torch.tensordot: performance improvements when contracting to a scalar. (#145936)

As per title.
Fixes https://github.com/pytorch/pytorch/issues/145731

Touches only compute. The CPU overhead can potentially be further reduced.

Before:
```python
In [3]: n = 512

In [4]: A = torch.rand(n, n)

In [5]: B = torch.rand(n, n)

In [6]: %timeit torch.tensordot(A, B, [[0, 1], [0, 1]])
2.04 ms ± 70 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

In [7]: %timeit torch.tensordot(A, B, [[0, 1], [1, 0]])
2.85 ms ± 191 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

In [8]: %timeit torch.tensordot(A, B, [[1, 0], [0, 1]])
2.9 ms ± 133 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

In [9]: %timeit torch.tensordot(A, B, [[1, 0], [1, 0]])
4.07 ms ± 262 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
```

After
```python
In [2]: n = 512

In [3]: A = torch.rand(n, n)

In [4]: B = torch.rand(n, n)

In [5]: %timeit torch.tensordot(A, B, [[0, 1], [0, 1]])
30.7 µs ± 2.51 µs per loop (mean ± std. dev. of 7 runs, 10,000 loops each)

In [6]: %timeit torch.tensordot(A, B, [[0, 1], [1, 0]])
141 µs ± 6.52 µs per loop (mean ± std. dev. of 7 runs, 10,000 loops each)

In [7]: %timeit torch.tensordot(A, B, [[1, 0], [0, 1]])
142 µs ± 4.03 µs per loop (mean ± std. dev. of 7 runs, 10,000 loops each)

In [8]: %timeit torch.tensordot(A, B, [[1, 0], [1, 0]])
62.8 µs ± 4.31 µs per loop (mean ± std. dev. of 7 runs, 10,000 loops each)

```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145936
Approved by: https://github.com/albanD, https://github.com/ngimel
This commit is contained in:
nikitaved
2025-05-13 10:57:30 +00:00
committed by PyTorch MergeBot
parent 8d7dec6e92
commit edc2d539d1
5 changed files with 57 additions and 8 deletions

View File

@ -9470,6 +9470,24 @@ scipy_lobpcg | {eq_err_scipy:10.2e} | {eq_err_general_scipy:10.2e} | {iters2:
an = torch.from_numpy(np.tensordot(np.zeros((), dtype=np.float32), np.zeros((), dtype=np.float32), 0))
self.assertEqual(a, an)
# Testing the fast path introduced in #145936,
# i.e. reduction to a scalar has to be of right dim.
a = torch.rand(2, 2, device=device)
a_dims = [-1, -2]
b = torch.rand(2, 2, device=device)
b_dims = [-2, -1]
for res_ndim in range(5):
res_torch = torch.tensordot(a, b, [a_dims, b_dims])
self.assertEqual(res_torch.ndim, res_ndim)
res_numpy = torch.from_numpy(np.tensordot(a.cpu().numpy(), b.cpu().numpy(), [a_dims, b_dims]))
self.assertEqual(res_torch, res_numpy)
if res_ndim % 2:
b.unsqueeze_(0)
else:
a.unsqueeze_(0)
@skipCUDAIfNoCusolver
@skipCUDAIfNoMagma
@skipCPUIfNoLapack