mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
If a torch.* returns non-Tensor, make this unimplemented rather than assert. (#89918)
Signed-off-by: Edward Z. Yang <ezyang@fb.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/89918 Approved by: https://github.com/albanD
This commit is contained in:
committed by
PyTorch MergeBot
parent
a66af1feba
commit
e686a442b4
@ -246,6 +246,7 @@ class SparseQuantizedModel(nn.Module):
|
||||
|
||||
class TestQuantizedSparseLayers(TestCase):
|
||||
@override_qengines
|
||||
@skipIfTorchDynamo("https://github.com/pytorch/torchdynamo/issues/1991")
|
||||
def test_sparse_qlinear(self):
|
||||
# Note: At the moment, for sparse kernels
|
||||
# fbgemm supports only static quantized sparse linear
|
||||
@ -278,6 +279,7 @@ class TestQuantizedSparseLayers(TestCase):
|
||||
)
|
||||
|
||||
@override_qengines
|
||||
@skipIfTorchDynamo("https://github.com/pytorch/torchdynamo/issues/1991")
|
||||
def test_sparse_qlinear_serdes(self):
|
||||
# Note: At the moment, for sparse kernels
|
||||
# fbgemm supports only static quantized sparse linear
|
||||
|
@ -2552,6 +2552,7 @@ class TestScriptList(JitTestCase):
|
||||
with self.assertRaises(TypeError):
|
||||
script_data.append("str")
|
||||
|
||||
@skipIfTorchDynamo("https://github.com/pytorch/torchdynamo/issues/1991")
|
||||
def test_clear(self):
|
||||
"""
|
||||
Test clear.
|
||||
|
@ -8,7 +8,7 @@ from typing import Union
|
||||
import unittest
|
||||
|
||||
import torch.testing._internal.common_utils as common
|
||||
from torch.testing._internal.common_utils import IS_WINDOWS
|
||||
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfTorchDynamo
|
||||
from torch.testing._internal.common_cuda import TEST_CUDA
|
||||
import torch
|
||||
import torch.backends.cudnn
|
||||
@ -295,6 +295,7 @@ class TestRNGExtension(common.TestCase):
|
||||
def setUp(self):
|
||||
super(TestRNGExtension, self).setUp()
|
||||
|
||||
@skipIfTorchDynamo("https://github.com/pytorch/torchdynamo/issues/1991")
|
||||
def test_rng(self):
|
||||
fourty_two = torch.full((10,), 42, dtype=torch.int64)
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
# Owner(s): ["module: meta tensors"]
|
||||
|
||||
from torch.testing._internal.common_utils import TestCase, run_tests, skipIfCrossRef, skipIfRocm
|
||||
from torch.testing._internal.common_utils import TestCase, run_tests, skipIfCrossRef, skipIfRocm, skipIfTorchDynamo
|
||||
import torch
|
||||
import torch._dynamo
|
||||
import itertools
|
||||
@ -557,6 +557,7 @@ class FakeTensorConverterTest(TestCase):
|
||||
y_conv = converter(mode, y)
|
||||
self.assertEqual(torch._C._storage_id(x_conv), torch._C._storage_id(y_conv))
|
||||
|
||||
@skipIfTorchDynamo("https://github.com/pytorch/torchdynamo/issues/1991")
|
||||
def test_separate_tensor_storages_non_view(self):
|
||||
x = torch.rand(2, 2, 2)
|
||||
y = torch.rand(4, 2)
|
||||
@ -577,6 +578,7 @@ class FakeTensorConverterTest(TestCase):
|
||||
self.assertEqual(len(converter.meta_converter.storage_memo), 0)
|
||||
|
||||
|
||||
@skipIfTorchDynamo("https://github.com/pytorch/torchdynamo/issues/1991")
|
||||
def test_dead_weak_ref(self):
|
||||
x = torch.rand(2, 2, 2)
|
||||
y = x[0]
|
||||
@ -589,6 +591,7 @@ class FakeTensorConverterTest(TestCase):
|
||||
y_conv = converter(mode, y)
|
||||
self.assertEqual(x_conv_storage, torch._C._storage_id(y_conv))
|
||||
|
||||
@skipIfTorchDynamo("https://github.com/pytorch/torchdynamo/issues/1991")
|
||||
def test_dead_key(self):
|
||||
x = torch.rand(2, 2, 2)
|
||||
mode = FakeTensorMode()
|
||||
@ -617,6 +620,7 @@ class FakeTensorConverterTest(TestCase):
|
||||
y = torch.empty(2, 2, device="cpu")
|
||||
self.assertRaises(Exception, lambda: x, y)
|
||||
|
||||
@skipIfTorchDynamo("https://github.com/pytorch/torchdynamo/issues/1991")
|
||||
def test_no_ref_cycle(self):
|
||||
x = torch.rand([4])
|
||||
mode = FakeTensorMode()
|
||||
|
@ -12,6 +12,7 @@ from torch._dispatch.python import enable_python_dispatcher
|
||||
from torch.testing._internal.common_utils import (
|
||||
TestCase,
|
||||
skipIfCrossRef,
|
||||
skipIfTorchDynamo,
|
||||
suppress_warnings,
|
||||
TEST_WITH_ASAN,
|
||||
run_tests,
|
||||
@ -251,6 +252,7 @@ class TestMetaConverter(TestCase):
|
||||
m = MetaConverter()(y)
|
||||
self.assertMetadataMatches(m, y)
|
||||
|
||||
@skipIfTorchDynamo("https://github.com/pytorch/torchdynamo/issues/1991")
|
||||
def test_weakref(self):
|
||||
x = torch.randn(4, 4, 4)
|
||||
m = MetaConverter()
|
||||
@ -274,6 +276,7 @@ class TestMetaConverter(TestCase):
|
||||
m.check_for_expired_weak_storages()
|
||||
self.assertEqual(len(m.storage_memo), 0)
|
||||
|
||||
@skipIfTorchDynamo("https://github.com/pytorch/torchdynamo/issues/1991")
|
||||
def test_tensor_outlives_converter(self):
|
||||
m = MetaConverter()
|
||||
ref = weakref.ref(m)
|
||||
|
@ -235,6 +235,7 @@ class TestSparse(TestSparseBase):
|
||||
@coalescedonoff
|
||||
@dtypes(torch.double, torch.cdouble, torch.bfloat16)
|
||||
@precisionOverride({torch.bfloat16: 1e-2})
|
||||
@skipIfTorchDynamo("https://github.com/pytorch/torchdynamo/issues/1991")
|
||||
def test_coalesce(self, device, dtype, coalesced):
|
||||
|
||||
def _test_coalesce(t):
|
||||
|
@ -2390,6 +2390,7 @@ class TestTensorCreation(TestCase):
|
||||
self.assertEqual(d.shape[0], 800)
|
||||
|
||||
# TODO: this test should be updated
|
||||
@skipIfTorchDynamo("https://github.com/pytorch/torchdynamo/issues/1991")
|
||||
@onlyCPU
|
||||
def test_arange_inference(self, device):
|
||||
saved_dtype = torch.get_default_dtype()
|
||||
|
@ -222,6 +222,7 @@ class TestTorchDeviceType(TestCase):
|
||||
s[2:7] = 1
|
||||
self.assertEqual(s, storage_type(l))
|
||||
|
||||
@skipIfTorchDynamo("https://github.com/pytorch/torchdynamo/issues/1991")
|
||||
@onlyNativeDeviceTypes
|
||||
@dtypes(*all_types_and_complex_and(torch.half, torch.bool, torch.bfloat16))
|
||||
def test_tensor_storage_type(self, device, dtype):
|
||||
|
@ -919,7 +919,7 @@ def wrap_fx_proxy_cls(
|
||||
proxy.node.meta["example_value"] = example_value
|
||||
return DynamicShapeVariable(proxy, example_value, **options)
|
||||
else:
|
||||
raise AssertionError(
|
||||
unimplemented(
|
||||
"torch.* op returned non-Tensor "
|
||||
+ f"{typestr(example_value)} {proxy.node.op} {proxy.node.target}"
|
||||
)
|
||||
|
Reference in New Issue
Block a user