[functorch] pytree output support for vmap

This commit is contained in:
Richard Zou
2021-04-30 09:59:02 -07:00
committed by Jon Janzen
parent c6773c67d6
commit dfeb7898f2
4 changed files with 146 additions and 61 deletions

View File

@ -4,6 +4,7 @@ import collections
import torch.nn as nn
import torch.nn.functional as F
from torch.utils._pytree import tree_flatten, tree_unflatten
from .pytree_hacks import tree_map, tree_map_
import gc
from .vmap import vmap
@ -16,16 +17,6 @@ from functorch._C import (
_grad_decrement_nesting,
)
# TODO: replace this with tree_map from core
def tree_map(fn, pytree):
flat_args, spec = tree_flatten(pytree)
return tree_unflatten([fn(arg) for arg in flat_args], spec)
def tree_map_(fn_, pytree):
flat_args, _ = tree_flatten(pytree)
[fn_(arg) for arg in flat_args]
return pytree
# TODO: replace all of these with pytrees
def _create_differentiable(tensor_or_tuple_of_tensors, level=None):
if isinstance(tensor_or_tuple_of_tensors, torch.Tensor):

View File

@ -0,0 +1,39 @@
import torch.utils._pytree as _pytree
from torch.utils._pytree import tree_flatten, tree_unflatten
# TODO: The following function should only be used with vmap.
# torch.return_types should be registered as PyTree nodes.
# I can't figure out how to do that, so we are turning all of them
# into normal Tuples for now (this is what vmap used to do anyways).
# We probably want some special behavior for named tuples?
def tree_flatten_hack(pytree):
if _pytree._is_leaf(pytree) and not isinstance(pytree, tuple):
return [pytree], _pytree.LeafSpec()
if isinstance(pytree, tuple):
typ = tuple
else:
typ = type(pytree)
flatten_fn = _pytree.SUPPORTED_NODES[typ].flatten_fn
child_pytrees, context = flatten_fn(pytree)
# Recursively flatten the children
result : List[Any] = []
children_specs : List['TreeSpec'] = []
for child in child_pytrees:
flat, child_spec = tree_flatten_hack(child)
result += flat
children_specs.append(child_spec)
return result, _pytree.TreeSpec(typ, context, children_specs)
# TODO: replace this with tree_map from core
def tree_map(fn, pytree):
flat_args, spec = tree_flatten(pytree)
return tree_unflatten([fn(arg) for arg in flat_args], spec)
def tree_map_(fn_, pytree):
flat_args, _ = tree_flatten(pytree)
[fn_(arg) for arg in flat_args]
return pytree

View File

@ -3,6 +3,8 @@ import functools
from torch import Tensor
from typing import Any, Callable, Optional, Tuple, Union, List
from torch.utils._pytree import tree_flatten, tree_unflatten, _broadcast_to_and_flatten
from .pytree_hacks import tree_flatten_hack, tree_map_
from functools import partial
import warnings
from functorch._C import (
@ -96,46 +98,54 @@ def _unwrap_batched(
batched_outputs: Union[Tensor, Tuple[Tensor, ...]],
out_dims: out_dims_t,
vmap_level: int, batch_size: int, func: Callable) -> Tuple:
num_outputs = _num_outputs(batched_outputs)
out_dims_as_tuple = _as_tuple(
out_dims, num_outputs,
lambda: f'vmap({_get_name(func)}, ..., out_dims={out_dims}): `out_dims` must '
f'have one dim per output (got {num_outputs} outputs) of {_get_name(func)}.')
flat_batched_outputs, output_spec = tree_flatten_hack(batched_outputs)
# NOTE [Ignored _remove_batch_dim, _add_batch_dim]
# There is something wrong with our type bindings for functions that begin
# with '_', see #40397.
if isinstance(batched_outputs, Tensor):
out_dim = out_dims_as_tuple[0]
return _remove_batch_dim(batched_outputs, vmap_level, batch_size, out_dim) # type: ignore
return tuple(_remove_batch_dim(out, vmap_level, batch_size, out_dim) # type: ignore
for out, out_dim in zip(batched_outputs, out_dims_as_tuple))
# Checks that `fn` returned one or more Tensors and nothing else.
# NB: A python function that return multiple arguments returns a single tuple,
# so we are effectively checking that `outputs` is a single Tensor or a tuple of
# Tensors.
def _validate_outputs(outputs: Any, func: Callable) -> None:
if isinstance(outputs, Tensor):
return
if not isinstance(outputs, tuple):
raise ValueError(f'vmap({_get_name(func)}, ...): `{_get_name(func)}` must only return '
f'Tensors, got type {type(outputs)} as the return.')
for idx, output in enumerate(outputs):
if isinstance(output, Tensor):
for out in flat_batched_outputs:
if isinstance(out, torch.Tensor):
continue
raise ValueError(f'vmap({_get_name(func)}, ...): `{_get_name(func)}` must only return '
f'Tensors, got type {type(output)} for return {idx}.')
f'Tensors, got type {type(out)} as a return.')
def _check_out_dims_is_int_or_int_tuple(out_dims: out_dims_t, func: Callable) -> None:
def incompatible_error():
raise ValueError(
f'vmap({_get_name(func)}, ..., out_dims={out_dims})(<inputs>): '
f'out_dims is not compatible with the structure of `outputs`. '
f'out_dims has structure {tree_flatten(out_dims)[1]} but outputs '
f'has structure {output_spec}.')
if isinstance(batched_outputs, torch.Tensor):
# Some weird edge case requires us to spell out the following
# see test_out_dims_edge_case
if isinstance(out_dims, int):
flat_out_dims = [out_dims]
elif isinstance(out_dims, tuple) and len(out_dims) == 1:
flat_out_dims = out_dims
out_dims = out_dims[0]
else:
incompatible_error()
else:
flat_out_dims = _broadcast_to_and_flatten(out_dims, output_spec)
if flat_out_dims is None:
incompatible_error()
flat_outputs = [
_remove_batch_dim(batched_output, vmap_level, batch_size, out_dim)
for batched_output, out_dim in zip(flat_batched_outputs, flat_out_dims)
]
return tree_unflatten(flat_outputs, output_spec)
def _check_int(x, func, out_dims):
if isinstance(x, int):
return
raise ValueError(
f'vmap({_get_name(func)}, ..., out_dims={out_dims}): `out_dims` must be '
f'an int or a python collection of ints representing where in the outputs the '
f'vmapped dimension should appear.')
def _check_out_dims_is_int_or_int_pytree(out_dims: out_dims_t, func: Callable) -> None:
if isinstance(out_dims, int):
return
if not isinstance(out_dims, tuple) or \
not all([isinstance(out_dim, int) for out_dim in out_dims]):
raise ValueError(
f'vmap({_get_name(func)}, ..., out_dims={out_dims}): `out_dims` must be '
f'an int or a tuple of int representing where in the outputs the '
f'vmapped dimension should appear.')
tree_map_(partial(_check_int, func=func, out_dims=out_dims), out_dims)
def _get_name(func: Callable):
if hasattr(func, '__name__'):
@ -250,13 +260,12 @@ def vmap(func: Callable, in_dims: in_dims_t = 0, out_dims: out_dims_t = 0) -> Ca
def _vmap(func: Callable, in_dims: in_dims_t = 0, out_dims: out_dims_t = 0) -> Callable:
@functools.wraps(func)
def wrapped(*args):
_check_out_dims_is_int_or_int_tuple(out_dims, func)
_check_out_dims_is_int_or_int_pytree(out_dims, func)
vmap_level = _vmap_increment_nesting()
torch._C._vmapmode_increment_nesting()
try:
batched_inputs, batch_size = _create_batched_inputs(in_dims, args, vmap_level, func)
batched_outputs = func(*batched_inputs)
_validate_outputs(batched_outputs, func)
return _unwrap_batched(batched_outputs, out_dims, vmap_level, batch_size, func)
finally:
torch._C._vmapmode_decrement_nesting()

View File

@ -27,13 +27,13 @@ class EnableVmapFallbackWarnings:
class TestVmapAPI(TestCase):
def test_non_tensor_output_raises(self):
with self.assertRaisesRegex(ValueError, "got type <class 'float'> as the return"):
with self.assertRaisesRegex(ValueError, "got type <class 'float'> as a return"):
output = vmap(lambda x: 3.14)(torch.ones(3))
def multiple_outputs(x):
return x, 3
with self.assertRaisesRegex(ValueError, "got type <class 'int'> for return 1"):
with self.assertRaisesRegex(ValueError, "got type <class 'int'> as a return"):
vmap(multiple_outputs)(torch.ones(3))
def test_different_map_dim_size_raises(self):
@ -90,7 +90,7 @@ class TestVmapAPI(TestCase):
self.assertEqual(outputs[0], x * x)
self.assertEqual(outputs[1], x * x * x)
def test_multiple_outputs_error_cases(self):
def test_multiple_outputs(self):
# This is the same thing as
# def returns_tuple_of_tensors(x):
# return x, x
@ -107,13 +107,8 @@ class TestVmapAPI(TestCase):
# should not throw
vmap(returns_tuple_of_tensors)(x)
# jax supports these, but we don't yet
msg = "must only return Tensors, got type <class 'list'>"
with self.assertRaisesRegex(ValueError, msg):
vmap(returns_list_of_two_tensors)(x)
with self.assertRaisesRegex(ValueError, msg):
vmap(returns_list_of_one_tensor)(x)
vmap(returns_list_of_two_tensors)(x)
vmap(returns_list_of_one_tensor)(x)
def test_nested_with_same_map_dim(self):
x = torch.randn(2, 3, 5)
@ -267,8 +262,59 @@ class TestVmapAPI(TestCase):
result = vmap(foo, out_dims=(1,))(tensor)
self.assertEqual(result, expected)
def test_out_dims_must_be_int_or_tuple_of_int_err_msg(self):
msg = '`out_dims` must be an int or a tuple of int'
def test_pytree_returns(self):
x = torch.randn(2, 3)
def f(x):
y = x.sin()
return y, (y, y), [y, (y, y)]
y0, (y1, y2), (y3, (y4, y5)) = vmap(f)(x)
self.assertEqual(y0, x.sin())
self.assertEqual(y0, y1)
self.assertEqual(y2, y1)
self.assertEqual(y2, y3)
self.assertEqual(y4, y3)
self.assertEqual(y5, y4)
def test_pytree_returns_outdims(self):
x = torch.randn(2, 3)
def f(x):
y = x.sin()
return y, (y, y)
y0, (y1, y2) = vmap(f, out_dims=(0, (0, 1)))(x)
self.assertEqual(y0, x.sin())
self.assertEqual(y1, x.sin())
self.assertEqual(y2, x.sin().t())
def test_pytree_returns_broadcast_simple(self):
x = torch.randn(2, 3)
def f(x):
y = x.sin()
return y, (y, y)
y0, (y1, y2) = vmap(f, out_dims=1)(x)
self.assertEqual(y0, x.sin().t())
self.assertEqual(y1, y0)
self.assertEqual(y2, y0)
def test_pytree_returns_broadcast_nested(self):
x = torch.randn(2, 3)
def f(x):
y = x.sin()
return y, (y, y)
y0, (y1, y2) = vmap(f, out_dims=(0, 1))(x)
self.assertEqual(y0, x.sin())
self.assertEqual(y1, y0.t())
self.assertEqual(y2, y0.t())
def test_out_dims_must_be_int_or_collection_of_int_err_msg(self):
msg = 'must be an int or a python collection of ints'
tensor = torch.randn(2, 3)
with self.assertRaisesRegex(ValueError, msg):
vmap(lambda x: x, out_dims='lol')(tensor)
@ -280,7 +326,7 @@ class TestVmapAPI(TestCase):
vmap(lambda x: x, out_dims=(None,))(tensor)
def test_out_dims_and_num_outputs_mismatch_err_msg(self):
msg = '`out_dims` must have one dim per output'
msg = 'not compatible'
x = torch.randn(2, 3, 5)
# Too many out_dims
@ -2639,9 +2685,9 @@ class TestVmapOperators(TestCase):
self.assertEqual(loop_out, batched_out)
instantiate_device_type_tests(TestVmapOperators, globals())
only_for = ("cpu", "cuda")
instantiate_device_type_tests(TestVmapOperators, globals(), only_for=only_for)
instantiate_device_type_tests(
TestVmapBatchedGradient,
globals(),