mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
[torchgen] Introduce Executorch types and signatures (#90781)
Retry of #90591, which is a retry of #89595. Reverted due to dependency PR breaking internal fbcode. ## Forked BaseCppType Created a module for Executorch: `torchgen.executorch`. ## In `torchgen.executorch.api.types.types`: * Define `BaseCppType` with `torch::executor` namespace. ## In `torchgen.executorch.api.et_cpp`: * Help generate `NamedCType` for `ExecutorchCppSignature` arguments. ## In `torchgen.executorch.api.types.signatures`: * Define the signature using these types. (`ExecutorchCppSignature`) ## In `torchgen.executorch.api.types.__init__`: * Suppress flake8 error for `import *`. Pull Request resolved: https://github.com/pytorch/pytorch/pull/90781 Approved by: https://github.com/ezyang
This commit is contained in:
committed by
PyTorch MergeBot
parent
4adffe6d51
commit
f3393b7ea7
6
.flake8
6
.flake8
@ -12,7 +12,11 @@ ignore =
|
|||||||
B007,B008,
|
B007,B008,
|
||||||
# these ignores are from flake8-comprehensions; please fix!
|
# these ignores are from flake8-comprehensions; please fix!
|
||||||
C400,C401,C402,C403,C404,C405,C407,C411,C413,C414,C415
|
C400,C401,C402,C403,C404,C405,C407,C411,C413,C414,C415
|
||||||
per-file-ignores = __init__.py: F401 torch/utils/cpp_extension.py: B950 torchgen/api/types/__init__.py: F401,F403
|
per-file-ignores =
|
||||||
|
__init__.py: F401
|
||||||
|
torch/utils/cpp_extension.py: B950
|
||||||
|
torchgen/api/types/__init__.py: F401,F403
|
||||||
|
torchgen/executorch/api/types/__init__.py: F401,F403
|
||||||
optional-ascii-coding = True
|
optional-ascii-coding = True
|
||||||
exclude =
|
exclude =
|
||||||
./.git,
|
./.git,
|
||||||
|
109
tools/test/test_executorch_types.py
Normal file
109
tools/test/test_executorch_types.py
Normal file
@ -0,0 +1,109 @@
|
|||||||
|
import unittest
|
||||||
|
|
||||||
|
from torchgen import local
|
||||||
|
from torchgen.api.types import (
|
||||||
|
BaseCType,
|
||||||
|
ConstRefCType,
|
||||||
|
CType,
|
||||||
|
longT,
|
||||||
|
MutRefCType,
|
||||||
|
NamedCType,
|
||||||
|
OptionalCType,
|
||||||
|
TupleCType,
|
||||||
|
VectorCType,
|
||||||
|
voidT,
|
||||||
|
)
|
||||||
|
from torchgen.executorch.api.et_cpp import argument_type, return_type, returns_type
|
||||||
|
from torchgen.executorch.api.types import ArrayRefCType, scalarT, tensorListT, tensorT
|
||||||
|
from torchgen.model import Argument, FunctionSchema, Return
|
||||||
|
|
||||||
|
|
||||||
|
class ExecutorchCppTest(unittest.TestCase):
|
||||||
|
"""
|
||||||
|
Test torchgen.executorch.api.cpp
|
||||||
|
"""
|
||||||
|
|
||||||
|
def _test_argumenttype_type(self, arg_str: str, expected: NamedCType) -> None:
|
||||||
|
arg = Argument.parse(arg_str)
|
||||||
|
self.assertEqual(str(argument_type(arg, binds=arg.name)), str(expected))
|
||||||
|
|
||||||
|
@local.parametrize(
|
||||||
|
use_const_ref_for_mutable_tensors=False, use_ilistref_for_tensor_lists=False
|
||||||
|
)
|
||||||
|
def test_argumenttype_type(self) -> None:
|
||||||
|
data = [
|
||||||
|
("Tensor self", NamedCType("self", ConstRefCType(BaseCType(tensorT)))),
|
||||||
|
("Tensor(a!) out", NamedCType("out", MutRefCType(BaseCType(tensorT)))),
|
||||||
|
(
|
||||||
|
"Tensor? opt",
|
||||||
|
NamedCType("opt", ConstRefCType(OptionalCType(BaseCType(tensorT)))),
|
||||||
|
),
|
||||||
|
("Scalar scalar", NamedCType("scalar", ConstRefCType(BaseCType(scalarT)))),
|
||||||
|
(
|
||||||
|
"Scalar? scalar",
|
||||||
|
NamedCType("scalar", ConstRefCType(OptionalCType(BaseCType(scalarT)))),
|
||||||
|
),
|
||||||
|
("int[] size", NamedCType("size", ArrayRefCType(BaseCType(longT)))),
|
||||||
|
("int? dim", NamedCType("dim", OptionalCType(BaseCType(longT)))),
|
||||||
|
("Tensor[] weight", NamedCType("weight", BaseCType(tensorListT))),
|
||||||
|
(
|
||||||
|
"Scalar[] spacing",
|
||||||
|
NamedCType("spacing", ArrayRefCType(ConstRefCType(BaseCType(scalarT)))),
|
||||||
|
),
|
||||||
|
(
|
||||||
|
"Tensor?[] weight",
|
||||||
|
NamedCType("weight", ArrayRefCType(OptionalCType(BaseCType(tensorT)))),
|
||||||
|
),
|
||||||
|
(
|
||||||
|
"SymInt[]? output_size",
|
||||||
|
NamedCType(
|
||||||
|
"output_size", OptionalCType(ArrayRefCType(BaseCType(longT)))
|
||||||
|
),
|
||||||
|
),
|
||||||
|
(
|
||||||
|
"int[]? dims",
|
||||||
|
NamedCType("dims", OptionalCType(ArrayRefCType(BaseCType(longT)))),
|
||||||
|
),
|
||||||
|
]
|
||||||
|
for d in data:
|
||||||
|
self._test_argumenttype_type(*d)
|
||||||
|
|
||||||
|
def _test_returntype_type(self, ret_str: str, expected: CType) -> None:
|
||||||
|
ret = Return.parse(ret_str)
|
||||||
|
self.assertEqual(str(return_type(ret)), str(expected))
|
||||||
|
|
||||||
|
@local.parametrize(
|
||||||
|
use_const_ref_for_mutable_tensors=False, use_ilistref_for_tensor_lists=False
|
||||||
|
)
|
||||||
|
def test_returntype_type(self) -> None:
|
||||||
|
data = [
|
||||||
|
("Tensor", BaseCType(tensorT)),
|
||||||
|
("Tensor(a!)", MutRefCType(BaseCType(tensorT))),
|
||||||
|
("Tensor[]", VectorCType(BaseCType(tensorT))),
|
||||||
|
]
|
||||||
|
for d in data:
|
||||||
|
self._test_returntype_type(*d)
|
||||||
|
|
||||||
|
@local.parametrize(
|
||||||
|
use_const_ref_for_mutable_tensors=False, use_ilistref_for_tensor_lists=False
|
||||||
|
)
|
||||||
|
def test_returns_type(self) -> None:
|
||||||
|
func = FunctionSchema.parse(
|
||||||
|
"min.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices)"
|
||||||
|
)
|
||||||
|
expected = TupleCType([BaseCType(tensorT), BaseCType(tensorT)])
|
||||||
|
self.assertEqual(str(returns_type(func.returns)), str(expected))
|
||||||
|
|
||||||
|
@local.parametrize(
|
||||||
|
use_const_ref_for_mutable_tensors=False, use_ilistref_for_tensor_lists=False
|
||||||
|
)
|
||||||
|
def test_void_return_type(self) -> None:
|
||||||
|
func = FunctionSchema.parse(
|
||||||
|
"_foreach_add_.Scalar(Tensor(a!)[] self, Scalar scalar) -> ()"
|
||||||
|
)
|
||||||
|
expected = BaseCType(voidT)
|
||||||
|
self.assertEqual(str(returns_type(func.returns)), str(expected))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
unittest.main()
|
0
torchgen/executorch/__init__.py
Normal file
0
torchgen/executorch/__init__.py
Normal file
0
torchgen/executorch/api/__init__.py
Normal file
0
torchgen/executorch/api/__init__.py
Normal file
368
torchgen/executorch/api/et_cpp.py
Normal file
368
torchgen/executorch/api/et_cpp.py
Normal file
@ -0,0 +1,368 @@
|
|||||||
|
from typing import List, Optional, Sequence, Set, Union
|
||||||
|
|
||||||
|
from torchgen import local
|
||||||
|
from torchgen.api.types import (
|
||||||
|
ArgName,
|
||||||
|
ArrayCType,
|
||||||
|
BaseCType,
|
||||||
|
Binding,
|
||||||
|
ConstRefCType,
|
||||||
|
CType,
|
||||||
|
MutRefCType,
|
||||||
|
NamedCType,
|
||||||
|
SpecialArgName,
|
||||||
|
TupleCType,
|
||||||
|
VectorCType,
|
||||||
|
voidT,
|
||||||
|
)
|
||||||
|
from torchgen.model import (
|
||||||
|
Argument,
|
||||||
|
Arguments,
|
||||||
|
BaseTy,
|
||||||
|
BaseType,
|
||||||
|
ListType,
|
||||||
|
NativeFunction,
|
||||||
|
OptionalType,
|
||||||
|
Return,
|
||||||
|
SelfArgument,
|
||||||
|
TensorOptionsArguments,
|
||||||
|
Type,
|
||||||
|
)
|
||||||
|
from torchgen.utils import assert_never
|
||||||
|
from .types import (
|
||||||
|
ArrayRefCType,
|
||||||
|
BaseTypeToCppMapping,
|
||||||
|
OptionalCType,
|
||||||
|
scalarT,
|
||||||
|
tensorListT,
|
||||||
|
tensorT,
|
||||||
|
)
|
||||||
|
|
||||||
|
"""
|
||||||
|
This file describes the translation of JIT schema to the public C++ API, which is what people use when they call
|
||||||
|
functions like at::add. It also serves as a native function API, which is the signature of kernels,
|
||||||
|
since in Executorch CppSignature is the same as NativeSignature.
|
||||||
|
|
||||||
|
Difference between this file and torchgen.api.cpp.py:
|
||||||
|
|
||||||
|
- Executorch doesn't support TensorOptions, however in this file we still keep the logic here to be compatible with
|
||||||
|
torchgen.api.cpp, so that we can do stuff like ATen mode (running ATen kernels in Executorch).
|
||||||
|
|
||||||
|
- Executorch doesn't support Dimname.
|
||||||
|
|
||||||
|
- Executorch runtime doesn't support SymInt, will treat it as int.
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
# Translation of "value types" in JIT schema to C++ API type. Value
|
||||||
|
# types look the same no matter if they are argument types or return
|
||||||
|
# types. Returns None if the type in question is not a value type.
|
||||||
|
def valuetype_type(
|
||||||
|
t: Type,
|
||||||
|
*,
|
||||||
|
binds: ArgName,
|
||||||
|
remove_non_owning_ref_types: bool = False,
|
||||||
|
) -> Optional[NamedCType]:
|
||||||
|
if isinstance(t, BaseType):
|
||||||
|
if t.name == BaseTy.Tensor or t.name == BaseTy.Scalar:
|
||||||
|
return None
|
||||||
|
# For SymInt we simply treat it as int.
|
||||||
|
elif str(t) == "SymInt":
|
||||||
|
return NamedCType(binds, BaseCType(BaseTypeToCppMapping[BaseTy.int]))
|
||||||
|
if remove_non_owning_ref_types:
|
||||||
|
if t.name == BaseTy.str:
|
||||||
|
raise AssertionError(
|
||||||
|
"string ref->value conversion: not implemented yet"
|
||||||
|
)
|
||||||
|
# All other BaseType currently map directly to BaseCppTypes.
|
||||||
|
return NamedCType(binds, BaseCType(BaseTypeToCppMapping[t.name]))
|
||||||
|
elif isinstance(t, OptionalType):
|
||||||
|
elem = valuetype_type(t.elem, binds=binds)
|
||||||
|
if elem is None:
|
||||||
|
return None
|
||||||
|
return NamedCType(binds, OptionalCType(elem.type))
|
||||||
|
elif isinstance(t, ListType):
|
||||||
|
if str(t.elem) == "bool":
|
||||||
|
assert t.size is not None
|
||||||
|
return NamedCType(
|
||||||
|
binds, ArrayCType(BaseCType(BaseTypeToCppMapping[BaseTy.bool]), t.size)
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
return None
|
||||||
|
else:
|
||||||
|
raise AssertionError(f"unrecognized type {repr(t)}")
|
||||||
|
|
||||||
|
|
||||||
|
# Translation of types occuring in JIT arguments to a C++ argument type.
|
||||||
|
# If remove_non_owning_ref_types is set, we'll guarantee that the outputed CType is not a non-owning reference type.
|
||||||
|
# For example, we'll return std::vector<int> instead of IntArrayRef.
|
||||||
|
# See Note [translation from C++ reference to value types]
|
||||||
|
def argumenttype_type(
|
||||||
|
t: Type,
|
||||||
|
*,
|
||||||
|
mutable: bool,
|
||||||
|
binds: ArgName,
|
||||||
|
remove_non_owning_ref_types: bool = False,
|
||||||
|
) -> NamedCType:
|
||||||
|
# If it's a value type, do the value type translation
|
||||||
|
r = valuetype_type(
|
||||||
|
t,
|
||||||
|
binds=binds,
|
||||||
|
remove_non_owning_ref_types=remove_non_owning_ref_types,
|
||||||
|
)
|
||||||
|
if r is not None:
|
||||||
|
return r
|
||||||
|
if isinstance(t, BaseType):
|
||||||
|
if t.name == BaseTy.Tensor:
|
||||||
|
if mutable and not local.use_const_ref_for_mutable_tensors():
|
||||||
|
return NamedCType(binds, MutRefCType(BaseCType(tensorT)))
|
||||||
|
else:
|
||||||
|
return NamedCType(binds, ConstRefCType(BaseCType(tensorT)))
|
||||||
|
elif t.name == BaseTy.Scalar:
|
||||||
|
return NamedCType(binds, ConstRefCType(BaseCType(scalarT)))
|
||||||
|
else:
|
||||||
|
raise AssertionError(f"base type should have been value type {t}")
|
||||||
|
elif isinstance(t, OptionalType):
|
||||||
|
if str(t.elem) == "Tensor":
|
||||||
|
if mutable and not local.use_const_ref_for_mutable_tensors():
|
||||||
|
return NamedCType(
|
||||||
|
binds, MutRefCType(BaseCType(tensorT))
|
||||||
|
) # TODO: fix this discrepancy
|
||||||
|
else:
|
||||||
|
return NamedCType(
|
||||||
|
binds, ConstRefCType(OptionalCType(BaseCType(tensorT)))
|
||||||
|
)
|
||||||
|
elif str(t.elem) == "Scalar":
|
||||||
|
return NamedCType(binds, ConstRefCType(OptionalCType(BaseCType(scalarT))))
|
||||||
|
elem = argumenttype_type(t.elem, mutable=mutable, binds=binds)
|
||||||
|
return NamedCType(binds, OptionalCType(elem.type))
|
||||||
|
elif isinstance(t, ListType):
|
||||||
|
# TODO: keeping these special cases for Tensor[] and Tensor?[] so that we can hookup with ATen kernels.
|
||||||
|
if str(t.elem) == "Tensor":
|
||||||
|
return NamedCType(binds, BaseCType(tensorListT))
|
||||||
|
elif str(t.elem) == "Dimname":
|
||||||
|
raise NotImplementedError("Executorch doesn't support Dimname")
|
||||||
|
elif str(t.elem) == "Tensor?":
|
||||||
|
return NamedCType(binds, ArrayRefCType(OptionalCType(BaseCType(tensorT))))
|
||||||
|
elem = argumenttype_type(t.elem, mutable=mutable, binds=binds)
|
||||||
|
return NamedCType(binds, ArrayRefCType(elem.type))
|
||||||
|
else:
|
||||||
|
raise AssertionError(f"unrecognized type {repr(t)}")
|
||||||
|
|
||||||
|
|
||||||
|
# Translate a JIT argument into its C++ type
|
||||||
|
def argument_type(a: Argument, *, binds: ArgName) -> NamedCType:
|
||||||
|
return argumenttype_type(a.type, mutable=a.is_write, binds=binds)
|
||||||
|
|
||||||
|
|
||||||
|
# Translation of a (non-multi) return type from JIT to C++
|
||||||
|
# N.B: returntype_type returns a CType, not a NamedCType.
|
||||||
|
# This is mostly because of the mismatch between return types and return names.
|
||||||
|
# e.g. a function with a return type of 'void' has 0 return names,
|
||||||
|
# and a function with a return type of 'std::tuple' has >1 return name.
|
||||||
|
def returntype_type(t: Type, *, mutable: bool) -> CType:
|
||||||
|
# placeholder is ignored
|
||||||
|
r = valuetype_type(t, binds="__placeholder__")
|
||||||
|
if r is not None:
|
||||||
|
return r.type
|
||||||
|
|
||||||
|
if isinstance(t, BaseType):
|
||||||
|
if t.name == BaseTy.Tensor:
|
||||||
|
if mutable:
|
||||||
|
if local.use_const_ref_for_mutable_tensors():
|
||||||
|
return ConstRefCType(BaseCType(tensorT))
|
||||||
|
else:
|
||||||
|
return MutRefCType(BaseCType(tensorT))
|
||||||
|
else:
|
||||||
|
# Note [Tensor Copy Returns]
|
||||||
|
# Currently, we use "Argument.is_write" to determine
|
||||||
|
# whether or not Tensor return types should be copies or references.
|
||||||
|
# If that ever changes, take a look at other locations of this note!
|
||||||
|
return BaseCType(tensorT)
|
||||||
|
elif t.name == BaseTy.Scalar:
|
||||||
|
return BaseCType(scalarT)
|
||||||
|
elif isinstance(t, ListType):
|
||||||
|
assert (
|
||||||
|
not mutable
|
||||||
|
), "Native functions should never return a mutable tensor list. They should return void."
|
||||||
|
elem = returntype_type(t.elem, mutable=False)
|
||||||
|
assert t.size is None, f"fixed size list returns not supported: {t}"
|
||||||
|
return VectorCType(elem)
|
||||||
|
|
||||||
|
raise AssertionError(f"unrecognized return type {t}")
|
||||||
|
|
||||||
|
|
||||||
|
# Translation of a single return to its C++ type
|
||||||
|
def return_type(r: Return) -> CType:
|
||||||
|
return returntype_type(r.type, mutable=r.is_write)
|
||||||
|
|
||||||
|
|
||||||
|
# Translation of a full (possibly multi) return from JIT to its C++ type
|
||||||
|
def returns_type(rs: Sequence[Return]) -> CType:
|
||||||
|
if len(rs) == 0:
|
||||||
|
return BaseCType(voidT)
|
||||||
|
elif len(rs) == 1:
|
||||||
|
return return_type(rs[0])
|
||||||
|
else:
|
||||||
|
return TupleCType([return_type(r) for r in rs])
|
||||||
|
|
||||||
|
|
||||||
|
def return_names(f: NativeFunction, *, fallback_name: str = "result") -> Sequence[str]:
|
||||||
|
returns: List[str] = []
|
||||||
|
for i, r in enumerate(f.func.returns):
|
||||||
|
# If we have an inplace function, the return argument is
|
||||||
|
# implicitly named self.
|
||||||
|
# TODO: Consider incorporating this into the data model
|
||||||
|
if f.func.name.name.inplace:
|
||||||
|
assert i == 0, "illegal inplace function with multiple returns"
|
||||||
|
name = "self"
|
||||||
|
# If we are out function, the name is the name of the
|
||||||
|
# corresponding output function (r.name will get recorded
|
||||||
|
# in field_name later.)
|
||||||
|
elif f.func.is_out_fn():
|
||||||
|
name = f.func.arguments.out[i].name
|
||||||
|
# If the return argument is explicitly named...
|
||||||
|
elif r.name:
|
||||||
|
name_conflict = any(
|
||||||
|
r.name == a.name for a in f.func.schema_order_arguments()
|
||||||
|
)
|
||||||
|
if name_conflict and not f.func.is_out_fn():
|
||||||
|
name = f"{r.name}_return"
|
||||||
|
else:
|
||||||
|
name = r.name
|
||||||
|
# If there is no explicit name and no fallback name was passed in, we just name the output result,
|
||||||
|
# unless it's a multi-return, in which case it's result0,
|
||||||
|
# result1, etc (zero-indexed)
|
||||||
|
else:
|
||||||
|
name = fallback_name if len(f.func.returns) == 1 else f"{fallback_name}{i}"
|
||||||
|
returns.append(name)
|
||||||
|
return returns
|
||||||
|
|
||||||
|
|
||||||
|
JIT_TO_CPP_DEFAULT = {
|
||||||
|
"False": "false",
|
||||||
|
"True": "true",
|
||||||
|
"None": "torch::executorch::nullopt", # UGH this one is type directed
|
||||||
|
"[]": "{}",
|
||||||
|
"contiguous_format": "torch::executorch::MemoryFormat::Contiguous",
|
||||||
|
"long": "torch::executorch::kLong",
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
# Convert a JIT default into C++ expression representing the default
|
||||||
|
def default_expr(d: str, t: Type) -> str:
|
||||||
|
if d == "None" and str(t) == "Tensor?":
|
||||||
|
return "{}"
|
||||||
|
if isinstance(t, BaseType) and t.name is BaseTy.str:
|
||||||
|
# Schema allows single quotes but C++ needs double
|
||||||
|
if len(d) >= 2 and d[0] == "'" and d[-1] == "'":
|
||||||
|
s = ""
|
||||||
|
i = 1
|
||||||
|
while i + 1 < len(d):
|
||||||
|
if d[i] != "\\":
|
||||||
|
if d[i] == '"':
|
||||||
|
s += '\\"'
|
||||||
|
else:
|
||||||
|
s += d[i]
|
||||||
|
i += 1
|
||||||
|
else:
|
||||||
|
if d[i + 1] == "'":
|
||||||
|
s += "'"
|
||||||
|
else:
|
||||||
|
s += d[i : i + 2]
|
||||||
|
i += 2
|
||||||
|
|
||||||
|
return f'"{s}"'
|
||||||
|
|
||||||
|
if isinstance(t, OptionalType):
|
||||||
|
if d == "None":
|
||||||
|
return "torch::executor::nullopt"
|
||||||
|
|
||||||
|
return default_expr(d, t.elem)
|
||||||
|
|
||||||
|
if isinstance(t, ListType):
|
||||||
|
if d.startswith("[") and d.endswith("]"):
|
||||||
|
return "{" + d[1:-1] + "}"
|
||||||
|
elif t.size is None:
|
||||||
|
# NOTE: Sized lists can have scalar defaults
|
||||||
|
raise ValueError(f"Expected a list default '[...]' but found: '{d}'")
|
||||||
|
|
||||||
|
return JIT_TO_CPP_DEFAULT.get(d, d)
|
||||||
|
|
||||||
|
|
||||||
|
# Convert an argument into its C++ API form
|
||||||
|
|
||||||
|
|
||||||
|
def argument(
|
||||||
|
a: Union[Argument, TensorOptionsArguments, SelfArgument],
|
||||||
|
*,
|
||||||
|
cpp_no_default_args: Set[str],
|
||||||
|
method: bool,
|
||||||
|
faithful: bool,
|
||||||
|
has_tensor_options: bool,
|
||||||
|
) -> List[Binding]:
|
||||||
|
def sub_argument(
|
||||||
|
a: Union[Argument, TensorOptionsArguments, SelfArgument]
|
||||||
|
) -> List[Binding]:
|
||||||
|
return argument(
|
||||||
|
a,
|
||||||
|
cpp_no_default_args=cpp_no_default_args,
|
||||||
|
method=method,
|
||||||
|
faithful=faithful,
|
||||||
|
has_tensor_options=has_tensor_options,
|
||||||
|
)
|
||||||
|
|
||||||
|
if isinstance(a, Argument):
|
||||||
|
binds: ArgName
|
||||||
|
if a.name == "memory_format" and has_tensor_options:
|
||||||
|
binds = SpecialArgName.possibly_redundant_memory_format
|
||||||
|
else:
|
||||||
|
binds = a.name
|
||||||
|
default: Optional[str] = None
|
||||||
|
if a.name not in cpp_no_default_args and a.default is not None:
|
||||||
|
default = default_expr(a.default, a.type)
|
||||||
|
return [
|
||||||
|
Binding(
|
||||||
|
nctype=argument_type(a, binds=binds),
|
||||||
|
name=a.name,
|
||||||
|
default=default,
|
||||||
|
argument=a,
|
||||||
|
)
|
||||||
|
]
|
||||||
|
elif isinstance(a, TensorOptionsArguments):
|
||||||
|
raise NotImplementedError("Need to implement type resolution for TensorOptions")
|
||||||
|
elif isinstance(a, SelfArgument):
|
||||||
|
if method:
|
||||||
|
# Caller is responsible for installing implicit this in context!
|
||||||
|
return []
|
||||||
|
else:
|
||||||
|
return sub_argument(a.argument)
|
||||||
|
else:
|
||||||
|
assert_never(a)
|
||||||
|
|
||||||
|
|
||||||
|
def arguments(
|
||||||
|
arguments: Arguments,
|
||||||
|
*,
|
||||||
|
faithful: bool,
|
||||||
|
method: bool,
|
||||||
|
cpp_no_default_args: Set[str],
|
||||||
|
) -> List[Binding]:
|
||||||
|
args: List[Union[Argument, TensorOptionsArguments, SelfArgument]] = []
|
||||||
|
if faithful:
|
||||||
|
args.extend(arguments.non_out)
|
||||||
|
args.extend(arguments.out)
|
||||||
|
else:
|
||||||
|
args.extend(arguments.out)
|
||||||
|
args.extend(arguments.non_out)
|
||||||
|
return [
|
||||||
|
r.no_default() if faithful else r
|
||||||
|
for a in args
|
||||||
|
for r in argument(
|
||||||
|
a,
|
||||||
|
faithful=faithful,
|
||||||
|
method=method,
|
||||||
|
has_tensor_options=arguments.tensor_options is not None,
|
||||||
|
cpp_no_default_args=cpp_no_default_args,
|
||||||
|
)
|
||||||
|
]
|
2
torchgen/executorch/api/types/__init__.py
Normal file
2
torchgen/executorch/api/types/__init__.py
Normal file
@ -0,0 +1,2 @@
|
|||||||
|
from .types import *
|
||||||
|
from .signatures import * # isort:skip
|
67
torchgen/executorch/api/types/signatures.py
Normal file
67
torchgen/executorch/api/types/signatures.py
Normal file
@ -0,0 +1,67 @@
|
|||||||
|
from dataclasses import dataclass
|
||||||
|
from typing import List, Optional, Set
|
||||||
|
|
||||||
|
import torchgen.api.cpp as aten_cpp
|
||||||
|
|
||||||
|
from torchgen.api.types import Binding, CType
|
||||||
|
from torchgen.model import FunctionSchema, NativeFunction
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass(frozen=True)
|
||||||
|
class ExecutorchCppSignature:
|
||||||
|
"""
|
||||||
|
This signature is merely a CppSignature with Executorch types. The inline definition
|
||||||
|
of CppSignature is generated in Functions.h and it's used by unboxing functions.
|
||||||
|
"""
|
||||||
|
|
||||||
|
# The schema this signature is derived from
|
||||||
|
func: FunctionSchema
|
||||||
|
|
||||||
|
# The set of C++ arguments which should not have defaults applied to them
|
||||||
|
cpp_no_default_args: Set[str]
|
||||||
|
|
||||||
|
# Allows you to prepend an arbitrary prefix to the signature name.
|
||||||
|
# This is useful for parts of the codegen that generate wrappers around kernels,
|
||||||
|
# and need to avoid naming collisions.
|
||||||
|
prefix: str = ""
|
||||||
|
|
||||||
|
def arguments(self) -> List[Binding]:
|
||||||
|
return et_cpp.arguments(
|
||||||
|
self.func.arguments,
|
||||||
|
faithful=True, # always faithful, out argument at the end
|
||||||
|
method=False, # method not supported
|
||||||
|
cpp_no_default_args=self.cpp_no_default_args,
|
||||||
|
)
|
||||||
|
|
||||||
|
def name(self) -> str:
|
||||||
|
return self.prefix + aten_cpp.name(
|
||||||
|
self.func,
|
||||||
|
faithful_name_for_out_overloads=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
def decl(self, name: Optional[str] = None) -> str:
|
||||||
|
args_str = ", ".join(a.decl() for a in self.arguments())
|
||||||
|
if name is None:
|
||||||
|
name = self.name()
|
||||||
|
return f"{self.returns_type().cpp_type()} {name}({args_str})"
|
||||||
|
|
||||||
|
def defn(self, name: Optional[str] = None) -> str:
|
||||||
|
args = [a.defn() for a in self.arguments()]
|
||||||
|
args_str = ", ".join(args)
|
||||||
|
if name is None:
|
||||||
|
name = self.name()
|
||||||
|
return f"{self.returns_type().cpp_type()} {name}({args_str})"
|
||||||
|
|
||||||
|
def returns_type(self) -> CType:
|
||||||
|
return et_cpp.returns_type(self.func.returns)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def from_native_function(
|
||||||
|
f: NativeFunction, *, prefix: str = ""
|
||||||
|
) -> "ExecutorchCppSignature":
|
||||||
|
return ExecutorchCppSignature(
|
||||||
|
func=f.func, prefix=prefix, cpp_no_default_args=f.cpp_no_default_args
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
from torchgen.executorch.api import et_cpp
|
57
torchgen/executorch/api/types/types.py
Normal file
57
torchgen/executorch/api/types/types.py
Normal file
@ -0,0 +1,57 @@
|
|||||||
|
from dataclasses import dataclass
|
||||||
|
from typing import Dict
|
||||||
|
|
||||||
|
from torchgen.api.types import BaseCppType, boolT, CType, doubleT, longT
|
||||||
|
from torchgen.model import BaseTy
|
||||||
|
|
||||||
|
halfT = BaseCppType("torch::executor", "Half")
|
||||||
|
bfloat16T = BaseCppType("torch::executor", "BFloat16")
|
||||||
|
stringT = BaseCppType("torch::executor", "string_view")
|
||||||
|
scalarTypeT = BaseCppType("torch::executor", "ScalarType")
|
||||||
|
tensorT = BaseCppType("torch::executor", "Tensor")
|
||||||
|
tensorListT = BaseCppType("torch::executor", "TensorList")
|
||||||
|
scalarT = BaseCppType("torch::executor", "Scalar")
|
||||||
|
memoryFormatT = BaseCppType("torch::executor", "MemoryFormat")
|
||||||
|
intArrayRefT = BaseCppType("torch::executor", "IntArrayRef")
|
||||||
|
optionalT = BaseCppType("torch::executor", "optional")
|
||||||
|
|
||||||
|
BaseTypeToCppMapping: Dict[BaseTy, BaseCppType] = {
|
||||||
|
BaseTy.int: longT,
|
||||||
|
BaseTy.float: doubleT,
|
||||||
|
BaseTy.bool: boolT,
|
||||||
|
BaseTy.str: stringT,
|
||||||
|
BaseTy.ScalarType: scalarTypeT,
|
||||||
|
BaseTy.Tensor: tensorT,
|
||||||
|
BaseTy.Scalar: scalarT,
|
||||||
|
BaseTy.MemoryFormat: memoryFormatT,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass(frozen=True)
|
||||||
|
class OptionalCType(CType):
|
||||||
|
elem: "CType"
|
||||||
|
|
||||||
|
def cpp_type(self, *, strip_ref: bool = False) -> str:
|
||||||
|
# Do not pass `strip_ref` recursively.
|
||||||
|
return f"torch::executor::optional<{self.elem.cpp_type()}>"
|
||||||
|
|
||||||
|
def cpp_type_registration_declarations(self) -> str:
|
||||||
|
return f"torch::executor::optional<{self.elem.cpp_type_registration_declarations()}>"
|
||||||
|
|
||||||
|
def remove_const_ref(self) -> "CType":
|
||||||
|
return OptionalCType(self.elem.remove_const_ref())
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass(frozen=True)
|
||||||
|
class ArrayRefCType(CType):
|
||||||
|
elem: "CType"
|
||||||
|
|
||||||
|
def cpp_type(self, *, strip_ref: bool = False) -> str:
|
||||||
|
# Do not pass `strip_ref` recursively.
|
||||||
|
return f"torch::executor::ArrayRef<{self.elem.cpp_type()}>"
|
||||||
|
|
||||||
|
def cpp_type_registration_declarations(self) -> str:
|
||||||
|
return f"torch::executor::ArrayRef<{self.elem.cpp_type_registration_declarations()}>"
|
||||||
|
|
||||||
|
def remove_const_ref(self) -> "CType":
|
||||||
|
return ArrayRefCType(self.elem.remove_const_ref())
|
Reference in New Issue
Block a user