mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Enable all SIM rules except disabled ones (#164645)
`SIM` rules are useful for simplifying boolean expressions and enhances code readability. Pull Request resolved: https://github.com/pytorch/pytorch/pull/164645 Approved by: https://github.com/ezyang, https://github.com/mlazos
This commit is contained in:
committed by
PyTorch MergeBot
parent
f1d882212a
commit
e925dfcc6b
@ -3074,7 +3074,7 @@ class TestShardedTensorFromLocalShards(ShardedTensorTestBase):
|
||||
wrong_dtype_shards, [10, 10], init_rrefs=True
|
||||
)
|
||||
|
||||
tensor_requires_grad = True if self.rank == 0 else False
|
||||
tensor_requires_grad = self.rank == 0
|
||||
wrong_requires_grad_shards = [
|
||||
sharded_tensor.Shard(
|
||||
torch.randn(
|
||||
@ -3121,7 +3121,7 @@ class TestShardedTensorFromLocalShards(ShardedTensorTestBase):
|
||||
wrong_pin_memory_local_shards, [10, 10], init_rrefs=True
|
||||
)
|
||||
|
||||
tensor_pin_memory = True if self.rank == 0 else False
|
||||
tensor_pin_memory = self.rank == 0
|
||||
wrong_pin_memory_shards_cross_ranks = [
|
||||
sharded_tensor.Shard(
|
||||
torch.randn(5, 5, pin_memory=tensor_pin_memory), local_shard_metadata
|
||||
|
||||
@ -152,7 +152,7 @@ class TestStorageBase:
|
||||
self.rank = 0 if not dist.is_initialized() else dist.get_rank()
|
||||
|
||||
def _get_ranks(self, name):
|
||||
return self.fail_conf[name] if name in self.fail_conf else None
|
||||
return self.fail_conf.get(name, None)
|
||||
|
||||
def _fail_rank(self, name):
|
||||
ranks = self._get_ranks(name)
|
||||
|
||||
@ -155,7 +155,7 @@ class TestFreezingWeights(FSDPTest):
|
||||
|
||||
ddp_kwargs = {
|
||||
"device_ids": [self.rank],
|
||||
"find_unused_parameters": True if disable_autograd else False,
|
||||
"find_unused_parameters": bool(disable_autograd),
|
||||
}
|
||||
|
||||
model = self._create_model(
|
||||
|
||||
@ -66,7 +66,7 @@ class MockPipelineStage(_PipelineStageBase):
|
||||
self.num_stages = kwargs.get("num_stages", 1)
|
||||
self.group_size = kwargs.get("group_size", 1)
|
||||
self.group_rank = kwargs.get("group_rank", 0)
|
||||
self.group = kwargs.get("group", None)
|
||||
self.group = kwargs.get("group")
|
||||
|
||||
def _create_grad_recv_info(self, *args, **kwargs):
|
||||
return None
|
||||
|
||||
@ -1066,7 +1066,7 @@ class TestDTensorPlacementTypes(DTensorTestBase):
|
||||
assert_array_equal(expected_pad_sizes, pad_sizes)
|
||||
|
||||
is_tensor_empty = [
|
||||
False if splitted_tensor.numel() > 0 else True
|
||||
not splitted_tensor.numel() > 0
|
||||
for splitted_tensor in splitted_tensor_list
|
||||
]
|
||||
expected_is_tensor_empty = [True] * self.world_size
|
||||
@ -1089,12 +1089,10 @@ class TestDTensorPlacementTypes(DTensorTestBase):
|
||||
for i, tensor in enumerate(splitted_tensor_list)
|
||||
]
|
||||
expected_is_tensor_empty = [
|
||||
False if idx < size else True
|
||||
for idx, _ in enumerate(range(self.world_size))
|
||||
not idx < size for idx, _ in enumerate(range(self.world_size))
|
||||
]
|
||||
is_tensor_empty = [
|
||||
False if unpadded_tensor.numel() > 0 else True
|
||||
for unpadded_tensor in unpadded_list
|
||||
not unpadded_tensor.numel() > 0 for unpadded_tensor in unpadded_list
|
||||
]
|
||||
assert_array_equal(expected_is_tensor_empty, is_tensor_empty)
|
||||
|
||||
|
||||
@ -2770,11 +2770,7 @@ class WorkHookTest(MultiProcessTestCase):
|
||||
# from rank0 to other ranks. However, this is DDP's internal implementation,
|
||||
# which is subject to change in future versions.
|
||||
self.assertTrue(num_hook_fired[OpType.BROADCAST] > 0)
|
||||
ctor_allreduce = (
|
||||
num_hook_fired[OpType.ALLREDUCE]
|
||||
if OpType.ALLREDUCE in num_hook_fired
|
||||
else 0
|
||||
)
|
||||
ctor_allreduce = num_hook_fired.get(OpType.ALLREDUCE, 0)
|
||||
|
||||
x = torch.zeros(2, 1000).cuda(self.rank)
|
||||
ddp(x).sum().backward()
|
||||
|
||||
Reference in New Issue
Block a user