Revert "Fix NOLINTNEXTLINE (#141794)"

This reverts commit 7dd9b5fc4343d101294dbbab4b4172f2859460bc.

Reverted https://github.com/pytorch/pytorch/pull/141794 on behalf of https://github.com/atalman due to [GH job link](https://github.com/pytorch/pytorch/actions/runs/12087979418/job/33711943084) [HUD commit link](7dd9b5fc43) ([comment](https://github.com/pytorch/pytorch/pull/141794#issuecomment-2511789484))
This commit is contained in:
PyTorch MergeBot
2024-12-02 15:07:50 +00:00
parent a34a56f69f
commit eb7deb2db5
11 changed files with 83 additions and 17 deletions

View File

@ -365,7 +365,9 @@ Tensor from_blob_quantized_per_tensor_affine(
const auto ndim = sizes.size();
if (ndim > 0) {
strides.resize(ndim);
auto i = ndim - 1;
// NOLINTNEXTLINE
int32_t i = ndim - 1;
// NOLINTNEXTLINE
strides[i] = 1;
while (--i >= 0) {
strides[i] = sizes[i + 1] * strides[i + 1];

View File

@ -73,6 +73,7 @@ std::atomic<bool>& getTracerStateWarnMode() {
}
std::function<void()> pauseTracing() {
// NOLINTNEXTLINE
std::shared_ptr<tracer::TracingState> state = getTracingState();
tracer::setTracingState(nullptr);

View File

@ -103,15 +103,23 @@ std::vector<at::Tensor> constructTensors(
if (!qdataArg.has_value()) {
for (const auto i : c10::irange(buf_data_vec.size())) {
auto options = at::TensorOptions()
// NOLINTNEXTLINE
.dtype(buf_dtypes_vec[i])
.layout(at::kStrided)
.device(at::kCPU) // TODO: support GPUs too
.memory_format(deduce_memory_format(
buf_strides_vec[i], buf_dims_vec[i]))
// NOLINTNEXTLINE
buf_strides_vec[i],
// NOLINTNEXTLINE
buf_dims_vec[i]))
.requires_grad(false);
auto tensor = at::from_blob(
buf_data_vec[i], buf_dims_vec[i], buf_strides_vec[i], options);
tensors.emplace_back(std::move(tensor));
// NOLINTNEXTLINE
buf_data_vec[i],
buf_dims_vec[i],
buf_strides_vec[i],
options);
tensors.emplace_back(tensor);
}
} else {
// handle quantized
@ -121,26 +129,35 @@ std::vector<at::Tensor> constructTensors(
}
for (const auto i : c10::irange(buf_data_vec.size())) {
auto options = at::TensorOptions()
// NOLINTNEXTLINE
.dtype(buf_dtypes_vec[i])
.layout(at::kStrided)
.device(at::kCPU) // TODO: support GPUs too
.memory_format(deduce_memory_format(
buf_strides_vec[i], buf_dims_vec[i]))
// NOLINTNEXTLINE
buf_strides_vec[i],
// NOLINTNEXTLINE
buf_dims_vec[i]))
.requires_grad(false);
if (auto qd = qdata[i]) {
// inplace tensor
auto tensor = from_blob_quantized(
// NOLINTNEXTLINE
buf_data_vec[i],
buf_dims_vec[i],
buf_strides_vec[i],
qd->scale,
qd->zero,
qd->scalarType);
tensors.emplace_back(std::move(tensor));
tensors.emplace_back(tensor);
} else {
auto tensor = at::from_blob(
buf_data_vec[i], buf_dims_vec[i], buf_strides_vec[i], options);
tensors.emplace_back(std::move(tensor));
// NOLINTNEXTLINE
buf_data_vec[i],
buf_dims_vec[i],
buf_strides_vec[i],
options);
tensors.emplace_back(tensor);
}
}
}
@ -196,15 +213,23 @@ std::vector<at::Tensor> constructTensors2(
if (!qdataArg.has_value()) {
for (const auto i : c10::irange(buf_data_vec.size())) {
auto options = at::TensorOptions()
// NOLINTNEXTLINE
.dtype(buf_dtypes_vec[i])
.layout(at::kStrided)
.device(at::kCPU) // TODO: support GPUs too
.memory_format(deduce_memory_format(
buf_strides_vec[i], buf_dims_vec[i]))
// NOLINTNEXTLINE
buf_strides_vec[i],
// NOLINTNEXTLINE
buf_dims_vec[i]))
.requires_grad(false);
auto tensor = at::from_blob(
buf_data_vec[i], buf_dims_vec[i], buf_strides_vec[i], options);
tensors.emplace_back(std::move(tensor));
// NOLINTNEXTLINE
buf_data_vec[i],
buf_dims_vec[i],
buf_strides_vec[i],
options);
tensors.emplace_back(tensor);
}
} else {
// handle quantized
@ -214,26 +239,35 @@ std::vector<at::Tensor> constructTensors2(
}
for (const auto i : c10::irange(buf_data_vec.size())) {
auto options = at::TensorOptions()
// NOLINTNEXTLINE
.dtype(buf_dtypes_vec[i])
.layout(at::kStrided)
.device(at::kCPU) // TODO: support GPUs too
.memory_format(deduce_memory_format(
buf_strides_vec[i], buf_dims_vec[i]))
// NOLINTNEXTLINE
buf_strides_vec[i],
// NOLINTNEXTLINE
buf_dims_vec[i]))
.requires_grad(false);
if (auto qd = qdata[i]) {
// inplace tensor
auto tensor = from_blob_quantized(
// NOLINTNEXTLINE
buf_data_vec[i],
buf_dims_vec[i],
buf_strides_vec[i],
qd->scale,
qd->zero,
qd->scalarType);
tensors.emplace_back(std::move(tensor));
tensors.emplace_back(tensor);
} else {
auto tensor = at::from_blob(
buf_data_vec[i], buf_dims_vec[i], buf_strides_vec[i], options);
tensors.emplace_back(std::move(tensor));
// NOLINTNEXTLINE
buf_data_vec[i],
buf_dims_vec[i],
buf_strides_vec[i],
options);
tensors.emplace_back(tensor);
}
}
}
@ -395,6 +429,7 @@ void nnc_aten_quantized_conv1d(
reinterpret_cast<ConvPackedParamsBase<2>*>(buf_data[2]);
const double out_qscale = ((double*)extra_args)[3];
const int64_t out_qzero = extra_args[4];
// NOLINTNEXTLINE
auto qx = tensors[1].unsqueeze(quant_utils::kConv1dSqueezeDim + 2);
auto r = convPackedParams->apply(qx, out_qscale, out_qzero);
r = r.squeeze_(quant_utils::kConv1dSqueezeDim + 2);
@ -427,6 +462,7 @@ void nnc_aten_quantized_conv1d_out(
reinterpret_cast<ConvPackedParamsBase<2>*>(buf_data[2]);
const double out_qscale = ((double*)extra_args)[3];
const int64_t out_qzero = extra_args[4];
// NOLINTNEXTLINE
auto qx = tensors[1].unsqueeze(quant_utils::kConv1dSqueezeDim + 2);
auto r = convPackedParams->apply(qx, out_qscale, out_qzero);
r = r.squeeze_(quant_utils::kConv1dSqueezeDim + 2);
@ -459,6 +495,7 @@ void nnc_aten_quantized_conv2d(
reinterpret_cast<ConvPackedParamsBase<2>*>(buf_data[2]);
const double out_qscale = ((double*)extra_args)[3];
const int64_t out_qzero = extra_args[4];
// NOLINTNEXTLINE
auto r = convPackedParams->apply(tensors[1], out_qscale, out_qzero);
memcpy(buf_data[0], r.const_data_ptr(), r.element_size() * r.numel());
}
@ -489,6 +526,7 @@ void nnc_aten_quantized_conv2d_out(
reinterpret_cast<ConvPackedParamsBase<2>*>(buf_data[2]);
const double out_qscale = ((double*)extra_args)[3];
const int64_t out_qzero = extra_args[4];
// NOLINTNEXTLINE
auto r = convPackedParams->apply(tensors[1], out_qscale, out_qzero);
buf_data[0] = r.data_ptr();
c10::raw::intrusive_ptr::incref(r.getIntrusivePtr().get());
@ -519,6 +557,7 @@ void nnc_aten_quantized_conv2d_relu(
reinterpret_cast<ConvPackedParamsBase<2>*>(buf_data[2]);
const double out_qscale = ((double*)extra_args)[3];
const int64_t out_qzero = extra_args[4];
// NOLINTNEXTLINE
auto r = convPackedParams->apply_relu(tensors[1], out_qscale, out_qzero);
memcpy(buf_data[0], r.const_data_ptr(), r.element_size() * r.numel());
}
@ -549,6 +588,7 @@ void nnc_aten_quantized_conv2d_relu_out(
reinterpret_cast<ConvPackedParamsBase<2>*>(buf_data[2]);
const double out_qscale = ((double*)extra_args)[3];
const int64_t out_qzero = extra_args[4];
// NOLINTNEXTLINE
auto r = convPackedParams->apply_relu(tensors[1], out_qscale, out_qzero);
buf_data[0] = r.data_ptr();
c10::raw::intrusive_ptr::incref(r.getIntrusivePtr().get());
@ -579,6 +619,7 @@ void nnc_aten_quantized_linear(
reinterpret_cast<LinearPackedParamsBase*>(buf_data[2]);
const double out_qscale = ((double*)extra_args)[3];
const int64_t out_qzero = extra_args[4];
// NOLINTNEXTLINE
auto r = linearPackedParams->apply(tensors[1], out_qscale, out_qzero);
memcpy(buf_data[0], r.const_data_ptr(), r.element_size() * r.numel());
}
@ -609,6 +650,7 @@ void nnc_aten_quantized_linear_out(
reinterpret_cast<LinearPackedParamsBase*>(buf_data[2]);
const double out_qscale = ((double*)extra_args)[3];
const int64_t out_qzero = extra_args[4];
// NOLINTNEXTLINE
auto r = linearPackedParams->apply(tensors[1], out_qscale, out_qzero);
buf_data[0] = r.data_ptr();
c10::raw::intrusive_ptr::incref(r.getIntrusivePtr().get());
@ -639,6 +681,7 @@ void nnc_aten_quantized_linear_relu(
reinterpret_cast<LinearPackedParamsBase*>(buf_data[2]);
const double out_qscale = ((double*)extra_args)[3];
const int64_t out_qzero = extra_args[4];
// NOLINTNEXTLINE
auto r = linearPackedParams->apply_relu(tensors[1], out_qscale, out_qzero);
memcpy(buf_data[0], r.const_data_ptr(), r.element_size() * r.numel());
}
@ -673,6 +716,7 @@ void nnc_aten_quantized_add(
const double out_qscale = ((double*)extra_args)[6];
const int64_t out_qzero = extra_args[7];
// NOLINTNEXTLINE
auto r = quantized_add(tensors[1], tensors[2], out_qscale, out_qzero);
memcpy(buf_data[0], r.const_data_ptr(), r.element_size() * r.numel());
}
@ -703,6 +747,7 @@ void nnc_aten_quantized_mul(
{2u, {b_qscale, b_qzero, toQIntType(b_qdtype)}}});
const double out_qscale = ((double*)extra_args)[6];
const int64_t out_qzero = extra_args[7];
// NOLINTNEXTLINE
auto r = quantized_mul(tensors[1], tensors[2], out_qscale, out_qzero);
memcpy(buf_data[0], r.const_data_ptr(), r.element_size() * r.numel());
}
@ -735,6 +780,7 @@ void nnc_aten_quantized_mul_out(
1u);
const double out_qscale = ((double*)extra_args)[6];
const int64_t out_qzero = extra_args[7];
// NOLINTNEXTLINE
auto r = quantized_mul(tensors[1], tensors[2], out_qscale, out_qzero);
buf_data[0] = r.data_ptr();
c10::raw::intrusive_ptr::incref(r.getIntrusivePtr().get());
@ -762,6 +808,7 @@ void nnc_aten_quantized_mul_scalar(
buf_dtypes,
{{1u, {x_qscale, x_qzero, toQIntType(x_qdtype)}}});
const double scalar = ((double*)extra_args)[3];
// NOLINTNEXTLINE
auto r = quantized_mul_scalar(tensors[1], scalar);
memcpy(buf_data[0], r.const_data_ptr(), r.element_size() * r.numel());
}
@ -789,6 +836,7 @@ void nnc_aten_quantized_mul_scalar_out(
{{1u, {x_qscale, x_qzero, toQIntType(x_qdtype)}}},
bufs_out_num);
const double scalar = ((double*)extra_args)[3];
// NOLINTNEXTLINE
auto r = quantized_mul_scalar(tensors[1], scalar);
buf_data[0] = r.data_ptr();
c10::raw::intrusive_ptr::incref(r.getIntrusivePtr().get());
@ -815,6 +863,7 @@ void nnc_aten_quantized_relu(
buf_strides,
buf_dtypes,
{{1u, {x_qscale, x_qzero, toQIntType(x_qdtype)}}});
// NOLINTNEXTLINE
auto r = at::relu(tensors[1]);
memcpy(buf_data[0], r.const_data_ptr(), r.element_size() * r.numel());
}
@ -840,6 +889,7 @@ void nnc_aten_quantized_sigmoid(
buf_dtypes,
{{1u, {x_qscale, x_qzero, toQIntType(x_qdtype)}}});
// NOLINTNEXTLINE
auto r = at::sigmoid(tensors[1]);
memcpy(buf_data[0], r.const_data_ptr(), r.element_size() * r.numel());
}
@ -867,6 +917,7 @@ void nnc_aten_quantized_sigmoid_out(
{{1u, {x_qscale, x_qzero, toQIntType(x_qdtype)}}},
bufs_out_num);
// NOLINTNEXTLINE
auto r = at::sigmoid(tensors[1]);
buf_data[0] = r.data_ptr();
c10::raw::intrusive_ptr::incref(r.getIntrusivePtr().get());
@ -1072,6 +1123,7 @@ void nnc_aten_dequantize(
buf_dtypes,
{{1u,
{qscale, qzero, toQIntType(static_cast<c10::ScalarType>(qdtype))}}});
// NOLINTNEXTLINE
auto r = at::dequantize(tensors[1]);
memcpy(buf_data[0], r.const_data_ptr(), r.element_size() * r.numel());
}
@ -1098,6 +1150,7 @@ void nnc_aten_dequantize_out(
buf_dtypes,
{{1u, {qscale, qzero, toQIntType(static_cast<c10::ScalarType>(qdtype))}}},
bufs_out_num);
// NOLINTNEXTLINE
auto r = at::dequantize(tensors[1]);
buf_data[0] = r.data_ptr();
c10::raw::intrusive_ptr::incref(r.getIntrusivePtr().get());

View File

@ -108,6 +108,7 @@ ExprPtr IRMutator::mutate(const CompareSelectPtr& v) {
return v;
}
// NOLINTNEXTLINE
#define IMM_MUTATE_DEFINE(_1, Name) \
ExprPtr IRMutator::mutate(const Name##ImmPtr& v) { \
return v; \

View File

@ -226,6 +226,7 @@ static void formatImm(std::ostream& os, T v) {
formatIntSuffix(os, v);
}
// NOLINTNEXTLINE
#define IMM_PRINT_VISIT(Type, Name) \
void IRPrinter::visit(const Name##ImmPtr& v) { \
formatImm(os(), v->value()); \

View File

@ -22,6 +22,7 @@ RegisterNNCLoweringsFunction::RegisterNNCLoweringsFunction(
}
namespace {
// NOLINTNEXTLINE
int nnc_lowerings_lazy_registration() {
RegisterNNCLoweringsFunction aten_dropout(
{"aten::dropout(Tensor input, float p, bool train) -> (Tensor)"},

View File

@ -543,6 +543,7 @@ Tensor computeQuantizedMulScalar(
const std::vector<ArgValue>& inputs,
const std::vector<ExprHandle>& outputShape,
const std::vector<ExprHandle>& outputStrides,
// NOLINTNEXTLINE
const std::optional<ScalarType>& outputType,
at::Device device) {
const BufHandle& qa = std::get<BufHandle>(inputs[0]);
@ -597,7 +598,9 @@ Tensor computeQuantizedCat(
const std::vector<ArgValue>& inputs,
const std::vector<ExprHandle>& outputShape,
const std::vector<ExprHandle>& outputStrides,
// NOLINTNEXTLINE
const std::optional<ScalarType>& outputType,
// NOLINTNEXTLINE
at::Device device) {
auto const& inputList = std::get<BufList>(inputs[0]);
auto argDim = std::get<int64_t>(inputs[1]);

View File

@ -31,6 +31,7 @@ TORCH_API Dtype kHandle(ScalarType::Undefined, 1);
Dtype ToDtype(ScalarType type) {
switch (type) {
// NOLINTNEXTLINE
#define TYPE_CASE(_1, n) \
case ScalarType::n: \
return k##n;
@ -92,6 +93,7 @@ int Dtype::byte_size() const {
std::string Dtype::ToCppString() const {
switch (scalar_type_) {
// NOLINTNEXTLINE
#define TYPE_CASE(t, n) \
case ScalarType::n: \
return #t;

View File

@ -447,6 +447,7 @@ void LazyGraphExecutor::WaitDeviceOps(c10::ArrayRef<BackendDevice> devices) {
// The LockDevices() API returns a vector of
// ExceptionCleanup object, which is going to be freed
// immediately, turning this operation into a lock barrier.
// NOLINTNEXTLINE
DeviceLockerArena::Get()->LockDevices(wait_devices);
}

View File

@ -46,7 +46,8 @@ struct MemFile {
"failed to open {}: {}",
filename_,
c10::utils::str_error(errno));
struct stat s {};
// NOLINTNEXTLINE
struct stat s;
if (-1 == fstat(fd_, &s)) {
close(fd_); // destructors don't run during exceptions
UNWIND_CHECK(

View File

@ -16,7 +16,7 @@ static std::string demangle(const std::string& mangled_name) {
abi::__cxa_demangle(mangled_name.c_str(), nullptr, nullptr, &status);
if (status == 0) {
std::string demangled_name(realname);
// NOLINTNEXTLINE(cppcoreguidelines-no-malloc)
// NOLINTNEXTLINE
free(realname);
return demangled_name;
} else {