Back out "Revert D15435461: [pytorch][PR] PyTorch ThroughputBenchmark" (#22185)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22185

Original commit changeset: 72a0eac1658b

Differential Revision: D15981928

fbshipit-source-id: d2455d79e81c26ee90d41414cde8ac0f9b703bc3
This commit is contained in:
Alexander Sidorov
2019-06-26 16:01:58 -07:00
committed by Facebook Github Bot
parent 3f2a839dda
commit f51de8b61a
13 changed files with 677 additions and 0 deletions

View File

@ -0,0 +1,79 @@
from __future__ import absolute_import, division, print_function, unicode_literals
import torch
from torch.utils import ThroughputBenchmark
from torch.testing import assert_allclose
from common_utils import run_tests, TestCase
class TwoLayerNet(torch.jit.ScriptModule):
def __init__(self, D_in, H, D_out):
super(TwoLayerNet, self).__init__()
self.linear1 = torch.nn.Linear(D_in, H)
self.linear2 = torch.nn.Linear(2 * H, D_out)
@torch.jit.script_method
def forward(self, x1, x2):
h1_relu = self.linear1(x1).clamp(min=0)
h2_relu = self.linear1(x2).clamp(min=0)
cat = torch.cat((h1_relu, h2_relu), 1)
y_pred = self.linear2(cat)
return y_pred
class TwoLayerNetModule(torch.nn.Module):
def __init__(self, D_in, H, D_out):
super(TwoLayerNetModule, self).__init__()
self.linear1 = torch.nn.Linear(D_in, H)
self.linear2 = torch.nn.Linear(2 * H, D_out)
def forward(self, x1, x2):
h1_relu = self.linear1(x1).clamp(min=0)
h2_relu = self.linear1(x2).clamp(min=0)
cat = torch.cat((h1_relu, h2_relu), 1)
y_pred = self.linear2(cat)
return y_pred
class TestThroughputBenchmark(TestCase):
def linear_test(self, Module):
D_in = 10
H = 5
D_out = 15
B = 8
NUM_INPUTS = 2
module = Module(D_in, H, D_out)
inputs = []
for i in range(NUM_INPUTS):
inputs.append([torch.randn(B, D_in), torch.randn(B, D_in)])
bench = ThroughputBenchmark(module)
for input in inputs:
# can do both args and kwargs here
bench.add_input(input[0], x2=input[1])
for i in range(NUM_INPUTS):
# or just unpack the list of inputs
module_result = module(*inputs[i])
bench_result = bench.run_once(*inputs[i])
assert_allclose(bench_result, module_result)
stats = bench.benchmark(
num_calling_threads=4,
num_warmup_iters=100,
num_iters=1000,
)
print("Avg latency (ms): {}".format(stats.latency_avg_ms))
print("Number of iterations: {}".format(stats.num_iters))
def test_script_module(self):
self.linear_test(TwoLayerNet)
def test_module(self):
self.linear_test(TwoLayerNetModule)
if __name__ == '__main__':
run_tests()