mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
[Fix] Adding missing f
prefixes to formatted strings [4/N] (#164068)
As stated in the title. * __->__ #164068 * #164067 * #164066 * #164065 Pull Request resolved: https://github.com/pytorch/pytorch/pull/164068 Approved by: https://github.com/Skylion007
This commit is contained in:
committed by
PyTorch MergeBot
parent
047ae24e34
commit
e64dd8c694
@ -1178,6 +1178,6 @@ class TestClientProtocol(TestCase):
|
||||
if __name__ == "__main__":
|
||||
if device_type != "cpu":
|
||||
assert not torch.get_device_module()._initialized, (
|
||||
"test_distributed must not have initialized {device_type} context on main process"
|
||||
f"test_distributed must not have initialized {device_type} context on main process"
|
||||
)
|
||||
run_tests()
|
||||
|
@ -451,7 +451,7 @@ class AsyncTPTest(MultiProcContinuousTest):
|
||||
elif gather_dim == 1:
|
||||
leading_dims = (BATCH, M // self.world_size)
|
||||
else:
|
||||
raise AssertionError("Invalid scale_mode: {scale_mode}")
|
||||
raise AssertionError(f"Invalid scale_mode: {scale_mode}")
|
||||
|
||||
torch.manual_seed(42 + rank)
|
||||
|
||||
|
@ -97,7 +97,7 @@ class TestObserver(QuantizationTestCase):
|
||||
reduce_range=reduce_range)]
|
||||
|
||||
def _get_ref_params(reduce_range, qscheme, dtype, input_scale, min_val, max_val):
|
||||
assert dtype in _INT_DTYPES, "Not supported dtype: {dtype}, supported dtypes are {_INT_DTYPES}"
|
||||
assert dtype in _INT_DTYPES, f"Not supported dtype: {dtype}, supported dtypes are {_INT_DTYPES}"
|
||||
eps = torch.tensor([tolerance])
|
||||
if dtype in [torch.qint8, torch.int8]:
|
||||
if reduce_range:
|
||||
|
@ -82,7 +82,7 @@ class TestNumericDebugger(TestCase):
|
||||
prev_decomp_op_to_debug_handle_map[prev_decomp_op]
|
||||
== debug_handle
|
||||
), f"Node {node} has different debug handle {debug_handle}"
|
||||
"than previous node sharing the same decomp op {prev_decomp_op}"
|
||||
f"than previous node sharing the same decomp op {prev_decomp_op}"
|
||||
|
||||
bfs_trace_with_node_process(
|
||||
model, _extract_debug_handles_with_prev_decomp_op_from_node
|
||||
|
@ -2702,7 +2702,7 @@ class TestSparseCSR(TestCase):
|
||||
# Sparse CSR only supports 2D tensors as inputs
|
||||
# Fail early to prevent silent success with this test
|
||||
if sample.input.ndim != 2:
|
||||
raise ValueError("Expected 2D tensor but got tensor with dimension: {sample.input.ndim}.")
|
||||
raise ValueError(f"Expected 2D tensor but got tensor with dimension: {sample.input.ndim}.")
|
||||
|
||||
sample.input = sample.input.to_sparse_csr()
|
||||
expect = op(sample.input, *sample.args, **sample.kwargs)
|
||||
@ -2726,7 +2726,7 @@ class TestSparseCSR(TestCase):
|
||||
# Sparse CSR only supports 2D tensors as inputs
|
||||
# Fail early to prevent silent success with this test
|
||||
if sample.input.ndim != 2:
|
||||
raise ValueError("Expected 2D tensor but got tensor with dimension: {sample.input.ndim}.")
|
||||
raise ValueError(f"Expected 2D tensor but got tensor with dimension: {sample.input.ndim}.")
|
||||
|
||||
sample.input = sample.input.to_sparse_csr()
|
||||
expect = op(sample.input, *sample.args, **sample.kwargs)
|
||||
|
Reference in New Issue
Block a user