mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 12:54:11 +08:00
[17/N] Fix extra warnings brought by clang-tidy-17 (#143804)
Fixes #ISSUE_NUMBER Pull Request resolved: https://github.com/pytorch/pytorch/pull/143804 Approved by: https://github.com/Skylion007
This commit is contained in:
@ -92,6 +92,7 @@ class MatrixRef {
|
||||
/// The declaration here is extra complicated so that "arrayRef = {}"
|
||||
/// continues to select the move assignment operator.
|
||||
template <typename U>
|
||||
// NOLINTNEXTLINE(cppcoreguidelines-missing-std-forward)
|
||||
std::enable_if_t<std::is_same_v<U, T>, MatrixRef<T>>& operator=(
|
||||
// NOLINTNEXTLINE(cppcoreguidelines-missing-std-forward)
|
||||
U&& Temporary) = delete;
|
||||
|
@ -16,19 +16,18 @@ using namespace dnnl;
|
||||
using namespace at::native;
|
||||
using namespace at::native::onednn;
|
||||
|
||||
namespace at::native {
|
||||
namespace xpu {
|
||||
namespace at::native::xpu {
|
||||
namespace impl {
|
||||
|
||||
struct ConvParams {
|
||||
std::vector<int64_t> stride;
|
||||
std::vector<int64_t> padding;
|
||||
std::vector<int64_t> dilation;
|
||||
bool transposed;
|
||||
bool transposed{};
|
||||
std::vector<int64_t> output_padding;
|
||||
int groups;
|
||||
bool benchmark;
|
||||
bool deterministic;
|
||||
int64_t groups{};
|
||||
bool benchmark{};
|
||||
bool deterministic{};
|
||||
|
||||
bool is_strided() const;
|
||||
bool is_dilated() const;
|
||||
@ -58,7 +57,7 @@ std::ostream& operator<<(std::ostream& out, const ConvParams& params) {
|
||||
|
||||
bool ConvParams::is_strided() const {
|
||||
bool is_strided = false;
|
||||
for (int s : stride) {
|
||||
for (auto s : stride) {
|
||||
is_strided |= (s != 1);
|
||||
}
|
||||
return is_strided;
|
||||
@ -66,7 +65,7 @@ bool ConvParams::is_strided() const {
|
||||
|
||||
bool ConvParams::is_dilated() const {
|
||||
bool is_dilated = false;
|
||||
for (int d : dilation) {
|
||||
for (auto d : dilation) {
|
||||
is_dilated |= (d != 1);
|
||||
}
|
||||
return is_dilated;
|
||||
@ -74,7 +73,7 @@ bool ConvParams::is_dilated() const {
|
||||
|
||||
bool ConvParams::is_padded() const {
|
||||
bool is_padded = false;
|
||||
for (int p : padding) {
|
||||
for (auto p : padding) {
|
||||
is_padded |= (p != 0);
|
||||
}
|
||||
return is_padded;
|
||||
@ -82,7 +81,7 @@ bool ConvParams::is_padded() const {
|
||||
|
||||
bool ConvParams::is_output_padding_neg() const {
|
||||
bool is_non_neg = false;
|
||||
for (int p : output_padding) {
|
||||
for (auto p : output_padding) {
|
||||
is_non_neg |= (p < 0);
|
||||
}
|
||||
return is_non_neg;
|
||||
@ -99,7 +98,7 @@ bool ConvParams::is_output_padding_big() const {
|
||||
|
||||
bool ConvParams::is_padding_neg() const {
|
||||
bool is_non_neg = false;
|
||||
for (int p : padding) {
|
||||
for (auto p : padding) {
|
||||
is_non_neg |= (p < 0);
|
||||
}
|
||||
return is_non_neg;
|
||||
@ -107,7 +106,7 @@ bool ConvParams::is_padding_neg() const {
|
||||
|
||||
bool ConvParams::is_stride_nonpos() const {
|
||||
bool is_nonpos = false;
|
||||
for (int s : stride) {
|
||||
for (auto s : stride) {
|
||||
is_nonpos |= (s <= 0);
|
||||
}
|
||||
return is_nonpos;
|
||||
@ -246,7 +245,7 @@ static void check_shape_forward(
|
||||
std::ostringstream output_ss;
|
||||
std::string separator = "";
|
||||
|
||||
for (int i = 0, len = input_shape.size(); i < len; ++i) {
|
||||
for (size_t i = 0, len = input_shape.size(); i < len; ++i) {
|
||||
input_ss << separator << input_shape[i];
|
||||
kernel_ss << separator << kernel_shape[i];
|
||||
separator = " x ";
|
||||
@ -496,8 +495,8 @@ Tensor _convolution_out(
|
||||
// (padding_left, padding_right,
|
||||
// padding_top, padding_bottom,
|
||||
// padding_front, padding_back)
|
||||
if (pad_nd.vec().size() > 0) {
|
||||
for (int i = 0; i < dim; ++i) {
|
||||
if (!pad_nd.vec().empty()) {
|
||||
for (int64_t i = 0; i < dim; ++i) {
|
||||
padding_front_top_left[i] += pad_nd[2 * dim - 2 * i - 2]; // 4, 2, 0
|
||||
padding_back_bottom_right[i] += pad_nd[2 * dim - 2 * i - 1]; // 5, 3, 1
|
||||
}
|
||||
@ -628,8 +627,8 @@ std::tuple<Tensor, Tensor, Tensor> convolution_backward_overrideable(
|
||||
|
||||
Tensor grad_output_, input_, weight_;
|
||||
IntArrayRef stride_, padding_, dilation_, output_padding_;
|
||||
bool transposed_;
|
||||
int64_t groups_;
|
||||
bool transposed_ = false;
|
||||
int64_t groups_ = 0;
|
||||
ConvParams params;
|
||||
if (3 == ndim) {
|
||||
grad_output_ = view4d(grad_output);
|
||||
@ -744,5 +743,4 @@ TORCH_LIBRARY_IMPL(aten, XPU, m) {
|
||||
TORCH_FN(convolution_backward_overrideable));
|
||||
}
|
||||
|
||||
} // namespace xpu
|
||||
} // namespace at::native
|
||||
} // namespace at::native::xpu
|
||||
|
@ -114,7 +114,7 @@ dnnl::memory::dims get_onednn_strides(const at::Tensor& tensor) {
|
||||
}
|
||||
|
||||
dnnl::memory::desc get_onednn_md(const at::Tensor& tensor) {
|
||||
Tensor t = tensor.sizes().size() == 0 ? tensor.unsqueeze(0) : tensor;
|
||||
Tensor t = tensor.sizes().empty() ? tensor.unsqueeze(0) : tensor;
|
||||
return {get_onednn_dims(t), get_onednn_dtype(t), get_onednn_strides(t)};
|
||||
}
|
||||
|
||||
@ -130,8 +130,8 @@ bool onednn_strides_check(const Tensor& src) {
|
||||
dnnl_memory_desc_t md;
|
||||
dnnl_memory_desc_create_with_strides(&md, ndims, dims, data_type, strides);
|
||||
dnnl_format_kind_t md_fmt_kind;
|
||||
int md_ndims;
|
||||
int md_inner_nblks;
|
||||
int md_ndims = 0;
|
||||
int md_inner_nblks = 0;
|
||||
dnnl_dims_t* md_padded_dims = nullptr;
|
||||
|
||||
dnnl_memory_desc_query(md, dnnl_query_inner_nblks_s32, &md_inner_nblks);
|
||||
|
@ -33,6 +33,8 @@ struct TORCH_XPU_API GpuEngineManager {
|
||||
|
||||
GpuEngineManager(GpuEngineManager const&) = delete;
|
||||
GpuEngineManager& operator=(GpuEngineManager const&) = delete;
|
||||
GpuEngineManager(GpuEngineManager&&) = default;
|
||||
GpuEngineManager& operator=(GpuEngineManager&&) = default;
|
||||
|
||||
protected:
|
||||
GpuEngineManager() {
|
||||
@ -44,7 +46,7 @@ struct TORCH_XPU_API GpuEngineManager {
|
||||
c10::xpu::get_raw_device(i), c10::xpu::get_device_context())));
|
||||
}
|
||||
}
|
||||
~GpuEngineManager() {}
|
||||
~GpuEngineManager() = default;
|
||||
|
||||
private:
|
||||
std::vector<std::shared_ptr<dnnl::engine>> engine_pool;
|
||||
@ -71,6 +73,8 @@ struct TORCH_XPU_API GpuStreamManager {
|
||||
|
||||
GpuStreamManager(GpuStreamManager const&) = delete;
|
||||
GpuStreamManager& operator=(GpuStreamManager const&) = delete;
|
||||
GpuStreamManager(GpuStreamManager&&) = default;
|
||||
GpuStreamManager& operator=(GpuStreamManager&&) = default;
|
||||
|
||||
protected:
|
||||
GpuStreamManager() {
|
||||
@ -78,7 +82,7 @@ struct TORCH_XPU_API GpuStreamManager {
|
||||
TORCH_INTERNAL_ASSERT(device_count > 0);
|
||||
stream_pool.resize(device_count);
|
||||
}
|
||||
~GpuStreamManager() {}
|
||||
~GpuStreamManager() = default;
|
||||
|
||||
private:
|
||||
using stream_hash_map =
|
||||
|
@ -20,7 +20,7 @@ using namespace torch;
|
||||
|
||||
PyObject* THPGeneratorClass = nullptr;
|
||||
|
||||
PyObject* THPGenerator_initDefaultGenerator(at::Generator cdata) {
|
||||
PyObject* THPGenerator_initDefaultGenerator(const at::Generator& cdata) {
|
||||
auto type = (PyTypeObject*)THPGeneratorClass;
|
||||
auto self = THPObjectPtr{type->tp_alloc(type, 0)};
|
||||
if (!self)
|
||||
|
@ -14,7 +14,7 @@ struct THPGenerator {
|
||||
// is borrowed. The caller should ensure that the at::Generator object lifetime
|
||||
// last at least as long as the Python wrapper.
|
||||
TORCH_PYTHON_API PyObject* THPGenerator_initDefaultGenerator(
|
||||
at::Generator cdata);
|
||||
const at::Generator& cdata);
|
||||
|
||||
#define THPGenerator_Check(obj) PyObject_IsInstance(obj, THPGeneratorClass)
|
||||
|
||||
|
Reference in New Issue
Block a user