[functorch] Run all correctness tests

This commit is contained in:
Richard Zou
2021-04-27 14:17:05 -07:00
committed by Jon Janzen
parent 20fac9da6e
commit e8abf483ea

View File

@ -6,17 +6,31 @@ import unittest
import functools
import itertools
import warnings
import math
from typing import Callable, Type
from torch.testing._internal.common_device_type import instantiate_device_type_tests, \
skipCUDAIfNoMagma, onlyOnCPUAndCUDA
import types
from functools import partial
import functorch
from functorch import grad, vjp, vmap, make_functional, jacrev, make_functional_with_buffers
from functorch import (
grad, vjp, vmap, jacrev, grad_with_value,
make_functional, make_functional_with_buffers,
)
# NB: numpy is a testing dependency!
import numpy as np
USE_TORCHVISION = False
try:
import torchvision
USE_TORCHVISION = True
except:
warnings.warn("Couldn't import torchvision. Some of our tests use it, try ",
"to install it with commands from pytorch.org, post-fixed with ",
"`--no-deps` to avoid overwriting the pytorch installation")
class TestGradTransform(TestCase):
def test_primitive(self, device):
@ -615,6 +629,152 @@ class TestExamplesCorrectness(TestCase):
self.assertEqual(result_grads, expected_grads)
def test_ensemble_regression(self, device):
def make_spirals(n_samples, noise_std=0., rotations=1.):
ts = torch.linspace(0, 1, n_samples)
rs = ts ** 0.5
thetas = rs * rotations * 2 * math.pi
signs = torch.randint(0, 2, (n_samples,)) * 2 - 1
labels = (signs > 0).to(torch.long)
xs = rs * signs * torch.cos(thetas) + torch.randn(n_samples) * noise_std
ys = rs * signs * torch.sin(thetas) + torch.randn(n_samples) * noise_std
points = torch.stack([xs, ys], dim=1)
return points.to(device), labels.to(device)
points, labels = make_spirals(100, noise_std=0.05)
class MLPClassifier(nn.Module):
def __init__(self, hidden_dim=32, n_classes=2):
super().__init__()
self.hidden_dim = hidden_dim
self.n_classes = n_classes
self.fc1 = nn.Linear(2, self.hidden_dim)
self.fc2 = nn.Linear(self.hidden_dim, self.n_classes)
def forward(self, x):
x = self.fc1(x)
x = F.relu(x)
x = self.fc2(x)
x = F.log_softmax(x, -1)
return x
loss_fn = nn.NLLLoss()
weights, func_model, _ = make_functional(MLPClassifier().to(device))
def train_step_fn(use_transform, weights, batch, targets, lr=0.2):
def compute_loss(weights, batch, targets):
output = func_model(weights, (batch,))
loss = loss_fn(output, targets)
return loss
if use_transform:
grad_weights, loss = grad_with_value(compute_loss)(weights, batch, targets)
else:
loss = compute_loss(weights, batch, targets)
grad_weights = torch.autograd.grad(loss, weights)
new_weights = []
with torch.no_grad():
for grad_weight, weight in zip(grad_weights, weights):
new_weights.append(weight - grad_weight * lr)
# NB: return looks weird because torch.vmap must return Tensors
return (loss, *new_weights)
def unpack(train_result):
return train_result[0], train_result[1:]
def init_fn(num_models):
models = tuple(MLPClassifier().to(device) for _ in range(num_models))
weights = tuple(make_functional(model)[0] for model in models)
weights = tuple(zip(*weights))
weights = tuple(torch.stack(shards).detach() for shards in weights)
return weights
def slice_weights(batched_weights, index):
return tuple(weight[index].detach().requires_grad_() for weight in batched_weights)
batched_weights = init_fn(num_models=2)
parallel_train_step_fn = vmap(partial(train_step_fn, True), in_dims=(0, None, None))
result_loss, result_weights = unpack(parallel_train_step_fn(batched_weights, points, labels))
loss0, weights0 = unpack(train_step_fn(False, slice_weights(batched_weights, 0), points, labels))
loss1, weights1 = unpack(train_step_fn(False, slice_weights(batched_weights, 1), points, labels))
expected_loss = torch.stack([loss0, loss1])
expected_weights = tuple(torch.stack([w0, w1]) for w0, w1 in zip(weights0, weights1))
self.assertEqual(result_loss, expected_loss)
self.assertEqual(result_weights, expected_weights)
@unittest.skipIf(not USE_TORCHVISION, "test requires torchvision")
def test_resnet18_per_sample_grads(self, device):
# Straight out of opacus
def _replace_child(
root: nn.Module, child_name: str, converter: Callable[[nn.Module], nn.Module]
) -> None:
# find the immediate parent
parent = root
nameList = child_name.split(".")
for name in nameList[:-1]:
parent = parent._modules[name]
# set to identity
parent._modules[nameList[-1]] = converter(parent._modules[nameList[-1]])
def replace_all_modules(
root: nn.Module,
target_class: Type[nn.Module],
converter: Callable[[nn.Module], nn.Module],
) -> nn.Module:
# base case
if isinstance(root, target_class):
return converter(root)
for name, obj in root.named_modules():
if isinstance(obj, target_class):
_replace_child(root, name, converter)
return root
def _batchnorm_to_groupnorm(module: nn.modules.batchnorm._BatchNorm) -> nn.Module:
return nn.GroupNorm(min(32, module.num_features), module.num_features, affine=True)
def convert_batchnorm_modules(
model: nn.Module,
converter: Callable[
[nn.modules.batchnorm._BatchNorm], nn.Module
] = _batchnorm_to_groupnorm,
) -> nn.Module:
return replace_all_modules(model, nn.modules.batchnorm._BatchNorm, converter)
import torchvision.models as models
model = convert_batchnorm_modules(models.resnet18(num_classes=10)).to(device)
criterion = nn.CrossEntropyLoss()
weights, func_model, descriptors = make_functional(model)
def compute_loss(weights, image, target):
images = image.unsqueeze(0)
targets = target.unsqueeze(0)
output = func_model(weights, (images,))
loss = criterion(output, targets)
return loss
batch_size = 3
images = torch.randn(batch_size, 3, 32, 32, device=device)
targets = torch.randint(0, 10, (batch_size,), device=device)
result_grads = vmap(grad(compute_loss), in_dims=(None, 0, 0))(weights, images, targets)
expected_grads = [
torch.autograd.grad(compute_loss(weights, images[i], targets[i]), weights)
for i in range(batch_size)
]
expected_grads = [torch.stack(shards) for shards in zip(*expected_grads)]
self.assertEqual(result_grads, expected_grads)
instantiate_device_type_tests(
TestGradTransform,