mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Remove Caffe2/onnx (#127991)
Remove Caffe2/onnx since it is not used. Other tiny fixes are also applied. Pull Request resolved: https://github.com/pytorch/pytorch/pull/127991 Approved by: https://github.com/ezyang
This commit is contained in:
@ -1,23 +0,0 @@
|
||||
""" build mode definitions for caffe2/caffe2 """
|
||||
|
||||
load("@fbcode//:BUILD_MODE.bzl", get_parent_modes = "all_modes_keep_gpu_sections_all_modes_use_lld")
|
||||
load("@fbcode_macros//build_defs:create_build_mode.bzl", "extend_build_mode")
|
||||
|
||||
def update_mode_struct(name, mode_struct):
|
||||
if name == "dev":
|
||||
return extend_build_mode(
|
||||
mode_struct,
|
||||
# TODO(ipbrady): Modules introduce floating point inaccuracies (T43879333)
|
||||
cxx_modules = False,
|
||||
)
|
||||
else:
|
||||
return mode_struct
|
||||
|
||||
_modes = {
|
||||
mode_name: update_mode_struct(mode_name, mode_struct)
|
||||
for mode_name, mode_struct in get_parent_modes().items()
|
||||
}
|
||||
|
||||
def get_modes():
|
||||
""" Return modes for this file """
|
||||
return _modes
|
@ -1930,7 +1930,6 @@ if(BUILD_PYTHON)
|
||||
if(CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
|
||||
# Workaround for https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80947 in EmbeddingBag.cpp
|
||||
set_source_files_properties(../aten/src/ATen/native/EmbeddingBag.cpp PROPERTIES COMPILE_FLAGS -Wno-attributes)
|
||||
set_source_files_properties(${TORCH_SRC_DIR}/../caffe2/operators/box_with_nms_limit_op.cc PROPERTIES COMPILE_FLAGS -Wno-attributes)
|
||||
endif()
|
||||
|
||||
set(build_files)
|
||||
@ -1950,10 +1949,4 @@ if(BUILD_PYTHON)
|
||||
# Pick up static python files
|
||||
install(DIRECTORY ${CMAKE_BINARY_DIR}/caffe2 DESTINATION ${PYTHON_LIB_REL_PATH}
|
||||
FILES_MATCHING PATTERN "*.py")
|
||||
# Caffe proto files
|
||||
install(DIRECTORY ${CMAKE_BINARY_DIR}/caffe DESTINATION ${PYTHON_LIB_REL_PATH}
|
||||
FILES_MATCHING PATTERN "*.py")
|
||||
# Caffe2 proto files
|
||||
install(DIRECTORY ${CMAKE_BINARY_DIR}/caffe2 DESTINATION ${PYTHON_LIB_REL_PATH}
|
||||
FILES_MATCHING PATTERN "*.py")
|
||||
endif()
|
||||
|
@ -1,5 +0,0 @@
|
||||
import warnings
|
||||
from torch.onnx import _CAFFE2_ATEN_FALLBACK
|
||||
|
||||
if not _CAFFE2_ATEN_FALLBACK:
|
||||
warnings.warn("Caffe2 support is no longer present in PyTorch.")
|
@ -1,5 +0,0 @@
|
||||
# ---[ Extra onnx files.
|
||||
file(GLOB ONNX_SRCS *.cc)
|
||||
|
||||
# ---[ Send the lists to the parent scope.
|
||||
set(ONNX_SRCS ${ONNX_SRCS} PARENT_SCOPE)
|
@ -1,7 +0,0 @@
|
||||
namespace ONNX_NAMESPACE {
|
||||
|
||||
const int AI_ONNX_PYTORCH_DOMAIN_MIN_OPSET = 1;
|
||||
const int AI_ONNX_PYTORCH_DOMAIN_MAX_OPSET = 1;
|
||||
constexpr const char* AI_ONNX_PYTORCH_DOMAIN = "ai.onnx.pytorch";
|
||||
|
||||
} // namespace ONNX_NAMESPACE
|
@ -1,168 +0,0 @@
|
||||
// Copyright (c) Facebook Inc. and Microsoft Corporation.
|
||||
// Licensed under the MIT license.
|
||||
|
||||
#include "./schema.h"
|
||||
|
||||
namespace ONNX_NAMESPACE {
|
||||
|
||||
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables,bugprone-branch-clone)
|
||||
ONNX_PYTORCH_OPERATOR_SET_SCHEMA(
|
||||
SparseLengthsSumFused8BitRowwise,
|
||||
1,
|
||||
OpSchema()
|
||||
.SetDoc("Mirror Caffe2 SparseLengthsSumFused8BitRowwise operator")
|
||||
.Input(0, "DATA", "data tensor", "T1")
|
||||
.Input(1, "INDICES", "indices tensor", "T2")
|
||||
.Input(2, "LENGTHS", "lengths tensor", "T2")
|
||||
.Output(0, "output", "Output tensor", "T2")
|
||||
.TypeConstraint(
|
||||
"T1",
|
||||
{"tensor(uint8)"},
|
||||
"Constrain input data to uint8 tensors.")
|
||||
.TypeConstraint(
|
||||
"T2",
|
||||
{"tensor(int8)",
|
||||
"tensor(int16)",
|
||||
"tensor(int32)",
|
||||
"tensor(int64)",
|
||||
"tensor(uint8)",
|
||||
"tensor(uint16)",
|
||||
"tensor(uint32)",
|
||||
"tensor(uint64)"},
|
||||
"Constrain index and length to integral tensors."));
|
||||
|
||||
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables,bugprone-branch-clone)
|
||||
ONNX_PYTORCH_OPERATOR_SET_SCHEMA(
|
||||
SparseLengthsSum,
|
||||
1,
|
||||
OpSchema()
|
||||
.SetDoc("Mirror Caffe2 SparseLengthsSum operator")
|
||||
.Input(0, "DATA", "data tensor", "T1")
|
||||
.Input(1, "INDICES", "indices tensor", "T2")
|
||||
.Input(2, "LENGTHS", "lengths tensor", "T2")
|
||||
.Output(0, "output", "Output tensor", "T1")
|
||||
.TypeConstraint(
|
||||
"T1",
|
||||
{"tensor(float16)", "tensor(float)", "tensor(double)"},
|
||||
"Constrain input and output types to float tensors.")
|
||||
.TypeConstraint(
|
||||
"T2",
|
||||
{"tensor(int8)",
|
||||
"tensor(int16)",
|
||||
"tensor(int32)",
|
||||
"tensor(int64)",
|
||||
"tensor(uint8)",
|
||||
"tensor(uint16)",
|
||||
"tensor(uint32)",
|
||||
"tensor(uint64)"},
|
||||
"Constrain index and length to integral tensors."));
|
||||
|
||||
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables,bugprone-branch-clone)
|
||||
ONNX_PYTORCH_OPERATOR_SET_SCHEMA(
|
||||
SparseLengthsWeightedSum,
|
||||
1,
|
||||
OpSchema()
|
||||
.SetDoc("Mirror Caffe2 SparseLengthsWeightedSum operator")
|
||||
.Input(0, "DATA", "data tensor", "T1")
|
||||
.Input(1, "WEIGHTS", "data tensor", "T1")
|
||||
.Input(2, "INDICES", "indices tensor", "T2")
|
||||
.Input(3, "LENGTHS", "lengths tensor", "T2")
|
||||
.Output(0, "output", "Output tensor", "T1")
|
||||
.TypeConstraint(
|
||||
"T1",
|
||||
{"tensor(float16)", "tensor(float)", "tensor(double)"},
|
||||
"Constrain input and output types to float tensors.")
|
||||
.TypeConstraint(
|
||||
"T2",
|
||||
{"tensor(int8)",
|
||||
"tensor(int16)",
|
||||
"tensor(int32)",
|
||||
"tensor(int64)",
|
||||
"tensor(uint8)",
|
||||
"tensor(uint16)",
|
||||
"tensor(uint32)",
|
||||
"tensor(uint64)"},
|
||||
"Constrain index and length to integral tensors."));
|
||||
|
||||
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables,bugprone-branch-clone)
|
||||
ONNX_PYTORCH_OPERATOR_SET_SCHEMA(
|
||||
BatchGather,
|
||||
1,
|
||||
OpSchema()
|
||||
.SetDoc("Mirror Caffe2 BatchGather operator")
|
||||
.Input(0, "DATA", "data tensor", "T1")
|
||||
.Input(1, "INDICES", "indices tensor", "T2")
|
||||
.Output(0, "output", "Output tensor", "T1")
|
||||
.TypeConstraint(
|
||||
"T1",
|
||||
{"tensor(float16)", "tensor(float)", "tensor(double)"},
|
||||
"Constrain input and output types to float tensors.")
|
||||
.TypeConstraint(
|
||||
"T2",
|
||||
{"tensor(int8)",
|
||||
"tensor(int16)",
|
||||
"tensor(int32)",
|
||||
"tensor(int64)",
|
||||
"tensor(uint8)",
|
||||
"tensor(uint16)",
|
||||
"tensor(uint32)",
|
||||
"tensor(uint64)"},
|
||||
"Constrain index and length to integral tensors."));
|
||||
|
||||
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables,bugprone-branch-clone)
|
||||
ONNX_PYTORCH_OPERATOR_SET_SCHEMA(
|
||||
DotProduct,
|
||||
1,
|
||||
OpSchema()
|
||||
.SetDoc("Mirror Caffe2 DotProduct operator")
|
||||
.Input(0, "X", "Input 1 tensor", "T")
|
||||
.Input(1, "Y", "Input 2 tensor", "T")
|
||||
.Output(0, "Z", "Output tensor", "T")
|
||||
.TypeConstraint(
|
||||
"T",
|
||||
{"tensor(float16)", "tensor(float)", "tensor(double)"},
|
||||
"Constrain input and output types to float tensors."));
|
||||
|
||||
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables,bugprone-branch-clone)
|
||||
ONNX_PYTORCH_OPERATOR_SET_SCHEMA(
|
||||
FCTransposed,
|
||||
1,
|
||||
OpSchema()
|
||||
.SetDoc("Mirror Caffe2 FCTransposed operator")
|
||||
.Input(0, "X", "Input tensor", "T")
|
||||
.Input(1, "W", "Weight tensor", "T")
|
||||
.Input(2, "B", "Bias tensor", "T")
|
||||
.Output(0, "Z", "Output tensor", "T")
|
||||
.TypeConstraint(
|
||||
"T",
|
||||
{"tensor(float16)", "tensor(float)", "tensor(double)"},
|
||||
"Constrain input and output types to float tensors."));
|
||||
|
||||
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables,bugprone-branch-clone)
|
||||
ONNX_PYTORCH_OPERATOR_SET_SCHEMA(
|
||||
BatchMatMul,
|
||||
1,
|
||||
OpSchema()
|
||||
.SetDoc("Mirror Caffe2 BatchMatMul operator")
|
||||
.Input(0, "X", "tensor of shape (dim0, dim1 ... M, K)", "T")
|
||||
.Input(1, "Y", "tensor of shape (dim0, dim2 ... K, N)", "T")
|
||||
.Output(0, "Z", "tensor of shape (dim0, dim1 ... M, N)", "T")
|
||||
.TypeConstraint(
|
||||
"T",
|
||||
{"tensor(float16)", "tensor(float)", "tensor(double)"},
|
||||
"Constrain input and output types to float tensors."));
|
||||
|
||||
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables,bugprone-branch-clone)
|
||||
ONNX_PYTORCH_OPERATOR_SET_SCHEMA(
|
||||
ExpandDims,
|
||||
1,
|
||||
OpSchema()
|
||||
.SetDoc("Mirror Caffe2 ExpandDims operator")
|
||||
.Input(0, "X", "Input tensor", "T")
|
||||
.Output(0, "Y", "Output tensor", "T")
|
||||
.TypeConstraint(
|
||||
"T",
|
||||
{"tensor(float16)", "tensor(float)", "tensor(double)"},
|
||||
"Constrain input and output types to float tensors."));
|
||||
|
||||
} // namespace ONNX_NAMESPACE
|
@ -1,46 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "onnx/defs/schema.h"
|
||||
|
||||
namespace ONNX_NAMESPACE {
|
||||
|
||||
class ONNX_OPERATOR_SET_SCHEMA_CLASS_NAME(
|
||||
PyTorch,
|
||||
1,
|
||||
SparseLengthsSumFused8BitRowwise);
|
||||
class ONNX_OPERATOR_SET_SCHEMA_CLASS_NAME(PyTorch, 1, SparseLengthsSum);
|
||||
class ONNX_OPERATOR_SET_SCHEMA_CLASS_NAME(PyTorch, 1, SparseLengthsWeightedSum);
|
||||
class ONNX_OPERATOR_SET_SCHEMA_CLASS_NAME(PyTorch, 1, BatchGather);
|
||||
class ONNX_OPERATOR_SET_SCHEMA_CLASS_NAME(PyTorch, 1, DotProduct);
|
||||
class ONNX_OPERATOR_SET_SCHEMA_CLASS_NAME(PyTorch, 1, FCTransposed);
|
||||
class ONNX_OPERATOR_SET_SCHEMA_CLASS_NAME(PyTorch, 1, BatchMatMul);
|
||||
class ONNX_OPERATOR_SET_SCHEMA_CLASS_NAME(PyTorch, 1, ExpandDims);
|
||||
|
||||
// Iterate over schema from ai.onnx.pytorch domain opset 1
|
||||
class OpSet_PyTorch_ver1 {
|
||||
public:
|
||||
static void ForEachSchema(std::function<void(OpSchema&&)> fn) {
|
||||
fn(GetOpSchema<ONNX_OPERATOR_SET_SCHEMA_CLASS_NAME(
|
||||
PyTorch, 1, SparseLengthsSumFused8BitRowwise)>());
|
||||
fn(GetOpSchema<ONNX_OPERATOR_SET_SCHEMA_CLASS_NAME(
|
||||
PyTorch, 1, SparseLengthsSum)>());
|
||||
fn(GetOpSchema<ONNX_OPERATOR_SET_SCHEMA_CLASS_NAME(
|
||||
PyTorch, 1, SparseLengthsWeightedSum)>());
|
||||
fn(GetOpSchema<ONNX_OPERATOR_SET_SCHEMA_CLASS_NAME(
|
||||
PyTorch, 1, BatchGather)>());
|
||||
fn(GetOpSchema<ONNX_OPERATOR_SET_SCHEMA_CLASS_NAME(
|
||||
PyTorch, 1, DotProduct)>());
|
||||
fn(GetOpSchema<ONNX_OPERATOR_SET_SCHEMA_CLASS_NAME(
|
||||
PyTorch, 1, FCTransposed)>());
|
||||
fn(GetOpSchema<ONNX_OPERATOR_SET_SCHEMA_CLASS_NAME(
|
||||
PyTorch, 1, BatchMatMul)>());
|
||||
fn(GetOpSchema<ONNX_OPERATOR_SET_SCHEMA_CLASS_NAME(
|
||||
PyTorch, 1, ExpandDims)>());
|
||||
}
|
||||
};
|
||||
|
||||
inline void RegisterPyTorchOperatorSetSchema() {
|
||||
RegisterOpSetSchema<OpSet_PyTorch_ver1>();
|
||||
}
|
||||
|
||||
} // namespace ONNX_NAMESPACE
|
@ -1,17 +0,0 @@
|
||||
#include "./schema.h"
|
||||
#include "./operator_sets.h"
|
||||
|
||||
namespace {
|
||||
using namespace ONNX_NAMESPACE;
|
||||
class PyTorchSchemasRegisterer {
|
||||
public:
|
||||
PyTorchSchemasRegisterer() {
|
||||
OpSchemaRegistry::DomainToVersionRange::Instance().AddDomainToVersion(
|
||||
AI_ONNX_PYTORCH_DOMAIN,
|
||||
AI_ONNX_PYTORCH_DOMAIN_MIN_OPSET,
|
||||
AI_ONNX_PYTORCH_DOMAIN_MAX_OPSET);
|
||||
RegisterPyTorchOperatorSetSchema();
|
||||
}
|
||||
};
|
||||
static PyTorchSchemasRegisterer registerer{};
|
||||
} // namespace
|
@ -1,8 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "./constants.h"
|
||||
#include "onnx/defs/schema.h"
|
||||
|
||||
#define ONNX_PYTORCH_OPERATOR_SET_SCHEMA(name, ver, impl) \
|
||||
ONNX_OPERATOR_SET_SCHEMA_EX( \
|
||||
name, PyTorch, AI_ONNX_PYTORCH_DOMAIN, ver, false, impl)
|
@ -1282,8 +1282,6 @@ if(CAFFE2_CMAKE_BUILDING_WITH_MAIN_REPO AND NOT INTERN_DISABLE_ONNX)
|
||||
add_definitions(-DONNX_ML=1)
|
||||
endif()
|
||||
add_definitions(-DONNXIFI_ENABLE_EXT=1)
|
||||
# Add op schemas in "ai.onnx.pytorch" domain
|
||||
add_subdirectory("${CMAKE_CURRENT_LIST_DIR}/../caffe2/onnx/torch_ops")
|
||||
if(NOT USE_SYSTEM_ONNX)
|
||||
add_subdirectory(${CMAKE_CURRENT_LIST_DIR}/../third_party/onnx EXCLUDE_FROM_ALL)
|
||||
if(NOT MSVC)
|
||||
|
Reference in New Issue
Block a user