[BE] fix typos in functorch/ and scripts/ (#156081)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156081
Approved by: https://github.com/albanD
ghstack dependencies: #156080
This commit is contained in:
Xuehai Pan
2025-06-18 23:58:49 +08:00
committed by PyTorch MergeBot
parent 2ccfd14e23
commit e3507c3777
17 changed files with 30 additions and 29 deletions

View File

@ -157,7 +157,7 @@ if [ -n "${USE_VULKAN}" ]; then
fi
fi
# Use-specified CMake arguments go last to allow overridding defaults
# Use-specified CMake arguments go last to allow overriding defaults
CMAKE_ARGS+=($@)
# Patch pocketfft (as Android does not have aligned_alloc even if compiled with c++17

View File

@ -80,7 +80,7 @@ if [ "${VERBOSE:-}" == '1' ]; then
CMAKE_ARGS+=("-DCMAKE_VERBOSE_MAKEFILE=1")
fi
# Use-specified CMake arguments go last to allow overridding defaults
# Use-specified CMake arguments go last to allow overriding defaults
CMAKE_ARGS+=("$@")
# Now, actually build the Android target.

View File

@ -95,7 +95,7 @@ def run():
"--no-nnc-dynamic",
dest="nnc_dynamic",
action="store_false",
help="DONT't benchmark nnc with dynamic shapes",
help="don't benchmark nnc with dynamic shapes",
)
parser.set_defaults(nnc_dynamic=False)

View File

@ -1,4 +1,4 @@
# Quick scipt to apply categorized items to the
# Quick script to apply categorized items to the
# base commitlist . Useful if you are refactoring any code
# but want to keep the previous data on categories

View File

@ -156,9 +156,9 @@ class CommitClassifier(nn.Module):
elif isinstance(most_likely_index, torch.Tensor):
return [self.categories[i] for i in most_likely_index]
def get_most_likely_category_name(self, inpt):
def get_most_likely_category_name(self, input):
# Input will be a dict with title and author keys
logits = self.forward(inpt)
logits = self.forward(input)
most_likely_index = torch.argmax(logits, dim=1)
return self.convert_index_to_category_name(most_likely_index)
@ -264,9 +264,9 @@ def generate_batch(batch):
def train_step(batch, model, optimizer, loss):
inpt, targets = batch
input, targets = batch
optimizer.zero_grad()
output = model(inpt)
output = model(input)
l = loss(output, targets)
l.backward()
optimizer.step()
@ -275,8 +275,8 @@ def train_step(batch, model, optimizer, loss):
@torch.no_grad()
def eval_step(batch, model, loss):
inpt, targets = batch
output = model(inpt)
input, targets = batch
output = model(input)
l = loss(output, targets)
return l