Revert "Update gm.print_readable to include Annotation (#165397)"

This reverts commit 7a657700131f31577544e93587eb339618677e97.

Reverted https://github.com/pytorch/pytorch/pull/165397 on behalf of https://github.com/malfet due to I don't know how/why, but it breaks windows tests, see 2e22b1a61e/1 ([comment](https://github.com/pytorch/pytorch/pull/165397#issuecomment-3417428128))
This commit is contained in:
PyTorch MergeBot
2025-10-17 22:35:50 +00:00
parent 2e22b1a61e
commit e50dc40d28
7 changed files with 63 additions and 30 deletions

View File

@ -3802,6 +3802,7 @@ class GraphModule(torch.nn.Module):
dual: "f32[4, 3, 4, 3]" = _unpack_dual[1]; _unpack_dual = None
primals_out_unflatten: "f32[4, 3, 4, 3]" = torch._C._functorch._unwrap_for_grad(primal, 2); primal = primals_out_unflatten = None
tangents_out_unflatten: "f32[4, 3, 4, 3]" = torch._C._functorch._unwrap_for_grad(dual, 2); dual = None
_exit_dual_level = torch._C._exit_dual_level(0); _exit_dual_level = None
@ -3932,6 +3933,7 @@ class GraphModule(torch.nn.Module):
tangent: "f32[4, 3, 3, 4]" = torch.zeros_like(primal)
child_8: "f32[4, 3, 3, 4]" = torch._C._functorch._unwrap_for_grad(primal, 2); primal = child_8 = None
child_9: "f32[4, 3, 3, 4]" = torch._C._functorch._unwrap_for_grad(tangent, 2); tangent = None
_exit_dual_level = torch._C._exit_dual_level(0); _exit_dual_level = None
@ -4144,6 +4146,7 @@ class GraphModule(torch.nn.Module):
primals_out: "f32[3, 4]" = diff_primals.sin()
aux_1: "f32[4, 3]" = torch._C._functorch._unwrap_for_grad(aux, 1); aux = None
results: "f32[3, 4]" = torch._C._functorch._unwrap_for_grad(primals_out, 1)
_grad_decrement_nesting = torch._C._functorch._grad_decrement_nesting(); _grad_decrement_nesting = None
@ -4378,6 +4381,7 @@ class GraphModule(torch.nn.Module):
primals_out: "f32[]" = sin.sum(); sin = None
aux: "f32[5]" = torch._C._functorch._unwrap_for_grad(child, 1); child = aux = None
results: "f32[]" = torch._C._functorch._unwrap_for_grad(primals_out, 1); primals_out = None
_grad_decrement_nesting = torch._C._functorch._grad_decrement_nesting(); _grad_decrement_nesting = None
@ -4567,6 +4571,7 @@ class GraphModule(torch.nn.Module):
grad_input: "f32[3, 3, 3]" = _autograd_grad[0]; _autograd_grad = None
grad_input_1: "f32[3, 3, 3]" = torch._C._functorch._unwrap_for_grad(grad_input, 1); grad_input = None
output_1: "f32[]" = torch._C._functorch._unwrap_for_grad(output, 1); output = output_1 = None
_grad_decrement_nesting = torch._C._functorch._grad_decrement_nesting(); _grad_decrement_nesting = None
@ -4634,6 +4639,7 @@ class GraphModule(torch.nn.Module):
grad_input: "f32[3, 3, 3]" = _autograd_grad[0]; _autograd_grad = None
grad_input_1: "f32[3, 3, 3]" = torch._C._functorch._unwrap_for_grad(grad_input, 1); grad_input = None
output_1: "f32[]" = torch._C._functorch._unwrap_for_grad(output, 1); output = output_1 = None
_grad_decrement_nesting = torch._C._functorch._grad_decrement_nesting(); _grad_decrement_nesting = None
@ -4690,6 +4696,7 @@ class GraphModule(torch.nn.Module):
grad_input: "f32[3, 3, 3]" = _autograd_grad[0]; _autograd_grad = None
grad_input_1: "f32[3, 3, 3]" = torch._C._functorch._unwrap_for_grad(grad_input, 1); grad_input = None
output_1: "f32[]" = torch._C._functorch._unwrap_for_grad(output, 1); output = output_1 = None
_grad_decrement_nesting = torch._C._functorch._grad_decrement_nesting(); _grad_decrement_nesting = None
@ -4746,6 +4753,7 @@ class GraphModule(torch.nn.Module):
grad_input: "f32[3, 3, 3]" = _autograd_grad[0]; _autograd_grad = None
grad_input_1: "f32[3, 3, 3]" = torch._C._functorch._unwrap_for_grad(grad_input, 1); grad_input = None
output_1: "f32[]" = torch._C._functorch._unwrap_for_grad(output, 1); output = output_1 = None
_grad_decrement_nesting = torch._C._functorch._grad_decrement_nesting(); _grad_decrement_nesting = None
@ -4800,7 +4808,9 @@ class GraphModule(torch.nn.Module):
grad_input: "f32[3, 3, 3]" = _autograd_grad[0]; _autograd_grad = None
grad_input_1: "f32[3, 3, 3]" = torch._C._functorch._unwrap_for_grad(grad_input, 1); grad_input = None
output_1: "f32[]" = torch._C._functorch._unwrap_for_grad(output, 1); output = output_1 = None
aux_1: "f32[3, 3, 3]" = torch._C._functorch._unwrap_for_grad(aux, 1); aux = None
_grad_decrement_nesting = torch._C._functorch._grad_decrement_nesting(); _grad_decrement_nesting = None
@ -4856,7 +4866,9 @@ class GraphModule(torch.nn.Module):
grad_input: "f32[3, 3, 3]" = _autograd_grad[0]; _autograd_grad = None
grad_input_1: "f32[3, 3, 3]" = torch._C._functorch._unwrap_for_grad(grad_input, 1); grad_input = None
output_1: "f32[]" = torch._C._functorch._unwrap_for_grad(output, 1); output = output_1 = None
aux_1: "f32[3, 3, 3]" = torch._C._functorch._unwrap_for_grad(aux, 1); aux = None
_grad_decrement_nesting = torch._C._functorch._grad_decrement_nesting(); _grad_decrement_nesting = None
@ -4930,7 +4942,9 @@ class GraphModule(torch.nn.Module):
_unwrap_for_grad: "f32[3, 3, 3]" = torch._C._functorch._unwrap_for_grad(child_2, 1); child_2 = None
_unwrap_for_grad_1: "f32[3, 3, 3]" = torch._C._functorch._unwrap_for_grad(child_3, 1); child_3 = None
output_1: "f32[]" = torch._C._functorch._unwrap_for_grad(output, 1); output = output_1 = None
aux_1: "f32[3, 3, 3]" = torch._C._functorch._unwrap_for_grad(aux, 1); aux = None
_grad_decrement_nesting = torch._C._functorch._grad_decrement_nesting(); _grad_decrement_nesting = None
@ -4974,7 +4988,9 @@ class GraphModule(torch.nn.Module):
_unwrap_for_grad: "f32[3, 3, 3]" = torch._C._functorch._unwrap_for_grad(child_2, 1); child_2 = None
_unwrap_for_grad_1: "f32[3, 3, 3]" = torch._C._functorch._unwrap_for_grad(child_3, 1); child_3 = None
output_1: "f32[]" = torch._C._functorch._unwrap_for_grad(output, 1); output = output_1 = None
aux_1: "f32[3, 3, 3]" = torch._C._functorch._unwrap_for_grad(aux, 1); aux = None
_grad_decrement_nesting = torch._C._functorch._grad_decrement_nesting(); _grad_decrement_nesting = None
@ -5034,6 +5050,7 @@ class GraphModule(torch.nn.Module):
grad_input: "f32[]" = _autograd_grad[0]; _autograd_grad = None
grad_input_1: "f32[]" = torch._C._functorch._unwrap_for_grad(grad_input, 2); grad_input = None
output_1: "f32[]" = torch._C._functorch._unwrap_for_grad(output, 2); output = output_1 = None
_grad_decrement_nesting = torch._C._functorch._grad_decrement_nesting(); _grad_decrement_nesting = None
@ -5043,6 +5060,7 @@ class GraphModule(torch.nn.Module):
grad_input_2: "f32[]" = _autograd_grad_1[0]; _autograd_grad_1 = None
grad_input_3: "f32[]" = torch._C._functorch._unwrap_for_grad(grad_input_2, 1); grad_input_2 = None
output_2: "f32[]" = torch._C._functorch._unwrap_for_grad(grad_input_1, 1); grad_input_1 = output_2 = None
_grad_decrement_nesting_1 = torch._C._functorch._grad_decrement_nesting(); _grad_decrement_nesting_1 = None
@ -5148,6 +5166,7 @@ class GraphModule(torch.nn.Module):
grad_input: "f32[3, 3, 3]" = _autograd_grad[0]; _autograd_grad = None
grad_input_1: "f32[3, 3, 3]" = torch._C._functorch._unwrap_for_grad(grad_input, 1); grad_input = None
output_1: "f32[]" = torch._C._functorch._unwrap_for_grad(output, 1); output = output_1 = None
_grad_decrement_nesting = torch._C._functorch._grad_decrement_nesting(); _grad_decrement_nesting = None
@ -5226,6 +5245,7 @@ class GraphModule(torch.nn.Module):
dual: "f32[4, 3]" = _unpack_dual[1]; _unpack_dual = None
primals_out_unflatten: "f32[4, 3]" = torch._C._functorch._unwrap_for_grad(primal, 2); primal = primals_out_unflatten = None
tangents_out_unflatten: "f32[4, 3]" = torch._C._functorch._unwrap_for_grad(dual, 2); dual = None
_exit_dual_level = torch._C._exit_dual_level(0); _exit_dual_level = None
@ -5307,6 +5327,7 @@ class GraphModule(torch.nn.Module):
dual: "f32[3, 4]" = _unpack_dual[1]; _unpack_dual = None
primals_out_unflatten: "f32[3, 4]" = torch._C._functorch._unwrap_for_grad(primal, 2); primal = primals_out_unflatten = None
tangents_out_unflatten: "f32[3, 4]" = torch._C._functorch._unwrap_for_grad(dual, 2); dual = None
_exit_dual_level = torch._C._exit_dual_level(0); _exit_dual_level = None
@ -5390,6 +5411,7 @@ class GraphModule(torch.nn.Module):
dual: "f32[3, 4]" = _unpack_dual[1]; _unpack_dual = None
primals_out_unflatten: "f32[3, 4]" = torch._C._functorch._unwrap_for_grad(primal, 2); primal = primals_out_unflatten = None
tangents_out_unflatten: "f32[3, 4]" = torch._C._functorch._unwrap_for_grad(dual, 2); dual = None
_exit_dual_level = torch._C._exit_dual_level(0); _exit_dual_level = None
@ -5480,6 +5502,7 @@ class GraphModule(torch.nn.Module):
child_4: "f32[3, 4]" = torch._C._functorch._unwrap_for_grad(primal, 2); primal = child_4 = None
child_5: "f32[4, 3]" = torch._C._functorch._unwrap_for_grad(primal_1, 2); primal_1 = child_5 = None
child_6: "f32[3, 4]" = torch._C._functorch._unwrap_for_grad(tangent, 2); tangent = None
child_7: "f32[4, 3]" = torch._C._functorch._unwrap_for_grad(dual, 2); dual = None
@ -5549,6 +5572,7 @@ class GraphModule(torch.nn.Module):
dual: "f32[]" = _unpack_dual[1]; _unpack_dual = None
primals_out_unflatten: "f32[]" = torch._C._functorch._unwrap_for_grad(primal, 1); primal = None
tangents_out_unflatten: "f32[]" = torch._C._functorch._unwrap_for_grad(dual, 1); dual = None
_exit_dual_level = torch._C._exit_dual_level(0); _exit_dual_level = None
@ -5602,6 +5626,7 @@ class GraphModule(torch.nn.Module):
dual: "f32[]" = _unpack_dual[1]; _unpack_dual = None
primals_out_unflatten: "f32[]" = torch._C._functorch._unwrap_for_grad(primal, 1); primal = None
tangents_out_unflatten: "f32[]" = torch._C._functorch._unwrap_for_grad(dual, 1); dual = None
_exit_dual_level = torch._C._exit_dual_level(0); _exit_dual_level = None
@ -5663,6 +5688,7 @@ class GraphModule(torch.nn.Module):
dual: "f32[3, 3]" = _unpack_dual[1]; _unpack_dual = None
primals_out_unflatten: "f32[3, 3]" = torch._C._functorch._unwrap_for_grad(primal, 1); primal = None
tangents_out_unflatten: "f32[3, 3]" = torch._C._functorch._unwrap_for_grad(dual, 1); dual = None
_exit_dual_level = torch._C._exit_dual_level(0); _exit_dual_level = None
@ -5716,6 +5742,7 @@ class GraphModule(torch.nn.Module):
dual: "f32[]" = _unpack_dual[1]; _unpack_dual = None
primals_out_unflatten: "f32[]" = torch._C._functorch._unwrap_for_grad(primal, 1); primal = None
tangents_out_unflatten: "f32[]" = torch._C._functorch._unwrap_for_grad(dual, 1); dual = None
_exit_dual_level = torch._C._exit_dual_level(0); _exit_dual_level = None
@ -5783,6 +5810,7 @@ class GraphModule(torch.nn.Module):
dual: "f32[]" = _unpack_dual[1]; _unpack_dual = None
primals_out_unflatten: "f32[]" = torch._C._functorch._unwrap_for_grad(primal, 1); primal = None
tangents_out_unflatten: "f32[]" = torch._C._functorch._unwrap_for_grad(dual, 1); dual = None
_exit_dual_level = torch._C._exit_dual_level(0); _exit_dual_level = None
@ -5859,6 +5887,7 @@ class GraphModule(torch.nn.Module):
dual: "f32[3, 3, 3]" = _unpack_dual[1]; _unpack_dual = None
primals_out_unflatten: "f32[3, 3, 3]" = torch._C._functorch._unwrap_for_grad(primal, 2); primal = None
tangents_out_unflatten: "f32[3, 3, 3]" = torch._C._functorch._unwrap_for_grad(dual, 2); dual = None
_set_fwd_grad_enabled_2 = torch._C._set_fwd_grad_enabled(True); _set_fwd_grad_enabled_2 = None
@ -5873,6 +5902,7 @@ class GraphModule(torch.nn.Module):
_unwrap_for_grad_2: "f32[3, 3, 3]" = torch._C._functorch._unwrap_for_grad(primal_1, 1); primal_1 = None
_unwrap_for_grad_3: "f32[3, 3, 3]" = torch._C._functorch._unwrap_for_grad(primal_2, 1); primal_2 = None
_unwrap_for_grad_4: "f32[3, 3, 3]" = torch._C._functorch._unwrap_for_grad(dual_1, 1); dual_1 = None
_unwrap_for_grad_5: "f32[3, 3, 3]" = torch._C._functorch._unwrap_for_grad(dual_2, 1); dual_2 = None

View File

@ -3166,6 +3166,7 @@ class GraphModule(torch.nn.Module):
):
slice_1: "f64[s64, s55]" = torch.ops.aten.slice.Tensor(tangents_1, 1, 0, primals_10)
slice_2: "f64[s64, s55]" = torch.ops.aten.slice.Tensor(tangents_1, 1, primals_10, add_2); tangents_1 = add_2 = None
add_4: "f64[s64, s55]" = torch.ops.aten.add.Tensor(slice_1, slice_2); slice_1 = slice_2 = None
return (
None, # None

View File

@ -16061,7 +16061,6 @@ class GraphModule(torch.nn.Module):
add: "f32[2, 4]" = torch.ops.aten.add.Tensor(relu, arg1_1); relu = arg1_1 = None
return (add,)
""",
ignore_empty_lines=True,
)
ep = export(M(), (x, y), strict=strict).run_decompositions({})
@ -16094,7 +16093,6 @@ class GraphModule(torch.nn.Module):
add: "f32[2, 4]" = torch.ops.aten.add.Tensor(relu, arg1_1); relu = arg1_1 = None
return (add,)
""",
ignore_empty_lines=True,
)
@testing.expectedFailureStrict # test_hop doesn't have a dynamo implementation

View File

@ -8104,6 +8104,7 @@ class GraphModule(torch.nn.Module):
x, = fx_pytree.tree_flatten_spec(([x], {}), self._in_spec)
_guards_fn = self._guards_fn(x); _guards_fn = None
sym_size_int_1: "Sym(s77)" = torch.ops.aten.sym_size.int(x, 0)
while_loop_cond_graph_0 = self.while_loop_cond_graph_0
@ -8403,6 +8404,7 @@ class GraphModule(torch.nn.Module):
x, = fx_pytree.tree_flatten_spec(([x], {}), self._in_spec)
_guards_fn = self._guards_fn(x); _guards_fn = None
sym_size_int_1: "Sym(s6)" = torch.ops.aten.sym_size.int(x, 0)
sin: "f32[s6, 3]" = torch.ops.aten.sin.default(x); x = None
@ -8689,8 +8691,10 @@ class GraphModule(torch.nn.Module):
t_4: "f32[3, 3]" = torch.ops.aten.t.default(t_3); t_3 = None
mul_4: "f32[3, 3]" = torch.ops.aten.mul.Tensor(arg1_1, select)
mul_5: "f32[3, 3]" = torch.ops.aten.mul.Tensor(arg1_1, select); arg1_1 = select = None
add_7: "f32[3, 3]" = torch.ops.aten.add.Tensor(mm, mul_5); mm = mul_5 = None
add_8: "f32[3, 3]" = torch.ops.aten.add.Tensor(add_7, mul_4); add_7 = mul_4 = None
add_9: "i64[]" = torch.ops.aten.add.Tensor(arg0_1, 1); arg0_1 = None
add_10: "f32[3]" = torch.ops.aten.add.Tensor(view, arg2_1); view = arg2_1 = None
add_11: "f32[3, 3]" = torch.ops.aten.add.Tensor(t_4, arg3_1); t_4 = arg3_1 = None
@ -8905,6 +8909,7 @@ class GraphModule(torch.nn.Module):
x, y, z, = fx_pytree.tree_flatten_spec(([x, y, z], {}), self._in_spec)
_guards_fn = self._guards_fn(x, y, z); _guards_fn = None
sym_size_int_4: "Sym(s17)" = torch.ops.aten.sym_size.int(y, 0); y = None
sym_size_int_5: "Sym(s68)" = torch.ops.aten.sym_size.int(z, 0)

View File

@ -17,7 +17,6 @@ from functorch.compile import aot_function, nop
from torch._dynamo.testing import (
AotEagerAndRecordGraphs,
EagerAndRecordGraphs,
empty_line_normalizer,
InductorAndRecordGraphs,
normalize_gm,
)
@ -352,8 +351,10 @@ class GraphModule(torch.nn.Module):
getitem_14: "f32[8]" = invoke_subgraph_6[2]
getitem_13: "f32[8]" = invoke_subgraph_6[1]
getitem_1: "f32[8]" = invoke_subgraph_6[0]; invoke_subgraph_6 = None
add: "f32[8]" = torch.ops.aten.add.Tensor(getitem, getitem_1); getitem = getitem_1 = None
return (add, getitem_12, getitem_11, getitem_10, getitem_15, getitem_14, getitem_13)
class partitioned_fw_subgraph_0_0(torch.nn.Module):
def forward(self, primals_0: "f32[8]", primals_1: "f32[8]", primals_2: "f32[8]"):
mul: "f32[8]" = torch.ops.aten.mul.Tensor(primals_0, primals_1)
@ -362,7 +363,6 @@ class GraphModule(torch.nn.Module):
mul_2: "f32[8]" = torch.ops.aten.mul.Tensor(mul_1, primals_2); mul_1 = None
return (mul_2, primals_0, primals_1, primals_2)
""",
ignore_empty_lines=True,
)
self.assertExpectedInline(
normalize_gm(backend.bw_graphs[0].print_readable(print_output=False)),
@ -377,6 +377,7 @@ class GraphModule(torch.nn.Module):
invoke_subgraph_5 = torch.ops.higher_order.invoke_subgraph(partitioned_bw_subgraph_0_0, 'partitioned_bw_subgraph_0_0', getitem_10, getitem_11, getitem_12, tangents_1); partitioned_bw_subgraph_0_0 = getitem_10 = getitem_11 = getitem_12 = tangents_1 = None
getitem_6: "f32[8]" = invoke_subgraph_5[0]
getitem_7: "f32[8]" = invoke_subgraph_5[1]; invoke_subgraph_5 = None
add_1: "f32[8]" = torch.ops.aten.add.Tensor(getitem_2, getitem_6); getitem_2 = getitem_6 = None
add_2: "f32[8]" = torch.ops.aten.add.Tensor(getitem_3, getitem_7); getitem_3 = getitem_7 = None
return (add_1, add_2, None)
@ -392,7 +393,6 @@ class GraphModule(torch.nn.Module):
mul_7: "f32[8]" = torch.ops.aten.mul.Tensor(mul_5, primals_1); mul_5 = primals_1 = None
return (mul_7, mul_6, None)
""",
ignore_empty_lines=True,
)
def test_buffer_mutation_works_under_no_grad(self):
@ -681,7 +681,6 @@ class GraphModule(torch.nn.Module):
sin: "f32[8]" = torch.ops.aten.sin.default(primals_0)
return (sin, primals_0)
""",
ignore_empty_lines=True,
)
@inductor_config.patch("fx_graph_cache", False)
@ -723,7 +722,6 @@ class <lambda>(torch.nn.Module):
mul_1: "f32[8]" = torch.ops.aten.mul.Tensor(mul, 2.0); mul = None
return (mul_1,)
""",
ignore_empty_lines=True,
)
def test_dedupe(self):
@ -772,6 +770,7 @@ class GraphModule(torch.nn.Module):
subgraph_0 = self.subgraph_0
invoke_subgraph = torch.ops.higher_order.invoke_subgraph(subgraph_0, 'subgraph_0', l_x_, l_y_); subgraph_0 = l_x_ = None
a: "f32[8]" = invoke_subgraph[0]; invoke_subgraph = None
subgraph_1 = self.subgraph_0
invoke_subgraph_1 = torch.ops.higher_order.invoke_subgraph(subgraph_1, 'subgraph_0', a, l_y_); subgraph_1 = a = l_y_ = None
getitem_1: "f32[8]" = invoke_subgraph_1[0]; invoke_subgraph_1 = None
@ -807,7 +806,6 @@ class GraphModule(torch.nn.Module):
mul: "f32[8]" = torch.ops.aten.mul.Tensor(primals_0, primals_1)
return (mul, primals_0, primals_1)
""",
ignore_empty_lines=True,
)
def test_dce(self):
@ -891,6 +889,7 @@ class GraphModule(torch.nn.Module):
subgraph_0 = self.subgraph_0
invoke_subgraph = torch.ops.higher_order.invoke_subgraph(subgraph_0, 'subgraph_0', l_x_, l_y_); subgraph_0 = l_x_ = None
a: "f32[8]" = invoke_subgraph[0]; invoke_subgraph = None
subgraph_1 = self.subgraph_1
invoke_subgraph_1 = torch.ops.higher_order.invoke_subgraph(subgraph_1, 'subgraph_1', a, l_y_); subgraph_1 = a = l_y_ = None
getitem_1: "f32[8]" = invoke_subgraph_1[0]; invoke_subgraph_1 = None
@ -1536,6 +1535,7 @@ class GraphModule(torch.nn.Module):
def forward(self, tangents_0: "f32[8, 8]", tangents_1: "f32[8, 8]"):
mul_2: "f32[8, 8]" = torch.ops.aten.mul.Tensor(tangents_1, 3)
mul_3: "f32[8, 8]" = torch.ops.aten.mul.Tensor(tangents_1, 2); tangents_1 = None
add: "f32[8, 8]" = torch.ops.aten.add.Tensor(mul_2, mul_3); mul_2 = mul_3 = None
return (add,)
""",
@ -2145,6 +2145,7 @@ class GraphModule(torch.nn.Module):
subgraph_0 = self.subgraph_0
invoke_subgraph = torch.ops.higher_order.invoke_subgraph(subgraph_0, 'subgraph_0', x, y); subgraph_0 = x = None
z: "f32[5]" = invoke_subgraph[0]; invoke_subgraph = None
subgraph_1 = self.subgraph_1
invoke_subgraph_1 = torch.ops.higher_order.invoke_subgraph(subgraph_1, 'subgraph_1', z, y); subgraph_1 = z = y = None
getitem_1: "f32[5]" = invoke_subgraph_1[0]; invoke_subgraph_1 = None
@ -2282,7 +2283,6 @@ class GraphModule(torch.nn.Module):
cos: "f32[s77, 16]" = torch.ops.aten.cos.default(primals_1)
return (cos, primals_1, primals_0)
""",
ignore_empty_lines=True,
)
self.assertExpectedInline(
normalize_gm(backend.bw_graphs[0].print_readable(print_output=False)),
@ -2294,6 +2294,7 @@ class GraphModule(torch.nn.Module):
partitioned_bw_subgraph_0_0 = self.partitioned_bw_subgraph_0_0
invoke_subgraph_15 = torch.ops.higher_order.invoke_subgraph(partitioned_bw_subgraph_0_0, 'partitioned_bw_subgraph_0_0', getitem_23, getitem_22, expand); partitioned_bw_subgraph_0_0 = getitem_23 = getitem_22 = None
getitem_5: "f32[s77, 16]" = invoke_subgraph_15[1]; invoke_subgraph_15 = None
add_16: "f32[s77, 16]" = torch.ops.aten.add.Tensor(expand, getitem_5); expand = getitem_5 = None
partitioned_bw_subgraph_0_3 = self.partitioned_bw_subgraph_0_1
@ -2325,7 +2326,6 @@ class GraphModule(torch.nn.Module):
mul_10: "f32[s77, 16]" = torch.ops.aten.mul.Tensor(tangents_0, neg); tangents_0 = neg = None
return (None, mul_10)
""",
ignore_empty_lines=True,
)
def test_div(self):
@ -2535,19 +2535,19 @@ class TestInvokeSubgraphExport(TestCase):
self.assertEqual(len(list(ep.graph_module.named_modules())), 2)
self.assertExpectedInline(
empty_line_normalizer(
normalize_gm(ep.graph_module.print_readable(print_output=False))
),
normalize_gm(ep.graph_module.print_readable(print_output=False)),
"""\
class GraphModule(torch.nn.Module):
def forward(self, x: "f32[8]", y: "f32[8]"):
repeated_subgraph0 = self.repeated_subgraph0
invoke_subgraph = torch.ops.higher_order.invoke_subgraph(repeated_subgraph0, 'subgraph_0', x, y); repeated_subgraph0 = x = None
getitem: "f32[8]" = invoke_subgraph[0]; invoke_subgraph = None
repeated_subgraph0_1 = self.repeated_subgraph0
invoke_subgraph_1 = torch.ops.higher_order.invoke_subgraph(repeated_subgraph0_1, 'subgraph_0', getitem, y); repeated_subgraph0_1 = getitem = y = None
getitem_1: "f32[8]" = invoke_subgraph_1[0]; invoke_subgraph_1 = None
return (getitem_1,)
class repeated_subgraph0(torch.nn.Module):
def forward(self, arg0_1: "f32[8]", arg1_1: "f32[8]"):
mul: "f32[8]" = torch.ops.aten.mul.Tensor(arg0_1, arg1_1); arg0_1 = arg1_1 = None

View File

@ -3621,6 +3621,7 @@ class CompiledAutograd0(torch.nn.Module):
aot0_mul_2 = torch.ops.aten.mul.Tensor(aot0_tangents_1, aot0_primals_1); aot0_tangents_1 = aot0_primals_1 = None
aot0_mul_3 = torch.ops.aten.mul.Tensor(aot0_tangents_2, aot0_primals_2); aot0_tangents_2 = aot0_primals_2 = None
aot0_add_2 = torch.ops.aten.add.Tensor(aot0_mul_2, aot0_mul_2); aot0_mul_2 = None
aot0_add_3 = torch.ops.aten.add.Tensor(aot0_mul_3, aot0_mul_3); aot0_mul_3 = None

View File

@ -606,31 +606,29 @@ class CodeGen:
else:
body.append("\n")
prev_summary_str = None
prev_stacktrace = None
def append_stacktrace_summary(node: Node):
"""
Append a summary of the stacktrace to the generated code. This is
useful for debugging.
"""
nonlocal prev_summary_str
nonlocal prev_stacktrace
if node.op not in {"placeholder", "output"}:
annotation_str = ""
annotation = node.meta.get("custom", {})
if annotation:
annotation_str = f" Annotation: {annotation}"
stack_trace_str = "No stacktrace found for following nodes"
if stack_trace := node.stack_trace:
stack_trace = node.stack_trace
if stack_trace:
if stack_trace != prev_stacktrace:
prev_stacktrace = stack_trace
if parsed_stack_trace := _parse_stack_trace(stack_trace):
stack_trace_str = parsed_stack_trace.get_summary_str()
summary_str = f"\n{dim(f'#{annotation_str} {stack_trace_str}')}\n"
if summary_str != prev_summary_str:
prev_summary_str = summary_str
body.append(summary_str)
summary_str = parsed_stack_trace.get_summary_str()
else:
summary_str = ""
body.append(f"\n {dim(f'# {summary_str}')}\n")
elif prev_stacktrace != "":
prev_stacktrace = ""
no_stacktrace_msg = "# No stacktrace found for following nodes"
body.append(f"\n{dim(no_stacktrace_msg)}\n")
def stringify_shape(shape: Iterable) -> str:
return f"[{', '.join([str(x) for x in shape])}]"