT_DISPATCH_CASE(_34, N) AT_DISPATCH_CASE(_35, N) AT_DISPATCH_CASE(_36, N) AT_DISPATCH_CASE(_37, N) AT_DISPATCH_CASE(_38, N) AT_DISPATCH_CASE(_39, N) AT_DISPATCH_CASE(_40, N) AT_DISPATCH_CASE(_41, N) AT_DISPATCH_CASE(_42, N) AT_DISPATCH_CASE(_43, N) AT_DISPATCH_CASE(_44, N) AT_DISPATCH_CASE(_45, N) AT_DISPATCH_CASE(_46, N) AT_DISPATCH_CASE(_47, N) AT_DISPATCH_CASE(_48, N) AT_DISPATCH_CASE(_49, N) AT_DISPATCH_CASE(_50, N) AT_DISPATCH_CASE(_51, N) AT_DISPATCH_CASE(_52, N) AT_DISPATCH_CASE(_53, N) AT_DISPATCH_CASE(_54, N) AT_DISPATCH_CASE(_55, N)
#define AT_AP56(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, _41, _42, _43, _44, _45, _46, _47, _48, _49, _50, _51, _52, _53, _54, _55, _56) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N) AT_DISPATCH_CASE(_26, N) AT_DISPATCH_CASE(_27, N) AT_DISPATCH_CASE(_28, N) AT_DISPATCH_CASE(_29, N) AT_DISPATCH_CASE(_30, N) AT_DISPATCH_CASE(_31, N) AT_DISPATCH_CASE(_32, N) AT_DISPATCH_CASE(_33, N) AT_DISPATCH_CASE(_34, N) AT_DISPATCH_CASE(_35, N) AT_DISPATCH_CASE(_36, N) AT_DISPATCH_CASE(_37, N) AT_DISPATCH_CASE(_38, N) AT_DISPATCH_CASE(_39, N) AT_DISPATCH_CASE(_40, N) AT_DISPATCH_CASE(_41, N) AT_DISPATCH_CASE(_42, N) AT_DISPATCH_CASE(_43, N) AT_DISPATCH_CASE(_44, N) AT_DISPATCH_CASE(_45, N) AT_DISPATCH_CASE(_46, N) AT_DISPATCH_CASE(_47, N) AT_DISPATCH_CASE(_48, N) AT_DISPATCH_CASE(_49, N) AT_DISPATCH_CASE(_50, N) AT_DISPATCH_CASE(_51, N) AT_DISPATCH_CASE(_52, N) AT_DISPATCH_CASE(_53, N) AT_DISPATCH_CASE(_54, N) AT_DISPATCH_CASE(_55, N) AT_DISPATCH_CASE(_56, N)
#define AT_AP57(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, _41, _42, _43, _44, _45, _46, _47, _48, _49, _50, _51, _52, _53, _54, _55, _56, _57) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N) AT_DISPATCH_CASE(_26, N) AT_DISPATCH_CASE(_27, N) AT_DISPATCH_CASE(_28, N) AT_DISPATCH_CASE(_29, N) AT_DISPATCH_CASE(_30, N) AT_DISPATCH_CASE(_31, N) AT_DISPATCH_CASE(_32, N) AT_DISPATCH_CASE(_33, N) AT_DISPATCH_CASE(_34, N) AT_DISPATCH_CASE(_35, N) AT_DISPATCH_CASE(_36, N) AT_DISPATCH_CASE(_37, N) AT_DISPATCH_CASE(_38, N) AT_DISPATCH_CASE(_39, N) AT_DISPATCH_CASE(_40, N) AT_DISPATCH_CASE(_41, N) AT_DISPATCH_CASE(_42, N) AT_DISPATCH_CASE(_43, N) AT_DISPATCH_CASE(_44, N) AT_DISPATCH_CASE(_45, N) AT_DISPATCH_CASE(_46, N) AT_DISPATCH_CASE(_47, N) AT_DISPATCH_CASE(_48, N) AT_DISPATCH_CASE(_49, N) AT_DISPATCH_CASE(_50, N) AT_DISPATCH_CASE(_51, N) AT_DISPATCH_CASE(_52, N) AT_DISPATCH_CASE(_53, N) AT_DISPATCH_CASE(_54, N) AT_DISPATCH_CASE(_55, N) AT_DISPATCH_CASE(_56, N) AT_DISPATCH_CASE(_57, N)
#define AT_AP58(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, _41, _42, _43, _44, _45, _46, _47, _48, _49, _50, _51, _52, _53, _54, _55, _56, _57, _58) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N) AT_DISPATCH_CASE(_26, N) AT_DISPATCH_CASE(_27, N) AT_DISPATCH_CASE(_28, N) AT_DISPATCH_CASE(_29, N) AT_DISPATCH_CASE(_30, N) AT_DISPATCH_CASE(_31, N) AT_DISPATCH_CASE(_32, N) AT_DISPATCH_CASE(_33, N) AT_DISPATCH_CASE(_34, N) AT_DISPATCH_CASE(_35, N) AT_DISPATCH_CASE(_36, N) AT_DISPATCH_CASE(_37, N) AT_DISPATCH_CASE(_38, N) AT_DISPATCH_CASE(_39, N) AT_DISPATCH_CASE(_40, N) AT_DISPATCH_CASE(_41, N) AT_DISPATCH_CASE(_42, N) AT_DISPATCH_CASE(_43, N) AT_DISPATCH_CASE(_44, N) AT_DISPATCH_CASE(_45, N) AT_DISPATCH_CASE(_46, N) AT_DISPATCH_CASE(_47, N) AT_DISPATCH_CASE(_48, N) AT_DISPATCH_CASE(_49, N) AT_DISPATCH_CASE(_50, N) AT_DISPATCH_CASE(_51, N) AT_DISPATCH_CASE(_52, N) AT_DISPATCH_CASE(_53, N) AT_DISPATCH_CASE(_54, N) AT_DISPATCH_CASE(_55, N) AT_DISPATCH_CASE(_56, N) AT_DISPATCH_CASE(_57, N) AT_DISPATCH_CASE(_58, N)
#define AT_AP59(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, _41, _42, _43, _44, _45, _46, _47, _48, _49, _50, _51, _52, _53, _54, _55, _56, _57, _58, _59) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N) AT_DISPATCH_CASE(_26, N) AT_DISPATCH_CASE(_27, N) AT_DISPATCH_CASE(_28, N) AT_DISPATCH_CASE(_29, N) AT_DISPATCH_CASE(_30, N) AT_DISPATCH_CASE(_31, N) AT_DISPATCH_CASE(_32, N) AT_DISPATCH_CASE(_33, N) AT_DISPATCH_CASE(_34, N) AT_DISPATCH_CASE(_35, N) AT_DISPATCH_CASE(_36, N) AT_DISPATCH_CASE(_37, N) AT_DISPATCH_CASE(_38, N) AT_DISPATCH_CASE(_39, N) AT_DISPATCH_CASE(_40, N) AT_DISPATCH_CASE(_41, N) AT_DISPATCH_CASE(_42, N) AT_DISPATCH_CASE(_43, N) AT_DISPATCH_CASE(_44, N) AT_DISPATCH_CASE(_45, N) AT_DISPATCH_CASE(_46, N) AT_DISPATCH_CASE(_47, N) AT_DISPATCH_CASE(_48, N) AT_DISPATCH_CASE(_49, N) AT_DISPATCH_CASE(_50, N) AT_DISPATCH_CASE(_51, N) AT_DISPATCH_CASE(_52, N) AT_DISPATCH_CASE(_53, N) AT_DISPATCH_CASE(_54, N) AT_DISPATCH_CASE(_55, N) AT_DISPATCH_CASE(_56, N) AT_DISPATCH_CASE(_57, N) AT_DISPATCH_CASE(_58, N) AT_DISPATCH_CASE(_59, N)
#define AT_AP60(N, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23, _24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, _41, _42, _43, _44, _45, _46, _47, _48, _49, _50, _51, _52, _53, _54, _55, _56, _57, _58, _59, _60) AT_DISPATCH_CASE(_1, N) AT_DISPATCH_CASE(_2, N) AT_DISPATCH_CASE(_3, N) AT_DISPATCH_CASE(_4, N) AT_DISPATCH_CASE(_5, N) AT_DISPATCH_CASE(_6, N) AT_DISPATCH_CASE(_7, N) AT_DISPATCH_CASE(_8, N) AT_DISPATCH_CASE(_9, N) AT_DISPATCH_CASE(_10, N) AT_DISPATCH_CASE(_11, N) AT_DISPATCH_CASE(_12, N) AT_DISPATCH_CASE(_13, N) AT_DISPATCH_CASE(_14, N) AT_DISPATCH_CASE(_15, N) AT_DISPATCH_CASE(_16, N) AT_DISPATCH_CASE(_17, N) AT_DISPATCH_CASE(_18, N) AT_DISPATCH_CASE(_19, N) AT_DISPATCH_CASE(_20, N) AT_DISPATCH_CASE(_21, N) AT_DISPATCH_CASE(_22, N) AT_DISPATCH_CASE(_23, N) AT_DISPATCH_CASE(_24, N) AT_DISPATCH_CASE(_25, N) AT_DISPATCH_CASE(_26, N) AT_DISPATCH_CASE(_27, N) AT_DISPATCH_CASE(_28, N) AT_DISPATCH_CASE(_29, N) AT_DISPATCH_CASE(_30, N) AT_DISPATCH_CASE(_31, N) AT_DISPATCH_CASE(_32, N) AT_DISPATCH_CASE(_33, N) AT_DISPATCH_CASE(_34, N) AT_DISPATCH_CASE(_35, N) AT_DISPATCH_CASE(_36, N) AT_DISPATCH_CASE(_37, N) AT_DISPATCH_CASE(_38, N) AT_DISPATCH_CASE(_39, N) AT_DISPATCH_CASE(_40, N) AT_DISPATCH_CASE(_41, N) AT_DISPATCH_CASE(_42, N) AT_DISPATCH_CASE(_43, N) AT_DISPATCH_CASE(_44, N) AT_DISPATCH_CASE(_45, N) AT_DISPATCH_CASE(_46, N) AT_DISPATCH_CASE(_47, N) AT_DISPATCH_CASE(_48, N) AT_DISPATCH_CASE(_49, N) AT_DISPATCH_CASE(_50, N) AT_DISPATCH_CASE(_51, N) AT_DISPATCH_CASE(_52, N) AT_DISPATCH_CASE(_53, N) AT_DISPATCH_CASE(_54, N) AT_DISPATCH_CASE(_55, N) AT_DISPATCH_CASE(_56, N) AT_DISPATCH_CASE(_57, N) AT_DISPATCH_CASE(_58, N) AT_DISPATCH_CASE(_59, N) AT_DISPATCH_CASE(_60, N)
// End generated code
// clang-format on

View File

@ -66,8 +66,7 @@ namespace at {
} else if (ivalue.isTensorList()) {
auto tensors = std::move(ivalue).toTensorList();
for(const auto j : c10::irange(tensors.size())) {
const auto& tensor_ref = tensors[j];
const Tensor& tensor = tensor_ref;
const Tensor& tensor = tensors[j];
if (tensor._is_zerotensor()) {
// TODO: assert requires_grad=False
//_like should not propagate zerotensor dispatch key

View File

@ -314,7 +314,7 @@ public:
*
* @return The number of elements removed. This is either '1' if an element with the key existed, or '0' if it didn't.
*/
C10_NODISCARD size_t erase(const Key& key) const;
[[nodiscard]] size_t erase(const Key& key) const;
/**
* Returns the mapped value of the element with key equivalent to key.

View File

@ -142,8 +142,8 @@ void Dict<Key, Value>::erase(iterator iter) const {
impl_->dict.erase(iter.entryRef_.iterator_);
}
template<class Key, class Value>
C10_NODISCARD size_t Dict<Key, Value>::erase(const Key& key) const {
template <class Key, class Value>
[[nodiscard]] size_t Dict<Key, Value>::erase(const Key& key) const {
return impl_->dict.erase(key);
}

View File

@ -168,8 +168,7 @@ class IListRefTagImpl<IListRefTag::Boxed, at::OptionalTensorRef>
*/
static IListRefConstRef<at::OptionalTensorRef> iterator_get(
const typename list_type::const_iterator& it) {
const auto& elem = *it;
const auto& ivalue = elem.get();
const auto& ivalue = (*it).get();
if (!ivalue.isNone()) {
const auto& tensor = ivalue.toTensor();
return (tensor.defined()) ? tensor : at::OptionalTensorRef{};

View File

@ -151,9 +151,7 @@ public:
// no safe toTensorRef method, alas)
ks = ks | ivalue.unsafeToTensorImpl()->key_set();
} else if (C10_UNLIKELY(ivalue.isTensorList())) {
const c10::List<at::Tensor> tensorlist = ivalue.toTensorList();
for (const auto& tensor_ref : tensorlist) {
const at::Tensor& tensor = tensor_ref;
for (const at::Tensor& tensor : ivalue.toTensorList()) {
ks = ks | tensor.key_set();
}
}

View File

@ -108,7 +108,7 @@ struct TORCH_API Argument {
return is_out_;
}
C10_NODISCARD const AliasInfo* alias_info() const {
[[nodiscard]] const AliasInfo* alias_info() const {
return alias_info_.get();
}

View File

@ -522,7 +522,7 @@ struct TORCH_API IValue final {
}
c10::intrusive_ptr<ivalue::Tuple> toTuple() &&;
c10::intrusive_ptr<ivalue::Tuple> toTuple() const&;
C10_NODISCARD ivalue::Tuple& toTupleRef() const;
[[nodiscard]] ivalue::Tuple& toTupleRef() const;
// Double
IValue(double d) : tag(Tag::Double) {

View File

@ -500,7 +500,7 @@ struct TORCH_API TupleElements {
return *this;
}
C10_NODISCARD c10::ArrayRef<IValue> asArrayRef() const {
[[nodiscard]] c10::ArrayRef<IValue> asArrayRef() const {
if (inlineSize_) {
return c10::ArrayRef<IValue>(elementsInline_, inlineSize_);
} else {
@ -527,15 +527,15 @@ struct TORCH_API TupleElements {
}
}
C10_NODISCARD bool empty() const {
[[nodiscard]] bool empty() const {
return inlineSize_ ? false : elementsVector_.empty();
}
C10_NODISCARD size_t size() const {
[[nodiscard]] size_t size() const {
return inlineSize_ ? inlineSize_ : elementsVector_.size();
}
C10_NODISCARD IValue& operator[](size_t idx) {
[[nodiscard]] IValue& operator[](size_t idx) {
if (inlineSize_) {
return elementsInline_[idx];
} else {
@ -543,7 +543,7 @@ struct TORCH_API TupleElements {
}
}
C10_NODISCARD const IValue& operator[](size_t idx) const {
[[nodiscard]] const IValue& operator[](size_t idx) const {
if (inlineSize_) {
return elementsInline_[idx];
} else {
@ -551,7 +551,7 @@ struct TORCH_API TupleElements {
}
}
C10_NODISCARD IValue& at(size_t idx) {
[[nodiscard]] IValue& at(size_t idx) {
if (inlineSize_) {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(inlineSize_ <= 3);
TORCH_CHECK(idx < inlineSize_, "TupleElements: invalid index Index = ", idx, "; Length = ", inlineSize_);
@ -561,7 +561,7 @@ struct TORCH_API TupleElements {
}
}
C10_NODISCARD const IValue& at(size_t idx) const {
[[nodiscard]] const IValue& at(size_t idx) const {
if (inlineSize_) {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(inlineSize_ <= 3);
TORCH_CHECK(idx < inlineSize_, "TupleElements: invalid index Index = ", idx, "; Length = ", inlineSize_);
@ -572,7 +572,7 @@ struct TORCH_API TupleElements {
}
}
C10_NODISCARD iterator begin() {
[[nodiscard]] iterator begin() {
if (inlineSize_) {
return elementsInline_;
} else {
@ -580,7 +580,7 @@ struct TORCH_API TupleElements {
}
}
C10_NODISCARD iterator end() {
[[nodiscard]] iterator end() {
if (inlineSize_) {
return elementsInline_ + inlineSize_;
} else {
@ -588,7 +588,7 @@ struct TORCH_API TupleElements {
}
}
C10_NODISCARD const_iterator begin() const {
[[nodiscard]] const_iterator begin() const {
if (inlineSize_) {
return elementsInline_;
} else {
@ -596,7 +596,7 @@ struct TORCH_API TupleElements {
}
}
C10_NODISCARD const_iterator end() const {
[[nodiscard]] const_iterator end() const {
if (inlineSize_) {
return elementsInline_ + inlineSize_;
} else {
@ -604,27 +604,27 @@ struct TORCH_API TupleElements {
}
}
C10_NODISCARD const_iterator cbegin() const {
[[nodiscard]] const_iterator cbegin() const {
return begin();
}
C10_NODISCARD const_iterator cend() const {
[[nodiscard]] const_iterator cend() const {
return end();
}
C10_NODISCARD std::vector<IValue> vec() const & {
[[nodiscard]] std::vector<IValue> vec() const& {
return asArrayRef().vec();
}
C10_NODISCARD IValue& back() {
[[nodiscard]] IValue& back() {
return *(end() - 1);
}
C10_NODISCARD const IValue& back() const {
[[nodiscard]] const IValue& back() const {
return *(end() - 1);
}
C10_NODISCARD std::vector<IValue> vec() && {
[[nodiscard]] std::vector<IValue> vec() && {
std::vector<IValue> result;
result.reserve(size());
for (auto&& iv : *this) {

View File

@ -271,9 +271,9 @@ struct VecConvert<
1,
int64_t,
2,
typename std::enable_if<
std::enable_if_t<
std::is_same_v<dst_t, int8_t> ||
std::is_same_v<dst_t, uint8_t>>::type> {
std::is_same_v<dst_t, uint8_t>>> {
static inline VectorizedN<dst_t, 1> apply(
const VectorizedN<int64_t, 2>& src) {
return VecConvert<dst_t, 1, int32_t, 1>::apply(

View File

@ -1190,8 +1190,8 @@ struct Vectorized<T, std::enable_if_t<is_zarch_implemented<T>()>> {
typename U = T,
std::enable_if_t<std::is_same<U, double>::value, int> = 0>
Vectorized<T> swapped() const {
vtype v0 = vec_permi(_vec0, _vec0, 2);
vtype v1 = vec_permi(_vec1, _vec1, 2);
vtype v0 = {_vec0[1], _vec0[0]};
vtype v1 = {_vec1[1], _vec1[0]};
return {v0, v1};
}
@ -1685,6 +1685,7 @@ std::pair<Vectorized<V>, Vectorized<V>> unpack(const Vectorized<T>& x) {
return {Vectorized<V>{vec0, vec1}, Vectorized<V>{vec2, vec3}};
}
C10_DIAGNOSTIC_PUSH_AND_IGNORED_IF_DEFINED("-Wunused-function")
template <>
std::pair<Vectorized<int16_t>, Vectorized<int16_t>> unpack<uint8_t, int16_t>(
const Vectorized<uint8_t>& x) {
@ -1702,6 +1703,7 @@ std::pair<Vectorized<int16_t>, Vectorized<int16_t>> unpack<uint8_t, int16_t>(
cast_zvector<uint16_t, int16_t>(Vectorized<uint16_t>{vec0, vec1}),
cast_zvector<uint16_t, int16_t>(Vectorized<uint16_t>{vec2, vec3})};
}
C10_DIAGNOSTIC_POP()
template <typename T, typename V = typename pack_type<T>::type>
Vectorized<V> pack(const Vectorized<T>& first, const Vectorized<T>& second) {
@ -1710,6 +1712,7 @@ Vectorized<V> pack(const Vectorized<T>& first, const Vectorized<T>& second) {
return Vectorized<V>{vec0, vec1};
}
C10_DIAGNOSTIC_PUSH_AND_IGNORED_IF_DEFINED("-Wunused-function")
template <>
Vectorized<uint8_t> pack(
const Vectorized<int16_t>& first,
@ -1718,6 +1721,7 @@ Vectorized<uint8_t> pack(
auto vec1 = vec_packsu(second.vec0(), second.vec1());
return Vectorized<uint8_t>{vec0, vec1};
}
C10_DIAGNOSTIC_POP()
} /* unnamed namespace */
@ -1735,7 +1739,7 @@ struct Vectorized<T, std::enable_if_t<is_zarch_implemented_quant<T>()>> {
return VECTOR_WIDTH / sizeof(value_type);
}
static constexpr size_t float_num_vecs() {
static constexpr int float_num_vecs() {
return size() / Vectorized<float>::size();
}
static constexpr int int_num_vecs() {
@ -2419,8 +2423,8 @@ struct Vectorized<T, std::enable_if_t<is_zarch_implemented_complex<T>()>> {
static typename Vectorized<T>::vinner_type real_neg(const typename Vectorized<T>::vinner_type &a)
{
auto a_neg = a.neg();
auto v0 = vec_permi(a_neg.vec0(), a.vec0(), 1);
auto v1 = vec_permi(a_neg.vec1(), a.vec1(), 1);
vtype v0 = {a_neg.vec0()[0], a.vec0()[1]};
vtype v1 = {a_neg.vec1()[0], a.vec1()[1]};
return { v0, v1 };
}
@ -2732,10 +2736,10 @@ std::pair<Vectorized<T>, Vectorized<T>> inline inner_interleave2(
// a = {a0, a1, a2, a3}
// b = {b0, b1, b2, b3}
using vtype = typename Vectorized<T>::vtype;
vtype ab00 = vec_permi(a.vec0(), b.vec0(), 0);
vtype ab11 = vec_permi(a.vec0(), b.vec0(), 3);
vtype ab2_00 = vec_permi(a.vec1(), b.vec1(), 0);
vtype ab2_11 = vec_permi(a.vec1(), b.vec1(), 3);
vtype ab00 = {a.vec0()[0], b.vec0()[0]};
vtype ab11 = {a.vec0()[1], b.vec0()[1]};
vtype ab2_00 = {a.vec1()[0], b.vec1()[0]};
vtype ab2_11 = {a.vec1()[1], b.vec1()[1]};
// return {a0, b0, a1, b1}
// {a2, b2, a3, b3}
return std::make_pair(
@ -2750,11 +2754,11 @@ std::pair<Vectorized<T>, Vectorized<T>> inline inner_deinterleave2(
// a = {a0, b0, a1, b1}
// b = {a2, b2, a3, b3}
using vtype = typename Vectorized<T>::vtype;
vtype aa01 = vec_permi(a.vec0(), a.vec1(), 0);
vtype aa23 = vec_permi(b.vec0(), b.vec1(), 0);
vtype aa01 = {a.vec0()[0], a.vec1()[0]};
vtype aa23 = {b.vec0()[0], b.vec1()[0]};
vtype bb_01 = vec_permi(a.vec0(), a.vec1(), 3);
vtype bb_23 = vec_permi(b.vec0(), b.vec1(), 3);
vtype bb_01 = {a.vec0()[1], a.vec1()[1]};
vtype bb_23 = {b.vec0()[1], b.vec1()[1]};
// swap lanes:
// return {a0, a1, a2, a3}
@ -2868,7 +2872,7 @@ std::pair<Vectorized<int64_t>, Vectorized<int64_t>> inline deinterleave2<
}
template <typename T>
typename std::enable_if<std::is_same<T, uint8_t>::value, at::vec::Vectorized<float>>::type
std::enable_if_t<std::is_same_v<T, uint8_t>, at::vec::Vectorized<float>>
inline convert_int8_to_float(const Vectorized<T> &src) {
// Note: this function only convert inputs number of elements equal to at::vec::Vectorized<float>.size()
// Only handle first 64 bits
@ -2878,7 +2882,7 @@ inline convert_int8_to_float(const Vectorized<T> &src) {
}
template <typename T>
typename std::enable_if<std::is_same<T, uint8_t>::value, at::vec::Vectorized<T>>::type
std::enable_if_t<std::is_same_v<T, uint8_t>, at::vec::Vectorized<T>>
inline convert_float_to_int8(const Vectorized<float> &src) {
constexpr auto min_val = std::numeric_limits<T>::min();
constexpr auto max_val = std::numeric_limits<T>::max();

View File

@ -281,9 +281,9 @@ struct VecConvert<
1,
int64_t,
2,
typename std::enable_if<
std::enable_if_t<
std::is_same_v<dst_t, int8_t> ||
std::is_same_v<dst_t, uint8_t>>::type> {
std::is_same_v<dst_t, uint8_t>>> {
static inline VectorizedN<dst_t, 1> apply(
const VectorizedN<int64_t, 2>& src) {
return VecConvert<dst_t, 1, int32_t, 1>::apply(

View File

@ -84,9 +84,9 @@ struct VecMaskLoad<
dst_n,
mask_t,
dst_n,
typename std::enable_if<
std::enable_if_t<
std::is_same_v<data_t, BFloat16> ||
std::is_same_v<data_t, Half>>::type> {
std::is_same_v<data_t, Half>>> {
static inline VectorizedN<data_t, dst_n> apply(
const data_t* ptr,
const VecMask<mask_t, dst_n>& vec_mask) {
@ -151,9 +151,9 @@ struct VecMaskLoad<
1,
mask_t,
1,
typename std::enable_if<
std::enable_if_t<
std::is_same_v<data_t, int8_t> ||
std::is_same_v<data_t, uint8_t>>::type> {
std::is_same_v<data_t, uint8_t>>> {
static inline VectorizedN<data_t, 1> apply(
const data_t* ptr,
const VecMask<mask_t, 1>& vec_mask) {
@ -173,9 +173,9 @@ struct VecMaskLoad<
2,
mask_t,
1,
typename std::enable_if<
std::enable_if_t<
std::is_same_v<data_t, int64_t> ||
std::is_same_v<data_t, double>>::type> {
std::is_same_v<data_t, double>>> {
static inline VectorizedN<data_t, 2> apply(
const data_t* ptr,
const VecMask<mask_t, 1>& vec_mask) {

View File

@ -10,7 +10,7 @@ TensorBase empty_cuda(
ScalarType dtype,
std::optional<Device> device_opt,
std::optional<c10::MemoryFormat> memory_format_opt) {
at::globalContext().lazyInitCUDA();
at::globalContext().lazyInitDevice(c10::DeviceType::CUDA);
const auto device = device_or_default(device_opt);
TORCH_INTERNAL_ASSERT(device.is_cuda());
const DeviceGuard device_guard(device);
@ -50,7 +50,7 @@ TensorBase empty_strided_cuda(
IntArrayRef stride,
ScalarType dtype,
std::optional<Device> device_opt) {
at::globalContext().lazyInitCUDA();
at::globalContext().lazyInitDevice(c10::DeviceType::CUDA);
const auto device = device_or_default(device_opt);
TORCH_INTERNAL_ASSERT(device.is_cuda());
const DeviceGuard device_guard(device);

View File

@ -162,7 +162,7 @@ constexpr const char* _cusolver_backend_suggestion = \
CUresult __err = EXPR; \
if (__err != CUDA_SUCCESS) { \
const char* err_str; \
CUresult get_error_str_err C10_UNUSED = at::globalContext().getNVRTC().cuGetErrorString(__err, &err_str); \
C10_UNUSED CUresult get_error_str_err = at::globalContext().getNVRTC().cuGetErrorString(__err, &err_str); \
if (get_error_str_err != CUDA_SUCCESS) { \
AT_ERROR("CUDA driver error: unknown error"); \
} else { \

View File

@ -34,7 +34,7 @@ void init_p2p_access_cache(int64_t num_devices) {
} // namespace detail
bool get_p2p_access(int dev, int dev_to_access) {
at::globalContext().lazyInitCUDA();
at::globalContext().lazyInitDevice(c10::DeviceType::CUDA);
TORCH_CHECK(dev >= 0 || dev < num_devices_,
dev, " is not a device");

View File

@ -84,7 +84,7 @@ struct _Initializer {
// NB: deleter is dynamic, because we need it to live in a separate
// compilation unit (alt is to have another method in hooks, but
// let's not if we don't need to!)
void CUDAHooks::initCUDA() const {
void CUDAHooks::init() const {
C10_LOG_API_USAGE_ONCE("aten.init.cuda");
// Force the update to enable unit testing. This code get executed before unit tests
// have a chance to enable vitals.

View File

@ -19,7 +19,7 @@ TORCH_CUDA_CPP_API void set_magma_init_fn(void (*magma_init_fn)());
// The real implementation of CUDAHooksInterface
struct CUDAHooks : public at::CUDAHooksInterface {
CUDAHooks(at::CUDAHooksArgs) {}
void initCUDA() const override;
void init() const override;
Device getDeviceFromPtr(void* data) const override;
bool isPinnedPtr(const void* data) const override;
const Generator& getDefaultCUDAGenerator(DeviceIndex device_index = -1) const override;

View File

@ -19,6 +19,10 @@ struct TORCH_API AcceleratorHooksInterface {
// Whether the device at device_index is fully initialized or not.
virtual bool hasPrimaryContext(DeviceIndex device_index) const = 0;
virtual void init() const {
TORCH_CHECK(false, "Backend doesn`t support init()");
}
virtual DeviceIndex deviceCount() const {
return 0;
}

View File

@ -65,7 +65,7 @@ struct TORCH_API CUDAHooksInterface : AcceleratorHooksInterface {
~CUDAHooksInterface() override = default;
// Initialize THCState and, transitively, the CUDA state
virtual void initCUDA() const {
void init() const override {
TORCH_CHECK(false, "Cannot initialize CUDA without ATen_cuda library. ", CUDA_HELP);
}

View File

@ -26,9 +26,8 @@ struct TORCH_API HIPHooksInterface : AcceleratorHooksInterface {
// squelch -Werror=non-virtual-dtor
~HIPHooksInterface() override = default;
// Initialize the HIP library state
virtual void initHIP() const {
AT_ERROR("Cannot initialize HIP without ATen_hip library.");
void init() const override {
TORCH_CHECK(false, "Cannot initialize HIP without ATen_hip library.");
}
virtual std::unique_ptr<c10::GeneratorImpl> initHIPGenerator(Context*) const {

View File

@ -1,14 +1,25 @@
#pragma once
#include <ATen/core/Generator.h>
#include <ATen/detail/AcceleratorHooksInterface.h>
#include <c10/core/Allocator.h>
#include <c10/util/Exception.h>
#include <c10/util/Registry.h>
namespace at {
struct TORCH_API IPUHooksInterface {
virtual ~IPUHooksInterface() = default;
struct TORCH_API IPUHooksInterface: AcceleratorHooksInterface {
~IPUHooksInterface() override = default;
void init() const override {
TORCH_CHECK(false, "Cannot initialize IPU without ATen_ipu library.");
}
bool hasPrimaryContext(DeviceIndex device_index) const override {
TORCH_CHECK(false, "Cannot initialize IPU without ATen_ipu library.");
return false;
}
virtual const Generator& getDefaultIPUGenerator(
DeviceIndex device_index [[maybe_unused]] = -1) const {

View File

@ -3,13 +3,24 @@
#include <c10/util/Exception.h>
#include <c10/util/Registry.h>
#include <ATen/detail/AcceleratorHooksInterface.h>
// NB: Class must live in `at` due to limitations of Registry.h.
namespace at {
struct TORCH_API MAIAHooksInterface {
struct TORCH_API MAIAHooksInterface : AcceleratorHooksInterface {
// This should never actually be implemented, but it is used to
// squelch -Werror=non-virtual-dtor
virtual ~MAIAHooksInterface() = default;
~MAIAHooksInterface() override = default;
void init() const override {
TORCH_CHECK(false, "Cannot initialize MAIA without ATen_maia library.");
}
bool hasPrimaryContext(DeviceIndex device_index) const override {
TORCH_CHECK(false, "Cannot initialize MAIA without ATen_maia library.");
return false;
}
virtual std::string showConfig() const {
TORCH_CHECK(false, "Cannot query detailed MAIA version information.");

View File

@ -22,7 +22,7 @@ struct TORCH_API MPSHooksInterface : AcceleratorHooksInterface {
~MPSHooksInterface() override = default;
// Initialize the MPS library state
virtual void initMPS() const {
void init() const override {
FAIL_MPSHOOKS_FUNC(__func__);
}
virtual bool hasMPS() const {

View File

@ -31,7 +31,7 @@ struct TORCH_API MTIAHooksInterface : AcceleratorHooksInterface {
~MTIAHooksInterface() override = default;
virtual void initMTIA() const {
void init() const override {
// Avoid logging here, since MTIA needs init devices first then it will know
// how many devices are available. Make it as no-op if mtia extension is not
// dynamically loaded.

View File

@ -40,7 +40,7 @@ struct TORCH_API PrivateUse1HooksInterface : AcceleratorHooksInterface {
"You should register `PrivateUse1HooksInterface` for PrivateUse1 before call `hasPrimaryContext`.");
}
virtual void initPrivateUse1() const {}
void init() const override {}
virtual void resizePrivateUse1Bytes(
const c10::Storage& storage,
size_t newsize) const {

View File

@ -14,10 +14,8 @@ namespace at {
struct TORCH_API XPUHooksInterface : AcceleratorHooksInterface{
~XPUHooksInterface() override = default;
virtual void initXPU() const {
TORCH_CHECK(
false,
"Cannot initialize XPU without ATen_xpu library.");
void init() const override {
TORCH_CHECK(false, "Cannot initialize XPU without ATen_xpu library.");
}
virtual bool hasXPU() const {

View File

@ -36,7 +36,9 @@ id<MTLLibrary> MPSDevice::getMetalIndexingLibrary() {
if (isMacOS13Plus(MacOSVersion::MACOS_VER_15_0_PLUS)) {
options.mathMode = MTLMathModeFast;
} else {
C10_DIAGNOSTIC_PUSH_AND_IGNORED_IF_DEFINED("-Wdeprecated-declarations")
[options setFastMathEnabled:YES];
C10_DIAGNOSTIC_POP()
}
_mtl_indexing_library = [_mtl_device newLibraryWithSource:[NSString stringWithCString:mps::indexing_metal_shaders
encoding:NSASCIIStringEncoding]

View File

@ -12,7 +12,7 @@ namespace at::mps {
// The real implementation of MPSHooksInterface
struct MPSHooks : public at::MPSHooksInterface {
MPSHooks(at::MPSHooksArgs) {}
void initMPS() const override;
void init() const override;
// MPSDevice interface
bool hasMPS() const override;

View File

@ -10,7 +10,7 @@
namespace at::mps {
void MPSHooks::initMPS() const {
void MPSHooks::init() const {
C10_LOG_API_USAGE_ONCE("aten.init.mps");
// TODO: initialize MPS devices and streams here
}

View File

@ -106,7 +106,7 @@ bool is_fast_path(const Tensor& src, const std::optional<Tensor>& scale, Tensor&
// index_add (using add_indices as the index), without creating an intermediary
// tensor to hold the selected embeddings
template <typename data_t, typename index_t>
static typename std::enable_if<std::is_same<data_t, double>::value, void>::type
static std::enable_if_t<std::is_same_v<data_t, double>, void>
index_select_add(
const Tensor& select_indices,
const Tensor& add_indices,
@ -184,10 +184,9 @@ void fbgemm_spmdm_report_error_(
} // namespace
template <typename data_t, typename index_t>
typename std::enable_if<
std::is_same<data_t, at::Half>::value ||
std::is_same<data_t, at::BFloat16>::value,
void>::type
std::enable_if_t<
std::is_same_v<data_t, at::Half> || std::is_same_v<data_t, at::BFloat16>,
void>
index_select_add(
const Tensor& select_indices,
const Tensor& add_indices,
@ -366,7 +365,7 @@ index_select_add(
}
}
template<typename data_t, typename index_t>
typename std::enable_if<std::is_same<data_t, float>::value, void>::type
std::enable_if_t<std::is_same_v<data_t, float>, void>
index_select_add(const Tensor &select_indices,
const Tensor &add_indices,
const Tensor &src,
@ -493,7 +492,7 @@ index_select_add(const Tensor &select_indices,
// mul (scaling by per_sample_weights)
// index_add (using add_indices as the index)
template <typename data_t, typename index_t>
static typename std::enable_if<std::is_same<data_t, double>::value, void>::type
static std::enable_if_t<std::is_same_v<data_t, double>, void>
index_select_scale_add(
const Tensor& select_indices,
const Tensor& add_indices,
@ -548,10 +547,9 @@ index_select_scale_add(
}
template <typename data_t, typename index_t>
typename std::enable_if<
std::is_same<data_t, at::Half>::value ||
std::is_same<data_t, at::BFloat16>::value,
void>::type
std::enable_if_t<
std::is_same_v<data_t, at::Half> || std::is_same_v<data_t, at::BFloat16>,
void>
index_select_scale_add(
const Tensor& select_indices,
const Tensor& add_indices,
@ -741,7 +739,7 @@ index_select_scale_add(
}
}
template<typename data_t, typename index_t>
typename std::enable_if<std::is_same<data_t, float>::value, void>::type
std::enable_if_t<std::is_same_v<data_t, float>, void>
index_select_scale_add(const Tensor &select_indices,
const Tensor &add_indices,
const Tensor &scale,

View File

@ -14,7 +14,7 @@ static void invalid_mask(const Tensor & self, int64_t idx, const Tensor & mask,
}
static C10_UNUSED std::vector<Tensor> expandTensors(const Tensor & self, IOptTensorListRef indices) {
C10_UNUSED static std::vector<Tensor> expandTensors(const Tensor & self, IOptTensorListRef indices) {
// If indices come in as ByteTensor or BoolTensor (masks), expand them into the equivalent indexing by LongTensors
std::vector<Tensor> result;
for (const auto& index_opt : indices) {
@ -48,7 +48,7 @@ static C10_UNUSED std::vector<Tensor> expandTensors(const Tensor & self, IOptTen
return result;
}
static C10_UNUSED void checkIndexTensorTypes(IOptTensorListRef indices, bool allow_int=false) {
C10_UNUSED static void checkIndexTensorTypes(IOptTensorListRef indices, bool allow_int=false) {
for (const auto& tensor : indices) {
if (tensor.has_value() && tensor->defined()) {
auto scalarType = tensor->scalar_type();
@ -83,7 +83,7 @@ inline torch::List<std::optional<Tensor>> toListOfOptionalTensors(ArrayRef<IValu
return result;
}
static C10_UNUSED bool hasContiguousSubspace(TensorList tl) {
C10_UNUSED static bool hasContiguousSubspace(TensorList tl) {
// true if all the non-null tensors are adjacent
auto isDefined = [](const Tensor & tensor){ return tensor.defined(); };
auto isNull = [](const Tensor & tensor){ return !tensor.defined(); };
@ -100,7 +100,7 @@ static C10_UNUSED bool hasContiguousSubspace(TensorList tl) {
// transposeToFront(tensor, {nullptr, a, nullptr, b})
// returns
// tensor.permute([1, 3, 0, 2]), {a, b, nullptr, nullptr}
static C10_UNUSED std::tuple<Tensor, std::vector<Tensor>>
C10_UNUSED static std::tuple<Tensor, std::vector<Tensor>>
transposeToFront(const Tensor& self, TensorList indices) {
std::vector<int64_t> dims;
std::vector<Tensor> transposedIndices;

View File

@ -3,6 +3,7 @@
#include <ATen/AccumulateType.h>
#include <ATen/NumericUtils.h>
#include <ATen/jiterator_macros.h>
#include <c10/macros/Macros.h>
#include <c10/util/BFloat16.h>
#include <c10/util/Half.h>
#include <c10/util/MathConstants.h>
@ -3071,14 +3072,14 @@ inline C10_HOST_DEVICE T hermite_polynomial_h_forward(T x, int64_t n) {
return r;
} // hermite_polynomial_h_forward(T x, int64_t n)
template<typename T, bool is_cuda=false, std::enable_if_t<!std::is_floating_point<T>::value, int> = 0>
template<typename T, bool is_cuda=false, std::enable_if_t<!std::is_floating_point_v<T>, int> = 0>
inline C10_HOST_DEVICE T hermite_polynomial_h_forward(T x, T n) {
return hermite_polynomial_h_forward(x, static_cast<int64_t>(n));
} // hermite_polynomial_h_forward(T x, T n)
template<typename T, bool is_cuda=false, std::enable_if_t<std::is_floating_point<T>::value, int> = 0>
inline C10_HOST_DEVICE T hermite_polynomial_h_forward(T x, T n) {
return hermite_polynomial_h_forward(x, ((!std::isinf(n)) && (!std::isnan(n))) ? static_cast<int64_t>(n) : static_cast<int64_t>(-1));
template<typename T, bool is_cuda=false, std::enable_if_t<std::is_floating_point_v<T>, int> = 0>
__ubsan_ignore_float_cast_overflow__ inline C10_HOST_DEVICE T hermite_polynomial_h_forward(T x, T n) {
return hermite_polynomial_h_forward(x, (!std::isinf(n) && !std::isnan(n)) ? static_cast<int64_t>(n) : static_cast<int64_t>(-1));
} // hermite_polynomial_h_forward(T x, T n)
template<typename T>

View File

@ -23,7 +23,7 @@ namespace native {
// e.g. since 2**-1==0.5, the truncated integral result is zero. 1**negative_exponent is the
// only non-zero result.
template <class T,
typename std::enable_if<std::is_integral<T>::value, T>::type* = nullptr>
std::enable_if_t<std::is_integral_v<T>, T>* = nullptr>
inline HOST_DEVICE __ubsan_ignore_signed_int_overflow__ T powi_impl(T a, T b) {
T result = 1;
while (b) {
@ -37,13 +37,13 @@ inline HOST_DEVICE __ubsan_ignore_signed_int_overflow__ T powi_impl(T a, T b) {
}
template <class T,
typename std::enable_if<std::is_integral<T>::value && !std::is_signed<T>::value, T>::type* = nullptr>
std::enable_if_t<std::is_integral_v<T> && !std::is_signed_v<T>, T>* = nullptr>
inline HOST_DEVICE T powi(T a, T b) {
return powi_impl(a, b);
}
template <class T,
typename std::enable_if<std::is_integral<T>::value && std::is_signed<T>::value, T>::type* = nullptr>
std::enable_if_t<std::is_integral_v<T> && std::is_signed_v<T>, T>* = nullptr>
inline HOST_DEVICE T powi(T a, T b) {
if ( b < 0 ) {
if ( a == 1 ) {

View File

@ -179,7 +179,7 @@ struct CellParams : public CellParamsBase {
const Tensor& _b_ih,
const Tensor& _b_hh,
const Tensor& _w_hr)
: w_ih(_w_ih), w_hh(_w_hh), b_ih_(_b_ih), b_hh_(_b_hh), w_hr(_w_hr) {};
: w_ih(_w_ih), w_hh(_w_hh), b_ih_(_b_ih), b_hh_(_b_hh), w_hr(_w_hr) {}
const Tensor& w_ih;
const Tensor& w_hh;
@ -825,7 +825,7 @@ struct FullLayer : Layer<Tensor, hidden_type, cell_params> {
using unstacked_output_type = LayerOutput<std::vector<Tensor>, hidden_type>;
FullLayer(Cell<hidden_type, cell_params>& cell)
: cell_(cell) {};
: cell_(cell) {}
unstacked_output_type operator()(
const std::vector<Tensor>& step_inputs,
@ -870,7 +870,7 @@ struct FullBidirectionalLayer
using output_type = typename Layer<Tensor, hidden_type, param_type>::output_type;
FullBidirectionalLayer(Cell<dir_hidden_type, cell_params>& cell)
: layer_(cell) {};
: layer_(cell) {}
output_type operator()(
const Tensor& input,
@ -922,7 +922,7 @@ struct PackedLayer : Layer<PackedSequence, hidden_type, cell_params> {
typename Layer<PackedSequence, hidden_type, cell_params>::output_type;
PackedLayer(Cell<hidden_type, cell_params>& cell)
: cell_(cell) {};
: cell_(cell) {}
output_type operator()(
const PackedSequence& input,
@ -983,7 +983,7 @@ struct ReversedPackedLayer : Layer<PackedSequence, hidden_type, cell_params> {
typename Layer<PackedSequence, hidden_type, cell_params>::output_type;
ReversedPackedLayer(Cell<hidden_type, cell_params>& cell)
: cell_(cell) {};
: cell_(cell) {}
output_type operator()(
const PackedSequence& input,
@ -1040,7 +1040,7 @@ struct PackedBidirectionalLayer
typename Layer<PackedSequence, hidden_type, param_type>::output_type;
PackedBidirectionalLayer(Cell<dir_hidden_type, cell_params>& cell)
: layer_(cell), rev_layer_(cell) {};
: layer_(cell), rev_layer_(cell) {}
output_type operator()(
const PackedSequence& input,
@ -1889,7 +1889,7 @@ static DEFINE_QUANTIZED_RNN_CELL_DYNAMIC(quantized_rnn_tanh_cell_dynamic, simple
namespace {
static C10_UNUSED auto ensure_linear_params_registered = register_linear_params();
C10_UNUSED static auto ensure_linear_params_registered = register_linear_params();
static auto cell_params_base_registry =
torch::selective_class_<CellParamsBase>("rnn", TORCH_SELECTIVE_CLASS("CellParamsBase"))

View File

@ -753,11 +753,11 @@ Tensor cumprod_backward(const Tensor& grad, const Tensor& input, int64_t dim, co
namespace {
#ifdef _MSC_VER
template<typename T>
inline typename std::enable_if<std::is_integral<T>::value, bool>::type isnan_(T x) {
inline std::enable_if_t<std::is_integral_v<T>, bool> isnan_(T x) {
return false;
}
template<typename T>
inline typename std::enable_if<!std::is_integral<T>::value, bool>::type isnan_(T x) {
inline std::enable_if_t<!std::is_integral_v<T>, bool> isnan_(T x) {
return std::isnan(x);
}
#else

View File

@ -207,7 +207,7 @@ inline TensorIterator make_reduction(
return TensorIterator::reduce_op(viewed_result, self.to(in_dtype));
}
inline C10_UNUSED TensorIterator make_reduction(
C10_UNUSED inline TensorIterator make_reduction(
const char* name, Tensor& result, const Tensor& self,
at::OptionalIntArrayRef dim, bool keepdim, ScalarType out_dtype) {
// special case for type promotion in mixed precision, improves computational
@ -259,7 +259,7 @@ inline TensorIterator make_reduction(
return TensorIterator::reduce_op(viewed_result1, viewed_result2, self.to(dtype1));
}
inline C10_UNUSED TensorIterator make_reduction(
C10_UNUSED inline TensorIterator make_reduction(
const char* name, Tensor& result1, Tensor& result2, const Tensor& self,
at::OptionalIntArrayRef dim, bool keepdim, ScalarType dtype) {
return make_reduction(name, result1, result2, self, dim, keepdim, dtype, dtype);
@ -313,7 +313,7 @@ inline std::vector<int64_t> get_zero_numel_tensor_size(
// This function should be called when you are reducing a zero-numel tensor and want to
// resize the output and return it. This function exists for resizing zero-numel
// tensors when the size of the reduction dimension is non-zero.
inline C10_UNUSED void zero_numel_tensor_resize(Tensor& result, Tensor& result_indices,
C10_UNUSED inline void zero_numel_tensor_resize(Tensor& result, Tensor& result_indices,
const Tensor& self, const int64_t dim,
const bool keepdim, const char *fn_name) {
auto sizes = get_zero_numel_tensor_size(self, dim, keepdim, fn_name);
@ -349,7 +349,7 @@ inline ScalarType get_dtype_from_result(Tensor& result, std::optional<ScalarType
namespace at::meta {
inline C10_UNUSED DimVector get_reduction_shape(
C10_UNUSED inline DimVector get_reduction_shape(
const Tensor& self,
IntArrayRef dims,
bool keepdim,
@ -434,7 +434,7 @@ inline TensorIterator make_reduction(
return TensorIterator::reduce_op(viewed_result1, viewed_result2, self.to(dtype1));
}
inline C10_UNUSED TensorIterator make_reduction_from_out_ty(
C10_UNUSED inline TensorIterator make_reduction_from_out_ty(
const Tensor& self,
const Tensor& result,
OptionalIntArrayRef opt_dims,

View File

@ -52,7 +52,7 @@ inline void gather_shape_check(const Tensor& self, int64_t dim,
ensure_nonempty_size(index, i) <= ensure_nonempty_size(self, i),
"Size does not match at dimension ", i,
" expected index ", index.sizes(),
" to be smaller than self ", self.sizes(),
" to be no larger than self ", self.sizes(),
" apart from dimension ", dim
);
}
@ -109,15 +109,15 @@ inline void scatter_shape_check(
TORCH_CHECK(!is_wrong_shape,
"Expected index ", index.sizes(),
" to be smaller than self ", self.sizes(),
" to be no larger than self ", self.sizes(),
" apart from dimension ", dim,
" and to be smaller size than src ", src.sizes()
" and to be no larger size than src ", src.sizes()
);
}
else {
TORCH_CHECK(!is_wrong_shape,
"Expected index ", index.sizes(),
" to be smaller than self ", self.sizes(),
" to be no larger than self ", self.sizes(),
" apart from dimension ", dim
);
}

View File

@ -216,15 +216,6 @@
#include <vector>
namespace at::meta {
inline void cat_check_no_zero_dim(const MaterializedITensorListRef& tensors) {
size_t i = 0;
for (const Tensor& t : tensors) {
TORCH_CHECK(
t.dim() > 0,
"zero-dimensional tensor (at position ", i, ") cannot be concatenated");
i++;
}
}
inline c10::MemoryFormat cat_compute_output_memory_format(const MaterializedITensorListRef& inputs) {
std::optional<c10::MemoryFormat> format = std::nullopt;
@ -248,7 +239,7 @@ TORCH_PRECOMPUTE_META_FUNC(cat)(const ITensorListRef& tensors, int64_t dim) {
// size (i.e. other empty sizes are not skipped).
auto materialized = tensors.materialize();
cat_check_no_zero_dim(materialized);
native::check_cat_no_zero_dim(materialized);
dim = at::legacy_cat_wrap_dim(dim, materialized);
// Checking names before the actual dimensions.

View File

@ -30,7 +30,7 @@ inline void check_cat_shape_except_dim(const Tensor & first, const Tensor & seco
}
inline void check_cat_no_zero_dim(const MaterializedITensorListRef& tensors) {
int64_t i = 0;
[[maybe_unused]] int64_t i = 0;
for(const Tensor& t : tensors) {
TORCH_CHECK(t.dim() > 0,
"zero-dimensional tensor (at position ", i, ") cannot be concatenated");

View File

@ -29,7 +29,7 @@ namespace {
// grad_in does not mean that it is a gradient wrt to input,
// grad_in/grad_out is just an input/output of unfold_backward kernel.
static C10_UNUSED TensorIterator _make_unfold_backward_iter_over_grad_out(
C10_UNUSED static TensorIterator _make_unfold_backward_iter_over_grad_out(
Tensor& grad_out,
const Tensor& grad_in,
int64_t dim,

View File

@ -103,7 +103,7 @@ DECLARE_DISPATCH(upsampling_bicubic2d, upsample_bicubic2d_kernel);
DECLARE_DISPATCH(_upsampling_bicubic2d_aa, _upsample_bicubic2d_aa_kernel);
DECLARE_DISPATCH(_upsampling_bicubic2d_aa, _upsample_bicubic2d_aa_backward_kernel);
inline C10_UNUSED std::array<int64_t, 3> upsample_1d_common_check(IntArrayRef input_size, IntArrayRef output_size) {
C10_UNUSED inline std::array<int64_t, 3> upsample_1d_common_check(IntArrayRef input_size, IntArrayRef output_size) {
TORCH_CHECK(
output_size.size() == 1,
"It is expected output_size equals to 1, but got size ",
@ -131,7 +131,7 @@ inline C10_UNUSED std::array<int64_t, 3> upsample_1d_common_check(IntArrayRef in
return {nbatch, channels, output_width};
}
inline C10_UNUSED std::array<int64_t, 4> upsample_2d_common_check(IntArrayRef input_size, IntArrayRef output_size) {
C10_UNUSED inline std::array<int64_t, 4> upsample_2d_common_check(IntArrayRef input_size, IntArrayRef output_size) {
TORCH_CHECK(
output_size.size() == 2,
"It is expected output_size equals to 2, but got size ",
@ -167,7 +167,7 @@ inline C10_UNUSED std::array<int64_t, 4> upsample_2d_common_check(IntArrayRef in
return {nbatch, channels, output_height, output_width};
}
inline C10_UNUSED
C10_UNUSED inline
std::array<int64_t, 5> upsample_3d_common_check(IntArrayRef input_size, IntArrayRef output_size) {
TORCH_CHECK(
output_size.size() == 3,

View File

@ -40,7 +40,7 @@ int register_linear_params() {
}
namespace {
static C10_UNUSED auto linear_params = register_linear_params();
C10_UNUSED static auto linear_params = register_linear_params();
} // namespace
}} // namespace ao::sparse

View File

@ -96,7 +96,7 @@ auto sum(int64_t N, Func f) {
}
template <typename scalar_t, typename opmath_t>
typename std::enable_if<std::is_same<scalar_t, opmath_t>::value, void>::type
std::enable_if_t<std::is_same_v<scalar_t, opmath_t>, void>
gemm_notrans_(
int64_t m,
int64_t n,
@ -132,7 +132,7 @@ gemm_notrans_(
// std::is_same<scalar_t, at::BFloat16> || std::is_same<scalar_t, at::Half>
template <typename scalar_t, typename opmath_t>
typename std::enable_if<!std::is_same<scalar_t, opmath_t>::value, void>::type
std::enable_if_t<!std::is_same_v<scalar_t, opmath_t>, void>
gemm_notrans_(
int64_t m,
int64_t n,
@ -222,7 +222,7 @@ void gemm_transb_impl(
}
template <typename scalar_t, typename opmath_t>
typename std::enable_if<std::is_same<scalar_t, opmath_t>::value, void>::type
std::enable_if_t<std::is_same_v<scalar_t, opmath_t>, void>
gemm_transb_(
TransposeType transb,
int64_t m,
@ -244,7 +244,7 @@ gemm_transb_(
// std::is_same<scalar_t, at::BFloat16> || std::is_same<scalar_t, at::Half>
template <typename scalar_t, typename opmath_t>
typename std::enable_if<!std::is_same<scalar_t, opmath_t>::value, void>::type
std::enable_if_t<!std::is_same_v<scalar_t, opmath_t>, void>
gemm_transb_(
TransposeType transb,
int64_t m,

View File

@ -82,7 +82,7 @@ static void reduced_float_copy_kernel(TensorIteratorBase &iter, bool requires_ne
std::copy_n(base, 2, data.data());
const int64_t *outer_strides = &strides[2];
for (const auto it C10_UNUSED : c10::irange(size1)) {
for (C10_UNUSED const auto it : c10::irange(size1)) {
Vecd dst_s;
if (strides_in[0] == 0) {
dst_s = Vecd(dest_t(*((scalar_t*)data[1])));
@ -151,7 +151,7 @@ static void reduced_float_copy_kernel(TensorIteratorBase &iter, bool requires_ne
std::copy_n(base, 2, data.data());
const int64_t *outer_strides = &strides[2];
for (const auto it C10_UNUSED : c10::irange(size1)) {
for (C10_UNUSED const auto it : c10::irange(size1)) {
Vecd dst_s;
if (strides_in[0] == 0) {
dst_s = Vecd(dest_t(*((source_t*)data[1])));

View File

@ -12,10 +12,10 @@ namespace at::native {
namespace{
template <typename scalar_t, typename opmath_t>
typename std::enable_if<
std::is_same<scalar_t, Half>::value || std::is_same<scalar_t, BFloat16>::value,
void>::
type inline adagrad_math(
std::enable_if_t<
std::is_same_v<scalar_t, Half> || std::is_same_v<scalar_t, BFloat16>,
void>
inline adagrad_math(
scalar_t* param_ptr,
scalar_t* grad_ptr,
scalar_t* state_sum_ptr,
@ -81,10 +81,10 @@ typename std::enable_if<
template <typename scalar_t, typename opmath_t>
typename std::enable_if<
std::is_same<scalar_t, float>::value || std::is_same<scalar_t, double>::value,
void>::
type inline adagrad_math(
std::enable_if_t<
std::is_same_v<scalar_t, float> || std::is_same_v<scalar_t, double>,
void>
inline adagrad_math(
scalar_t* param_ptr,
scalar_t* grad_ptr,
scalar_t* state_sum_ptr,

View File

@ -12,10 +12,10 @@ namespace at::native {
namespace{
template <typename scalar_t, typename opmath_t, ADAM_MODE adam_mode>
typename std::enable_if<
std::is_same<scalar_t, Half>::value || std::is_same<scalar_t, BFloat16>::value,
void>::
type inline adam_math(
std::enable_if_t<
std::is_same_v<scalar_t, Half> || std::is_same_v<scalar_t, BFloat16>,
void>
inline adam_math(
scalar_t* param_ptr,
scalar_t* exp_avg_ptr,
scalar_t* exp_avg_sq_ptr,
@ -155,10 +155,10 @@ typename std::enable_if<
template <typename scalar_t, typename opmath_t, ADAM_MODE adam_mode>
typename std::enable_if<
std::is_same<scalar_t, float>::value || std::is_same<scalar_t, double>::value,
void>::
type inline adam_math(
std::enable_if_t<
std::is_same_v<scalar_t, float> || std::is_same_v<scalar_t, double>,
void>
inline adam_math(
scalar_t* param_ptr,
scalar_t* exp_avg_ptr,
scalar_t* exp_avg_sq_ptr,

View File

@ -12,10 +12,10 @@ namespace at::native {
namespace{
template <typename scalar_t, typename opmath_t>
typename std::enable_if<
std::is_same<scalar_t, Half>::value || std::is_same<scalar_t, BFloat16>::value,
void>::
type inline sgd_math(
std::enable_if_t<
std::is_same_v<scalar_t, Half> || std::is_same_v<scalar_t, BFloat16>,
void>
inline sgd_math(
scalar_t* param_ptr,
scalar_t* grad_ptr,
scalar_t* momentum_buf_ptr,
@ -104,10 +104,10 @@ typename std::enable_if<
template <typename scalar_t, typename opmath_t>
typename std::enable_if<
std::is_same<scalar_t, float>::value || std::is_same<scalar_t, double>::value,
void>::
type inline sgd_math(
std::enable_if_t<
std::is_same_v<scalar_t, float> || std::is_same_v<scalar_t, double>,
void>
inline sgd_math(
scalar_t* param_ptr,
scalar_t* grad_ptr,
scalar_t* momentum_buf_ptr,

View File

@ -31,14 +31,16 @@ struct IsContiguous<0, -1, traits, s> {
};
// output and all inputs are contiguous
template <typename traits,
typename std::enable_if<std::is_void<typename traits::result_type>::value>::type* = nullptr>
template <
typename traits,
std::enable_if_t<std::is_void_v<typename traits::result_type>>* =
nullptr>
static inline bool is_contiguous(const int64_t* strides) {
return IsContiguous<traits::arity, traits::arity - 1, traits>::eval(strides);
}
template <typename traits,
typename std::enable_if<!std::is_void<typename traits::result_type>::value>::type* = nullptr>
std::enable_if_t<!std::is_void_v<typename traits::result_type>>* = nullptr>
static inline bool is_contiguous(const int64_t* strides) {
return IsContiguous<traits::arity, traits::arity, traits>::eval(strides);
}
@ -46,14 +48,14 @@ static inline bool is_contiguous(const int64_t* strides) {
// input at `s` is scalar (stride 0); output and other inputs are contiguous
// NB: output is typically at strides[0] so first input corresponds to s=1
template <typename traits, int s,
typename std::enable_if<std::is_void<typename traits::result_type>::value>::type* = nullptr>
std::enable_if_t<std::is_void_v<typename traits::result_type>>* = nullptr>
static inline bool is_contiguous_scalar(const int64_t* strides) {
static_assert(s > 0 && s <= traits::arity, "scalar argument index out of bounds");
return IsContiguous<traits::arity, traits::arity - 1, traits, s>::eval(strides);
}
template <typename traits, int s,
typename std::enable_if<!std::is_void<typename traits::result_type>::value>::type* = nullptr>
std::enable_if_t<!std::is_void_v<typename traits::result_type>>* = nullptr>
static inline bool is_contiguous_scalar(const int64_t* strides) {
static_assert(s > 0 && s <= traits::arity, "scalar argument index out of bounds");
return IsContiguous<traits::arity, traits::arity, traits, s>::eval(strides);

View File

@ -271,7 +271,7 @@ struct VectorizedLoop2d {
const int64_t *outer_strides = &strides[ntensors];
if (is_contiguous<traits>(strides)) {
for (const auto i C10_UNUSED : c10::irange(size1)) {
for (C10_UNUSED const auto i : c10::irange(size1)) {
vectorized_loop(data.data(), size0, 0, op, vop);
advance(data, outer_strides);
}
@ -279,12 +279,12 @@ struct VectorizedLoop2d {
using Indices = std::make_index_sequence<traits::arity>;
unroll_contiguous_scalar_checks<traits>(strides, Indices{}, [&](size_t idx) {
if (idx) {
for (const auto i C10_UNUSED : c10::irange(size1)) {
for (C10_UNUSED const auto i : c10::irange(size1)) {
vectorized_loop(data.data(), size0, idx, op, vop);
advance(data, outer_strides);
}
} else {
for (const auto i C10_UNUSED : c10::irange(size1)) {
for (C10_UNUSED const auto i : c10::irange(size1)) {
basic_loop(data.data(), strides, 0, size0, op);
advance(data, outer_strides);
}

View File

@ -64,7 +64,7 @@ vec::Vectorized<int64_t> is_nan_vec<int64_t>(vec::Vectorized<int64_t> vec) {
template <typename scalar_t, typename opmath_t>
inline
typename std::enable_if<std::is_same<scalar_t, opmath_t>::value, void>::type
std::enable_if_t<std::is_same_v<scalar_t, opmath_t>, void>
compute_internal(
const scalar_t* input_data,
scalar_t* out_data,
@ -139,7 +139,7 @@ compute_internal(
// std::is_same<scalar_t, at::BFloat16> || std::is_same<scalar_t, at::Half>
template <typename scalar_t, typename opmath_t>
inline
typename std::enable_if<!std::is_same<scalar_t, opmath_t>::value, void>::type
std::enable_if_t<!std::is_same_v<scalar_t, opmath_t>, void>
compute_internal(
const scalar_t* input_data,
scalar_t* out_data,

View File

@ -129,13 +129,13 @@ static void set_results(const res_t result, const TensorIteratorBase &iter, cons
}
template<typename traits, std::size_t i = 0, typename... tuple_t>
inline typename std::enable_if<i == sizeof...(tuple_t), std::size_t>::type
inline std::enable_if_t<i == sizeof...(tuple_t), std::size_t>
for_each_in_tuple(const std::tuple<tuple_t...>& /*t*/, const TensorIteratorBase& /*iter*/, const int /*num_outputs*/) {
return i;
}
template<typename traits, std::size_t i = 0, typename... tuple_t>
inline typename std::enable_if<i < sizeof...(tuple_t), std::size_t>::type
inline std::enable_if_t<i < sizeof...(tuple_t), std::size_t>
for_each_in_tuple(const std::tuple<tuple_t...>& t, const TensorIteratorBase &iter, const int num_outputs) {
if (i < (size_t)num_outputs) {
set_result<traits>(i, std::get<i>(t), iter, num_outputs);

View File

@ -106,7 +106,7 @@ inline void _init(scalar_t* self_ptr, at::opmath_type<scalar_t>* buffer_ptr, int
}
template <typename scalar_t>
inline typename std::enable_if<!std::is_same<scalar_t, Vec2>::value, scalar_t>::type
inline std::enable_if_t<!std::is_same_v<scalar_t, Vec2>, scalar_t>
_max(const scalar_t& x, const scalar_t& y) {
return at::_isnan(y) ? y : std::max(x, y);
}
@ -118,14 +118,14 @@ inline Vectorized<scalar_t> _max(const Vectorized<scalar_t>& x, const Vectorized
}
template <typename vec_t>
inline typename std::enable_if<std::is_same<vec_t, Vec2>::value, Vec2>::type
inline std::enable_if_t<std::is_same_v<vec_t, Vec2>, Vec2>
_max(const vec_t& x, const vec_t& y) {
// vec::maximum propagates NaN
return maximum(x, y);
}
template <typename scalar_t>
inline typename std::enable_if<!std::is_same<scalar_t, Vec2>::value, scalar_t>::type
inline std::enable_if_t<!std::is_same_v<scalar_t, Vec2>, scalar_t>
_min(const scalar_t& x, const scalar_t& y) {
return at::_isnan(y) ? y : std::min(x, y);
}
@ -137,7 +137,7 @@ inline Vectorized<scalar_t> _min(const Vectorized<scalar_t>& x, const Vectorized
}
template <typename vec_t>
inline typename std::enable_if<std::is_same<vec_t, Vec2>::value, Vec2>::type
inline std::enable_if_t<std::is_same_v<vec_t, Vec2>, Vec2>
_min(const vec_t& x, const vec_t& y) {
// vec::minimum propagates NaN
return minimum(x, y);

View File

@ -76,7 +76,7 @@ void _unfold_backward_internal_kernel(
auto* RESTRICT grad_in_ptr = data[1];
auto* RESTRICT idx_dim_ptr = data[2];
for (const auto elem C10_UNUSED : c10::irange(nelems)) {
for (C10_UNUSED const auto elem : c10::irange(nelems)) {
auto* RESTRICT grad_out_data = reinterpret_cast<scalar_t*>(grad_out_ptr);
auto* RESTRICT grad_in_data = reinterpret_cast<scalar_t*>(grad_in_ptr);

View File

@ -102,7 +102,7 @@ void pack_rgb(
TORCH_INTERNAL_ASSERT(unpacked_increment == 3 || unpacked_increment == 4);
for (const auto i C10_UNUSED : c10::irange(num_pixels)) {
for (C10_UNUSED const auto i : c10::irange(num_pixels)) {
for (const auto j : c10::irange(num_channels)) {
packed[j * packed_stride] = unpacked[j];
}

View File

@ -85,8 +85,8 @@ void GroupNormKernelImplInternal(
}
template <typename T>
typename std::enable_if<std::is_same<T, at::opmath_type<T>>::value,
std::tuple<T, T>>::type
std::enable_if_t<std::is_same_v<T, at::opmath_type<T>>,
std::tuple<T, T>>
ColumnwiseMoments(
const T* X_data,
int64_t HxW,
@ -118,8 +118,8 @@ ColumnwiseMoments(
// std::is_same<T, at::BFloat16> || std::is_same<T, at::Half>
template <typename T>
typename std::enable_if<!std::is_same<T, at::opmath_type<T>>::value,
std::tuple<at::opmath_type<T>, at::opmath_type<T>>>::type
std::enable_if_t<!std::is_same_v<T, at::opmath_type<T>>,
std::tuple<at::opmath_type<T>, at::opmath_type<T>>>
ColumnwiseMoments(
const T* X_data,
int64_t HxW,
@ -160,7 +160,7 @@ ColumnwiseMoments(
}
template <typename T, typename opmath_t>
inline typename std::enable_if<std::is_same<T, opmath_t>::value, void>::type
inline std::enable_if_t<std::is_same_v<T, opmath_t>, void>
CalcMeanVar(
const T* X_ptr,
opmath_t* mean_ptr,
@ -183,7 +183,7 @@ CalcMeanVar(
// std::is_same<T, at::BFloat16> || std::is_same<T, at::Half>
template <typename T, typename opmath_t>
inline typename std::enable_if<!std::is_same<T, opmath_t>::value, void>::type
inline std::enable_if_t<!std::is_same_v<T, opmath_t>, void>
CalcMeanVar(
const T* X_ptr,
opmath_t* mean_ptr,
@ -227,7 +227,7 @@ CalcMeanVar(
}
template <typename T, typename opmath_t>
inline typename std::enable_if<std::is_same<T, opmath_t>::value, void>::type
inline std::enable_if_t<std::is_same_v<T, opmath_t>, void>
ApplyScaleBias(
T* Y_ptr,
const T* X_ptr,
@ -246,7 +246,7 @@ ApplyScaleBias(
// std::is_same<T, at::BFloat16> || std::is_same<T, at::Half>
template <typename T, typename opmath_t>
inline typename std::enable_if<!std::is_same<T, opmath_t>::value, void>::type
inline std::enable_if_t<!std::is_same_v<T, opmath_t>, void>
ApplyScaleBias(
T* Y_ptr,
const T* X_ptr,
@ -529,7 +529,7 @@ void GroupNormKernelImpl(
template <typename T, typename opmath_t>
typename std::enable_if<std::is_same<T, opmath_t>::value, void>::type
std::enable_if_t<std::is_same_v<T, opmath_t>, void>
ComputeInternalGradients(
int64_t N,
int64_t C,
@ -556,7 +556,7 @@ ComputeInternalGradients(
}
template <typename T, typename opmath_t>
typename std::enable_if<!std::is_same<T, opmath_t>::value, void>::type
std::enable_if_t<!std::is_same_v<T, opmath_t>, void>
ComputeInternalGradients(
int64_t N,
int64_t C,
@ -603,7 +603,7 @@ ComputeInternalGradients(
}
template <typename PT, typename opmath_t>
inline typename std::enable_if<std::is_same<PT, opmath_t>::value, void>::type
inline std::enable_if_t<std::is_same_v<PT, opmath_t>, void>
CalcDsDb(
const opmath_t* ds_ptr,
const opmath_t* db_ptr,
@ -626,7 +626,7 @@ CalcDsDb(
}
template <typename PT, typename opmath_t>
inline typename std::enable_if<!std::is_same<PT, opmath_t>::value, void>::type
inline std::enable_if_t<!std::is_same_v<PT, opmath_t>, void>
CalcDsDb(
const opmath_t* ds_ptr,
const opmath_t* db_ptr,
@ -708,7 +708,7 @@ void GroupNormInputBackward(
}
template <typename PT, typename opmath_t>
typename std::enable_if<std::is_same<PT, opmath_t>::value, void>::type
std::enable_if_t<std::is_same_v<PT, opmath_t>, void>
GammaBackward(
int64_t N,
int64_t C,
@ -755,7 +755,7 @@ GammaBackward(
}
template <typename PT, typename opmath_t>
typename std::enable_if<!std::is_same<PT, opmath_t>::value, void>::type
std::enable_if_t<!std::is_same_v<PT, opmath_t>, void>
GammaBackward(
int64_t N,
int64_t C,
@ -817,7 +817,7 @@ GammaBackward(
}
template <typename PT, typename opmath_t>
typename std::enable_if<std::is_same<PT, opmath_t>::value, void>::type
std::enable_if_t<std::is_same_v<PT, opmath_t>, void>
BetaBackward(int64_t N, int64_t C, const opmath_t* db, PT* dbeta) {
using Vec = at::vec::Vectorized<PT>;
constexpr int64_t K = Vec::size();
@ -841,7 +841,7 @@ BetaBackward(int64_t N, int64_t C, const opmath_t* db, PT* dbeta) {
}
template <typename PT, typename opmath_t>
typename std::enable_if<!std::is_same<PT, opmath_t>::value, void>::type
std::enable_if_t<!std::is_same_v<PT, opmath_t>, void>
BetaBackward(int64_t N, int64_t C, const opmath_t* db, PT* dbeta) {
using Vec = at::vec::Vectorized<PT>;
using fVec = at::vec::Vectorized<opmath_t>;
@ -937,7 +937,7 @@ void GroupNormBackwardKernelImplInternal(
}
template <typename T, typename opmath_t>
inline typename std::enable_if<std::is_same<T, opmath_t>::value, void>::type
inline std::enable_if_t<std::is_same_v<T, opmath_t>, void>
DsDbRowwiseMomentsChannelsLast(
const T* dY_ptr,
const T* X_ptr,
@ -972,7 +972,7 @@ DsDbRowwiseMomentsChannelsLast(
}
template <typename T, typename opmath_t>
inline typename std::enable_if<!std::is_same<T, opmath_t>::value, void>::type
inline std::enable_if_t<!std::is_same_v<T, opmath_t>, void>
DsDbRowwiseMomentsChannelsLast(
const T* dY_ptr,
const T* X_ptr,
@ -1024,10 +1024,10 @@ DsDbRowwiseMomentsChannelsLast(
}
template <typename T>
inline typename std::enable_if<std::is_same<T, at::opmath_type<T>>::value,
inline std::enable_if_t<std::is_same_v<T, at::opmath_type<T>>,
std::tuple<
vec::Vectorized<T>,
vec::Vectorized<T>>>::type
vec::Vectorized<T>>>
load_util(const T* data_ptr, int64_t n) {
using Vec = vec::Vectorized<T>;
auto vec0 = Vec::loadu(data_ptr, n > Vec::size() ? Vec::size() : n);
@ -1037,11 +1037,11 @@ load_util(const T* data_ptr, int64_t n) {
}
template <typename T>
inline typename std::enable_if<!std::is_same<T, at::opmath_type<T>>::value,
inline std::enable_if_t<!std::is_same_v<T, at::opmath_type<T>>,
std::tuple<
vec::Vectorized<at::opmath_type<T>>,
vec::Vectorized<at::opmath_type<T>>>
>::type
>
load_util(const T* data_ptr, int64_t n) {
using Vec = vec::Vectorized<T>;
auto vec = Vec::loadu(data_ptr, n);
@ -1049,7 +1049,7 @@ load_util(const T* data_ptr, int64_t n) {
}
template <typename T, typename PT, typename opmath_t>
inline typename std::enable_if<std::is_same<T, opmath_t>::value, void>::type
inline std::enable_if_t<std::is_same_v<T, opmath_t>, void>
ApplyInputGradientsChannelsLastColMov(
const T* dY_data,
const T* X_data,
@ -1097,7 +1097,7 @@ ApplyInputGradientsChannelsLastColMov(
}
template <typename T, typename PT, typename opmath_t>
inline typename std::enable_if<!std::is_same<T, opmath_t>::value, void>::type
inline std::enable_if_t<!std::is_same_v<T, opmath_t>, void>
ApplyInputGradientsChannelsLastColMov(
const T* dY_data,
const T* X_data,
@ -1154,7 +1154,7 @@ ApplyInputGradientsChannelsLastColMov(
}
template <typename T, typename PT, typename opmath_t>
inline typename std::enable_if<std::is_same<T, opmath_t>::value, void>::type
inline std::enable_if_t<std::is_same_v<T, opmath_t>, void>
ApplyInputGradientsChannelsLastRowMov(
const T* dY_data,
const T* X_data,
@ -1190,7 +1190,7 @@ ApplyInputGradientsChannelsLastRowMov(
}
template <typename T, typename PT, typename opmath_t>
inline typename std::enable_if<!std::is_same<T, opmath_t>::value, void>::type
inline std::enable_if_t<!std::is_same_v<T, opmath_t>, void>
ApplyInputGradientsChannelsLastRowMov(
const T* dY_data,
const T* X_data,

View File

@ -30,7 +30,7 @@ void resize_bytes_cuda(StorageImpl* storage, size_t size_bytes) {
c10::cuda::CUDAGuard guard(device.index());
at::DataPtr data = allocator->allocate(size_bytes);
if (storage->data_ptr()) {
at::globalContext().lazyInitCUDA();
at::globalContext().lazyInitDevice(c10::DeviceType::CUDA);
C10_CUDA_CHECK(
cudaMemcpyAsync(

View File

@ -1374,7 +1374,7 @@ std::tuple<Tensor, Tensor, Tensor> layer_norm_cuda(
for (const auto idx: c10::irange(axis)) {
stat_shape.push_back(input_shape[idx]);
}
for (const auto C10_UNUSED idx: c10::irange(axis, input.dim())) {
for (C10_UNUSED const auto idx: c10::irange(axis, input.dim())) {
stat_shape.push_back(1);
}

View File

@ -74,7 +74,7 @@ cudnn_frontend::Tensor getTensorDescriptorWithTypeVirtual(
// Ubuntu-22+ if `libnvrtc.so` is not found on the system, which strictly
// speaking is not necessary for usecases below See
// https://github.com/pytorch/pytorch/issues/97041
static C10_UNUSED auto cudnn_cnn_infer_handler = [] {
C10_UNUSED static auto cudnn_cnn_infer_handler = [] {
void* handle = dlopen("libcudnn_cnn_infer.so.8", RTLD_LAZY);
char* err = dlerror();
if (!handle) {

View File

@ -339,7 +339,7 @@ Tensor mkldnn_linear_pointwise_binary(
#if AT_MKL_ENABLED()
#include <mkl.h>
static Tensor mkl_linear(
Tensor mkl_linear(
const Tensor& self,
const Tensor& mkl_weight_t,
const Tensor& origin_weight_t,

View File

@ -22,6 +22,17 @@ C10_API Tensor mkldnn_linear_pointwise_binary(
const std::optional<Tensor>& bias_opt,
c10::string_view attr);
#if AT_MKL_ENABLED()
C10_API Tensor mkl_linear(
const Tensor& self,
const Tensor& mkl_weight_t,
const Tensor& origin_weight_t,
const std::optional<Tensor>& bias_opt,
const int64_t prepack_batch_size);
#endif// AT_MKL_ENABLED
} // namespace native
} // namespace at

View File

@ -31,8 +31,15 @@ typedef NS_ENUM(NSInteger, MTLMathMode)
MTLMathModeFast = 2,
};
typedef NS_ENUM(NSInteger, MTLMathFloatingPointFunctions)
{
MTLMathFloatingPointFunctionsFast = 0,
MTLMathFloatingPointFunctionsPrecise = 1,
};
@interface MTLCompileOptions()
@property (readwrite, nonatomic) MTLMathMode mathMode;
@property (readwrite, nonatomic) MTLMathFloatingPointFunctions mathFloatingPointFunctions;
@end
#endif

View File

@ -541,18 +541,9 @@ Placeholder::Placeholder(MPSGraphTensor* mpsGraphTensor,
MPSShape* mpsShape = getMPSShape(_tensor);
MPSShape* mpsStrides = getMPSShape(_tensor.strides());
IntArrayRef baseShape;
if (src.is_view()) {
baseShape = src._base().sizes();
} else {
baseShape = getIMPSAllocator()->getBufferShape(src.storage().data());
}
int flattenedShaped = 1;
for (const auto i : c10::irange(baseShape.size())) {
flattenedShaped *= baseShape[i];
}
MPSShape* mpsBaseShape = @[ @(flattenedShaped) ];
MPSNDArrayDescriptor* srcTensorDesc = [MPSNDArrayDescriptor descriptorWithDataType:dataType shape:mpsBaseShape];
auto storage_numel = src.storage().nbytes() / src.element_size();
MPSNDArrayDescriptor* srcTensorDesc = [MPSNDArrayDescriptor descriptorWithDataType:dataType
shape:@[ @(storage_numel) ]];
srcTensorDesc.preferPackedRows = YES;
MPSNDArray* srcNDArray = [[[MPSNDArray alloc] initWithBuffer:srcBuf
offset:src.storage_offset() * src.element_size()
@ -848,7 +839,10 @@ id<MTLLibrary> MetalShaderLibrary::getLibrary(const std::initializer_list<std::s
}
id<MTLLibrary> MetalShaderLibrary::compileLibrary(const std::string& src) {
static const char* fast_math = std::getenv("PYTORCH_MPS_FAST_MATH");
static auto fast_math = []() {
auto val = std::getenv("PYTORCH_MPS_FAST_MATH");
return val && std::stoi(val) != 0;
}();
NSError* error = nil;
MTLCompileOptions* options = compile_options;
if (!options) {
@ -856,7 +850,15 @@ id<MTLLibrary> MetalShaderLibrary::compileLibrary(const std::string& src) {
// Need 3.0 for atomic oprations, 3.1 introduces bfloat support
[options setLanguageVersion:is_macos_13_or_newer(MacOSVersion::MACOS_VER_14_0_PLUS) ? MTLLanguageVersion3_1
: MTLLanguageVersion3_0];
[options setFastMathEnabled:(!fast_math || std::stoi(fast_math) == 0) ? NO : YES];
if (is_macos_13_or_newer(MacOSVersion::MACOS_VER_15_0_PLUS)) {
options.mathMode = fast_math ? MTLMathModeFast : MTLMathModeSafe;
options.mathFloatingPointFunctions =
fast_math ? MTLMathFloatingPointFunctionsFast : MTLMathFloatingPointFunctionsPrecise;
} else {
C10_DIAGNOSTIC_PUSH_AND_IGNORED_IF_DEFINED("-Wdeprecated-declarations")
[options setFastMathEnabled:fast_math ? YES : NO];
C10_DIAGNOSTIC_POP()
}
}
const auto str = [NSString stringWithCString:src.c_str() encoding:NSASCIIStringEncoding];

View File

@ -167,12 +167,7 @@ static Tensor _mps_convolution_impl(const Tensor& input_t_,
// TODO: MPS convolution kernel currently does not support output channels > 2^16
for (auto elem : output_t.sizes()) {
TORCH_CHECK_NOT_IMPLEMENTED(
elem <= (1 << 16),
"Output channels > 65536 not supported at the MPS device. ",
"As a temporary fix, you can set the environment variable `PYTORCH_ENABLE_MPS_FALLBACK=1` ",
"to use the CPU as a fallback for this op. WARNING: this will be slower than running natively ",
"on MPS.");
TORCH_CHECK_NOT_IMPLEMENTED(elem <= (1 << 16), "Output channels > 65536 not supported at the MPS device. ");
}
convolution_shape_check(c, input, weight, output, padding, stride, dilation, groups);
@ -378,12 +373,7 @@ static Tensor mps_convolution_backward_input(IntArrayRef input_size,
// TODO: MPS convolution kernel currently does not support output channels > 2^16
for (auto elem : grad_output_t.sizes()) {
TORCH_CHECK_NOT_IMPLEMENTED(
elem <= (1 << 16),
"Output channels > 65536 not supported at the MPS device. ",
"As a temporary fix, you can set the environment variable `PYTORCH_ENABLE_MPS_FALLBACK=1` ",
"to use the CPU as a fallback for this op. WARNING: this will be slower than running natively ",
"on MPS.");
TORCH_CHECK_NOT_IMPLEMENTED(elem <= (1 << 16), "Output channels > 65536 not supported at the MPS device. ");
}
TORCH_CHECK(isFloatingType(grad_output_t.scalar_type()), "Convolution is supported only for Floating types");

View File

@ -718,10 +718,15 @@ std::tuple<Tensor, Tensor, Tensor> batch_norm_backward_mps(const Tensor& grad_ou
secondaryTensor:epsilonTensor
name:nil];
#ifdef __MAC_15_0
rsqrtTensor = [mpsGraph reciprocalSquareRootWithTensor:varianceEpsTensor name:nil];
#else
rsqrtTensor = [mpsGraph reverseSquareRootWithTensor:varianceEpsTensor name:nil];
#endif
if (is_macos_13_or_newer(MacOSVersion::MACOS_VER_15_0_PLUS)) {
rsqrtTensor = [mpsGraph reciprocalSquareRootWithTensor:varianceEpsTensor name:nil];
} else
#endif // __MAC_15_0
{
C10_DIAGNOSTIC_PUSH_AND_IGNORED_IF_DEFINED("-Wdeprecated-declarations")
rsqrtTensor = [mpsGraph reverseSquareRootWithTensor:varianceEpsTensor name:nil];
C10_DIAGNOSTIC_POP()
}
MPSGraphTensor* bnForwardTensor = [mpsGraph multiplicationWithPrimaryTensor:xMinusMean
secondaryTensor:rsqrtTensor
name:nil];
@ -747,10 +752,15 @@ std::tuple<Tensor, Tensor, Tensor> batch_norm_backward_mps(const Tensor& grad_ou
secondaryTensor:epsilonTensor
name:nil];
#ifdef __MAC_15_0
rsqrtTensor = [mpsGraph reciprocalSquareRootWithTensor:varianceEpsTensor name:nil];
#else
rsqrtTensor = [mpsGraph reverseSquareRootWithTensor:varianceEpsTensor name:nil];
#endif
if (is_macos_13_or_newer(MacOSVersion::MACOS_VER_15_0_PLUS)) {
rsqrtTensor = [mpsGraph reciprocalSquareRootWithTensor:varianceEpsTensor name:nil];
} else
#endif // __MAC_15_0
{
C10_DIAGNOSTIC_PUSH_AND_IGNORED_IF_DEFINED("-Wdeprecated-declarations")
rsqrtTensor = [mpsGraph reverseSquareRootWithTensor:varianceEpsTensor name:nil];
C10_DIAGNOSTIC_POP()
}
}
gradInputTensor = [mpsGraph multiplicationWithPrimaryTensor:unitTensor secondaryTensor:rsqrtTensor name:nil];

Some files were not shown because too many files have changed in this diff Show More