[BE] Enable ruff's UP rules in pyproject.toml (#105437)

Signed-off-by: Justin Chu <justinchu@microsoft.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105437
Approved by: https://github.com/huydhn, https://github.com/malfet, https://github.com/Skylion007
This commit is contained in:
Justin Chu
2023-07-21 08:23:47 -07:00
committed by PyTorch MergeBot
parent 6b2d48e78c
commit de8bd108b4
5 changed files with 19 additions and 5 deletions

View File

@ -55,6 +55,8 @@ ignore = [
"SIM116", # Disable Use a dictionary instead of consecutive `if` statements
"SIM117",
"SIM118",
"UP006", # keep-runtime-typing
"UP007", # keep-runtime-typing
]
line-length = 120
select = [
@ -66,6 +68,7 @@ select = [
"SIM1",
"W",
# Not included in flake8
"UP",
"PERF",
"PLE",
"TRY302",
@ -73,6 +76,13 @@ select = [
[tool.ruff.per-file-ignores]
"__init__.py" = ["F401"]
"test/jit/**" = [
"UP", # We don't want to modify the jit test as they test specify syntax
]
"torch/onnx/**" = [
"UP037", # ONNX does runtime type checking
]
"torchgen/api/types/__init__.py" = [
"F401",
"F403",
@ -81,3 +91,6 @@ select = [
"F401",
"F403",
]
"torch/utils/collect_env.py" = [
"UP", # collect_env.py needs to work with older versions of Python
]

View File

@ -518,7 +518,7 @@ class CPUReproTests(TestCase):
numerical_testsuit = [4.4, 4.5, 4.6, 5.5]
for numerical_number in numerical_testsuit:
x = torch.ones((17)) * numerical_number
x = torch.ones(17) * numerical_number
with config.patch({"cpp.simdlen": None}):
torch._dynamo.reset()
metrics.reset()

View File

@ -14,7 +14,7 @@ from collections import namedtuple
class TestLiteScriptModule(TestCase):
def test_typing_namedtuple(self):
myNamedTuple = NamedTuple('myNamedTuple', [('a', List[torch.Tensor])])
myNamedTuple = NamedTuple('myNamedTuple', [('a', List[torch.Tensor])]) # noqa: UP014
class MyTestModule(torch.nn.Module):
def forward(self, a: torch.Tensor):

View File

@ -1209,9 +1209,10 @@ torch.cuda.synchronize()
return torch.stack([col, col + 2], 1).view(2, 2, 2, 2)
if adaptive:
cls_name = 'AdaptiveMaxPool{}d'.format(num_dim)
cls_name = 'AdaptiveMaxPool{}d'.format(num_dim) # noqa: UP032
else:
cls_name = 'MaxPool{}d'.format(num_dim)
# FIXME(#105716): Test fails when using f-string
cls_name = 'MaxPool{}d'.format(num_dim) # noqa: UP032
module_cls = getattr(nn, cls_name)
module = module_cls(2, return_indices=True).to(device, dtype=dtype)
numel = 4 ** (num_dim + 1)

View File

@ -14257,7 +14257,7 @@ dedent """
self.assertEqual(out, torch.tensor(6.0))
def test_namedtuple_type_inference(self):
_AnnotatedNamedTuple = NamedTuple('_NamedTupleAnnotated', [('value', int)])
_AnnotatedNamedTuple = NamedTuple('_NamedTupleAnnotated', [('value', int)]) # noqa: UP014
_UnannotatedNamedTuple = namedtuple('_NamedTupleUnAnnotated', ['value'])
def test_check_named_tuple_value():