Add support for tracing vmap in pre-dispatch export (#154650)

Summary: ONNX team and recent transformer upgrade ran into this error and we also ran into during our export benchmarking. This diff makes it possible to trace through vmap implementation in pre-dispatch IR. Note that we don't support serializing functorch ops in pre-dispatch IR and in the future, we should desugar them to post-grad ops.

The implementation strategy is:
1. We add python wrappers around vmap APIs so that we attach custom torch function handler that is only on during non-strict export. The reason is we don't want to add this to default torch_function handler because it will break BC.
2. Some dynamo changes to make sure it picks up new python wrapper APIs. The reason is when we do strict export, we need to re-materialize these APIs in pre-dispatch IR from torch IR. We can avoid this by special casing in dynamo for export to proxy different API calls but i feel that is too much chaos because you need to be able to proxy 2 different variants of same vmap API.

Test Plan: CI

Differential Revision: D75623875

Pull Request resolved: https://github.com/pytorch/pytorch/pull/154650
Approved by: https://github.com/ezyang, https://github.com/zou3519
This commit is contained in:
Tugsbayasgalan (Tugsuu) Manlaibaatar
2025-08-20 19:31:07 +00:00
committed by PyTorch MergeBot
parent c5cb255625
commit dbef606631
16 changed files with 563 additions and 275 deletions

View File

@ -48,6 +48,7 @@ per-file-ignores =
torch/__init__.py: F401,TOR901
torch/_custom_op/impl.py: TOR901
torch/_export/serde/upgrade.py: TOR901
torch/_functorch/predispatch.py: TOR901
torch/_functorch/vmap.py: TOR901
torch/_inductor/test_operators.py: TOR901
torch/_library/abstract_impl.py: TOR901

View File

@ -292,6 +292,56 @@ class AOTAutogradCacheTests(InductorTestCase):
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
@inductor_config.patch("fx_graph_remote_cache", False)
@inductor_config.patch("fx_graph_cache", True)
@functorch_config.patch({"enable_autograd_cache": True})
def test_vmap(self):
"""
make
"""
def fn(x, y):
f = lambda x, y: (x * y + 1).sum(dim=0) # noqa: E731
vmapped = torch.vmap(f)(x, y)
return vmapped.sum(dim=0)
x = torch.randn(25, requires_grad=True)
y = torch.randn(25, requires_grad=True)
x2 = x.detach().clone().requires_grad_(True)
y2 = y.detach().clone().requires_grad_(True)
compiled_fn = torch.compile(fn, backend="inductor")
# A first call should miss in the cache.
self.assertEqual(fn(x, y), compiled_fn(x2, y2))
fn(x, y).sum().backward()
compiled_fn(x2, y2).sum().backward()
self.assertEqual(x.grad, x2.grad)
self.assertEqual(y.grad, y2.grad)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 0)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
# Reset all tensors
x = torch.randn(25, requires_grad=True)
y = torch.randn(25, requires_grad=True)
x2 = x.detach().clone().requires_grad_(True)
y2 = y.detach().clone().requires_grad_(True)
# A second call should hit. (First reset so in-memory guards
# don't prevent compilation).
self._clear_dynamo_and_codecache()
self.assertEqual(fn(x, y), compiled_fn(x2, y2))
fn(x, y).sum().backward()
compiled_fn(x2, y2).sum().backward()
self.assertEqual(x.grad, x2.grad)
self.assertEqual(y.grad, y2.grad)
self.assertEqual(counters["aot_autograd"]["autograd_cache_miss"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_hit"], 1)
self.assertEqual(counters["aot_autograd"]["autograd_cache_saved"], 1)
@inductor_config.patch("fx_graph_remote_cache", False)
@inductor_config.patch("fx_graph_cache", True)
@functorch_config.patch({"enable_autograd_cache": True})

View File

@ -3084,29 +3084,29 @@ def forward(self, L_a_ : torch.SymInt, L_b_ : torch.SymInt, L_c_ : torch.SymInt,
b = torch.arange(l_b_)
c = torch.arange(l_c_)
d = torch.arange(l_d_)
lazy_load_decompositions = torch._functorch.vmap.lazy_load_decompositions(); lazy_load_decompositions = None
_vmap_increment_nesting = torch._C._functorch._vmap_increment_nesting(l_d_, 'error'); _vmap_increment_nesting = None
child = torch._C._functorch._add_batch_dim(d, 0, 1); d = None
lazy_load_decompositions_1 = torch._functorch.vmap.lazy_load_decompositions(); lazy_load_decompositions_1 = None
_vmap_increment_nesting_1 = torch._C._functorch._vmap_increment_nesting(l_c_, 'error'); _vmap_increment_nesting_1 = None
child_1 = torch._C._functorch._add_batch_dim(c, 0, 2); c = None
lazy_load_decompositions_2 = torch._functorch.vmap.lazy_load_decompositions(); lazy_load_decompositions_2 = None
_vmap_increment_nesting_2 = torch._C._functorch._vmap_increment_nesting(l_b_, 'error'); _vmap_increment_nesting_2 = None
child_2 = torch._C._functorch._add_batch_dim(b, 0, 3); b = None
lazy_load_decompositions_3 = torch._functorch.vmap.lazy_load_decompositions(); lazy_load_decompositions_3 = None
_vmap_increment_nesting_3 = torch._C._functorch._vmap_increment_nesting(l_a_, 'error'); _vmap_increment_nesting_3 = None
_add_batch_dim_3 = torch._C._functorch._add_batch_dim(a, 0, 4); a = None
lazy_load_decompositions = torch._functorch.predispatch.lazy_load_decompositions(); lazy_load_decompositions = None
_vmap_increment_nesting = torch._functorch.predispatch._vmap_increment_nesting(l_d_, 'error'); _vmap_increment_nesting = None
child = torch._functorch.predispatch._add_batch_dim(d, 0, 1); d = None
lazy_load_decompositions_1 = torch._functorch.predispatch.lazy_load_decompositions(); lazy_load_decompositions_1 = None
_vmap_increment_nesting_1 = torch._functorch.predispatch._vmap_increment_nesting(l_c_, 'error'); _vmap_increment_nesting_1 = None
child_1 = torch._functorch.predispatch._add_batch_dim(c, 0, 2); c = None
lazy_load_decompositions_2 = torch._functorch.predispatch.lazy_load_decompositions(); lazy_load_decompositions_2 = None
_vmap_increment_nesting_2 = torch._functorch.predispatch._vmap_increment_nesting(l_b_, 'error'); _vmap_increment_nesting_2 = None
child_2 = torch._functorch.predispatch._add_batch_dim(b, 0, 3); b = None
lazy_load_decompositions_3 = torch._functorch.predispatch.lazy_load_decompositions(); lazy_load_decompositions_3 = None
_vmap_increment_nesting_3 = torch._functorch.predispatch._vmap_increment_nesting(l_a_, 'error'); _vmap_increment_nesting_3 = None
_add_batch_dim_3 = torch._functorch.predispatch._add_batch_dim(a, 0, 4); a = None
add = _add_batch_dim_3 + child_2; _add_batch_dim_3 = child_2 = None
add_1 = add + child_1; add = child_1 = None
batched_outputs = add_1 + child; add_1 = child = None
batched_outputs_1 = torch._C._functorch._remove_batch_dim(batched_outputs, 4, l_a_, 0); batched_outputs = l_a_ = None
_vmap_decrement_nesting = torch._C._functorch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
batched_outputs_2 = torch._C._functorch._remove_batch_dim(batched_outputs_1, 3, l_b_, 0); batched_outputs_1 = l_b_ = None
_vmap_decrement_nesting_1 = torch._C._functorch._vmap_decrement_nesting(); _vmap_decrement_nesting_1 = None
batched_outputs_3 = torch._C._functorch._remove_batch_dim(batched_outputs_2, 2, l_c_, 0); batched_outputs_2 = l_c_ = None
_vmap_decrement_nesting_2 = torch._C._functorch._vmap_decrement_nesting(); _vmap_decrement_nesting_2 = None
_remove_batch_dim_3 = torch._C._functorch._remove_batch_dim(batched_outputs_3, 1, l_d_, 0); batched_outputs_3 = l_d_ = None
_vmap_decrement_nesting_3 = torch._C._functorch._vmap_decrement_nesting(); _vmap_decrement_nesting_3 = None
batched_outputs_1 = torch._functorch.predispatch._remove_batch_dim(batched_outputs, 4, l_a_, 0); batched_outputs = l_a_ = None
_vmap_decrement_nesting = torch._functorch.predispatch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
batched_outputs_2 = torch._functorch.predispatch._remove_batch_dim(batched_outputs_1, 3, l_b_, 0); batched_outputs_1 = l_b_ = None
_vmap_decrement_nesting_1 = torch._functorch.predispatch._vmap_decrement_nesting(); _vmap_decrement_nesting_1 = None
batched_outputs_3 = torch._functorch.predispatch._remove_batch_dim(batched_outputs_2, 2, l_c_, 0); batched_outputs_2 = l_c_ = None
_vmap_decrement_nesting_2 = torch._functorch.predispatch._vmap_decrement_nesting(); _vmap_decrement_nesting_2 = None
_remove_batch_dim_3 = torch._functorch.predispatch._remove_batch_dim(batched_outputs_3, 1, l_d_, 0); batched_outputs_3 = l_d_ = None
_vmap_decrement_nesting_3 = torch._functorch.predispatch._vmap_decrement_nesting(); _vmap_decrement_nesting_3 = None
return (_remove_batch_dim_3,)""", # noqa: B950
)
@ -3739,11 +3739,11 @@ class GraphModule(torch.nn.Module):
child: "f32[12, 4, 3]" = chunk.view(12, 4, 3); chunk = None
lazy_load_decompositions = torch._functorch.vmap.lazy_load_decompositions(); lazy_load_decompositions = None
lazy_load_decompositions = torch._functorch.predispatch.lazy_load_decompositions(); lazy_load_decompositions = None
_vmap_increment_nesting = torch._C._functorch._vmap_increment_nesting(12, 'error'); _vmap_increment_nesting = None
_vmap_increment_nesting = torch._functorch.predispatch._vmap_increment_nesting(12, 'error'); _vmap_increment_nesting = None
child_1: "f32[4, 3]" = torch._C._functorch._add_batch_dim(child, 0, 1); child = None
child_1: "f32[4, 3]" = torch._functorch.predispatch._add_batch_dim(child, 0, 1); child = None
_jvp_increment_nesting = torch._C._functorch._jvp_increment_nesting(); _jvp_increment_nesting = None
_set_fwd_grad_enabled = torch._C._set_fwd_grad_enabled(True); _set_fwd_grad_enabled = None
@ -3786,18 +3786,18 @@ class GraphModule(torch.nn.Module):
basis: "f32[12, 4, 3]" = chunk_1.view(12, 4, 3); chunk_1 = None
lazy_load_decompositions_1 = torch._functorch.vmap.lazy_load_decompositions(); lazy_load_decompositions_1 = None
lazy_load_decompositions_1 = torch._functorch.predispatch.lazy_load_decompositions(); lazy_load_decompositions_1 = None
_vmap_increment_nesting_1 = torch._C._functorch._vmap_increment_nesting(12, 'error'); _vmap_increment_nesting_1 = None
_vmap_increment_nesting_1 = torch._functorch.predispatch._vmap_increment_nesting(12, 'error'); _vmap_increment_nesting_1 = None
_add_batch_dim_1: "f32[4, 3]" = torch._C._functorch._add_batch_dim(basis, 0, 3); basis = None
_add_batch_dim_1: "f32[4, 3]" = torch._functorch.predispatch._add_batch_dim(basis, 0, 3); basis = None
_autograd_grad = torch._functorch.eager_transforms._autograd_grad([primals_out], [diff_primals], [_add_batch_dim_1], retain_graph = True, create_graph = True); primals_out = diff_primals = _add_batch_dim_1 = None
batched_outputs: "f32[4, 3]" = _autograd_grad[0]; _autograd_grad = None
chunked_result: "f32[12, 4, 3]" = torch._C._functorch._remove_batch_dim(batched_outputs, 3, 12, 0); batched_outputs = None
chunked_result: "f32[12, 4, 3]" = torch._functorch.predispatch._remove_batch_dim(batched_outputs, 3, 12, 0); batched_outputs = None
_vmap_decrement_nesting = torch._C._functorch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
_vmap_decrement_nesting = torch._functorch.predispatch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
split = chunked_result.split((12,), dim = 0); chunked_result = None
split_1: "f32[12, 4, 3]" = split[0]; split = None
@ -3816,9 +3816,9 @@ class GraphModule(torch.nn.Module):
_set_fwd_grad_enabled_1 = torch._C._set_fwd_grad_enabled(True); _set_fwd_grad_enabled_1 = None
_jvp_decrement_nesting = torch._C._functorch._jvp_decrement_nesting(); _jvp_decrement_nesting = None
results_1: "f32[12, 4, 3, 4, 3]" = torch._C._functorch._remove_batch_dim(tangents_out_unflatten, 1, 12, 0); tangents_out_unflatten = None
results_1: "f32[12, 4, 3, 4, 3]" = torch._functorch.predispatch._remove_batch_dim(tangents_out_unflatten, 1, 12, 0); tangents_out_unflatten = None
_vmap_decrement_nesting_1 = torch._C._functorch._vmap_decrement_nesting(); _vmap_decrement_nesting_1 = None
_vmap_decrement_nesting_1 = torch._functorch.predispatch._vmap_decrement_nesting(); _vmap_decrement_nesting_1 = None
movedim: "f32[4, 3, 4, 3, 12]" = results_1.movedim(0, -1); results_1 = None
split_2 = movedim.split((12,), dim = -1); movedim = None
@ -3867,11 +3867,11 @@ class GraphModule(torch.nn.Module):
child: "f32[12, 3, 4]" = chunk.view(12, 3, 4); chunk = None
lazy_load_decompositions = torch._functorch.vmap.lazy_load_decompositions(); lazy_load_decompositions = None
lazy_load_decompositions = torch._functorch.predispatch.lazy_load_decompositions(); lazy_load_decompositions = None
_vmap_increment_nesting = torch._C._functorch._vmap_increment_nesting(12, 'error'); _vmap_increment_nesting = None
_vmap_increment_nesting = torch._functorch.predispatch._vmap_increment_nesting(12, 'error'); _vmap_increment_nesting = None
child_1: "f32[3, 4]" = torch._C._functorch._add_batch_dim(child, 0, 1); child = None
child_1: "f32[3, 4]" = torch._functorch.predispatch._add_batch_dim(child, 0, 1); child = None
_jvp_increment_nesting = torch._C._functorch._jvp_increment_nesting(); _jvp_increment_nesting = None
_set_fwd_grad_enabled = torch._C._set_fwd_grad_enabled(True); _set_fwd_grad_enabled = None
@ -3916,18 +3916,18 @@ class GraphModule(torch.nn.Module):
basis: "f32[12, 4, 3]" = chunk_1.view(12, 4, 3); chunk_1 = None
lazy_load_decompositions_1 = torch._functorch.vmap.lazy_load_decompositions(); lazy_load_decompositions_1 = None
lazy_load_decompositions_1 = torch._functorch.predispatch.lazy_load_decompositions(); lazy_load_decompositions_1 = None
_vmap_increment_nesting_1 = torch._C._functorch._vmap_increment_nesting(12, 'error'); _vmap_increment_nesting_1 = None
_vmap_increment_nesting_1 = torch._functorch.predispatch._vmap_increment_nesting(12, 'error'); _vmap_increment_nesting_1 = None
_add_batch_dim_1: "f32[4, 3]" = torch._C._functorch._add_batch_dim(basis, 0, 3); basis = None
_add_batch_dim_1: "f32[4, 3]" = torch._functorch.predispatch._add_batch_dim(basis, 0, 3); basis = None
_autograd_grad = torch._functorch.eager_transforms._autograd_grad([primals_out], [child_4], [_add_batch_dim_1], retain_graph = True, create_graph = True); primals_out = child_4 = _add_batch_dim_1 = None
child_5: "f32[3, 4]" = _autograd_grad[0]; _autograd_grad = None
child_6: "f32[12, 3, 4]" = torch._C._functorch._remove_batch_dim(child_5, 3, 12, 0); child_5 = None
child_6: "f32[12, 3, 4]" = torch._functorch.predispatch._remove_batch_dim(child_5, 3, 12, 0); child_5 = None
_vmap_decrement_nesting = torch._C._functorch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
_vmap_decrement_nesting = torch._functorch.predispatch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
split = child_6.split((12,), dim = 0); child_6 = None
split_1: "f32[12, 3, 4]" = split[0]; split = None
@ -3947,9 +3947,9 @@ class GraphModule(torch.nn.Module):
_set_fwd_grad_enabled_1 = torch._C._set_fwd_grad_enabled(True); _set_fwd_grad_enabled_1 = None
_jvp_decrement_nesting = torch._C._functorch._jvp_decrement_nesting(); _jvp_decrement_nesting = None
child_10: "f32[12, 4, 3, 3, 4]" = torch._C._functorch._remove_batch_dim(child_9, 1, 12, 0); child_9 = None
child_10: "f32[12, 4, 3, 3, 4]" = torch._functorch.predispatch._remove_batch_dim(child_9, 1, 12, 0); child_9 = None
_vmap_decrement_nesting_1 = torch._C._functorch._vmap_decrement_nesting(); _vmap_decrement_nesting_1 = None
_vmap_decrement_nesting_1 = torch._functorch.predispatch._vmap_decrement_nesting(); _vmap_decrement_nesting_1 = None
movedim: "f32[4, 3, 3, 4, 12]" = child_10.movedim(0, -1); child_10 = None
split_2 = movedim.split((12,), dim = -1); movedim = None
@ -4014,18 +4014,18 @@ class GraphModule(torch.nn.Module):
basis: "f32[12, 4, 3]" = chunk.view(12, 4, 3); chunk = None
lazy_load_decompositions = torch._functorch.vmap.lazy_load_decompositions(); lazy_load_decompositions = None
lazy_load_decompositions = torch._functorch.predispatch.lazy_load_decompositions(); lazy_load_decompositions = None
_vmap_increment_nesting = torch._C._functorch._vmap_increment_nesting(12, 'error'); _vmap_increment_nesting = None
_vmap_increment_nesting = torch._functorch.predispatch._vmap_increment_nesting(12, 'error'); _vmap_increment_nesting = None
_add_batch_dim: "f32[4, 3]" = torch._C._functorch._add_batch_dim(basis, 0, 1); basis = None
_add_batch_dim: "f32[4, 3]" = torch._functorch.predispatch._add_batch_dim(basis, 0, 1); basis = None
_autograd_grad = torch._functorch.eager_transforms._autograd_grad([primals_out], [diff_primals], [_add_batch_dim], retain_graph = True, create_graph = True); primals_out = diff_primals = _add_batch_dim = None
batched_outputs: "f32[4, 3]" = _autograd_grad[0]; _autograd_grad = None
chunked_result: "f32[12, 4, 3]" = torch._C._functorch._remove_batch_dim(batched_outputs, 1, 12, 0); batched_outputs = None
chunked_result: "f32[12, 4, 3]" = torch._functorch.predispatch._remove_batch_dim(batched_outputs, 1, 12, 0); batched_outputs = None
_vmap_decrement_nesting = torch._C._functorch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
_vmap_decrement_nesting = torch._functorch.predispatch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
split = chunked_result.split((12,), dim = 0); chunked_result = None
split_1: "f32[12, 4, 3]" = split[0]; split = None
@ -4092,18 +4092,18 @@ class GraphModule(torch.nn.Module):
basis: "f32[12, 3, 4]" = chunk.view(12, 3, 4); chunk = None
lazy_load_decompositions = torch._functorch.vmap.lazy_load_decompositions(); lazy_load_decompositions = None
lazy_load_decompositions = torch._functorch.predispatch.lazy_load_decompositions(); lazy_load_decompositions = None
_vmap_increment_nesting = torch._C._functorch._vmap_increment_nesting(12, 'error'); _vmap_increment_nesting = None
_vmap_increment_nesting = torch._functorch.predispatch._vmap_increment_nesting(12, 'error'); _vmap_increment_nesting = None
_add_batch_dim: "f32[3, 4]" = torch._C._functorch._add_batch_dim(basis, 0, 1); basis = None
_add_batch_dim: "f32[3, 4]" = torch._functorch.predispatch._add_batch_dim(basis, 0, 1); basis = None
_autograd_grad = torch._functorch.eager_transforms._autograd_grad([primals_out], [diff_primals], [_add_batch_dim], retain_graph = True, create_graph = True); primals_out = diff_primals = _add_batch_dim = None
batched_outputs: "f32[3, 4]" = _autograd_grad[0]; _autograd_grad = None
chunked_result: "f32[12, 3, 4]" = torch._C._functorch._remove_batch_dim(batched_outputs, 1, 12, 0); batched_outputs = None
chunked_result: "f32[12, 3, 4]" = torch._functorch.predispatch._remove_batch_dim(batched_outputs, 1, 12, 0); batched_outputs = None
_vmap_decrement_nesting = torch._C._functorch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
_vmap_decrement_nesting = torch._functorch.predispatch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
split = chunked_result.split((12,), dim = 0); chunked_result = None
split_1: "f32[12, 3, 4]" = split[0]; split = None
@ -4172,18 +4172,18 @@ class GraphModule(torch.nn.Module):
basis: "f32[12, 3, 4]" = chunk.view(12, 3, 4); chunk = None
lazy_load_decompositions = torch._functorch.vmap.lazy_load_decompositions(); lazy_load_decompositions = None
lazy_load_decompositions = torch._functorch.predispatch.lazy_load_decompositions(); lazy_load_decompositions = None
_vmap_increment_nesting = torch._C._functorch._vmap_increment_nesting(12, 'error'); _vmap_increment_nesting = None
_vmap_increment_nesting = torch._functorch.predispatch._vmap_increment_nesting(12, 'error'); _vmap_increment_nesting = None
_add_batch_dim: "f32[3, 4]" = torch._C._functorch._add_batch_dim(basis, 0, 1); basis = None
_add_batch_dim: "f32[3, 4]" = torch._functorch.predispatch._add_batch_dim(basis, 0, 1); basis = None
_autograd_grad = torch._functorch.eager_transforms._autograd_grad([primals_out], [diff_primals], [_add_batch_dim], retain_graph = True, create_graph = True); primals_out = diff_primals = _add_batch_dim = None
batched_outputs: "f32[3, 4]" = _autograd_grad[0]; _autograd_grad = None
chunked_result: "f32[12, 3, 4]" = torch._C._functorch._remove_batch_dim(batched_outputs, 1, 12, 0); batched_outputs = None
chunked_result: "f32[12, 3, 4]" = torch._functorch.predispatch._remove_batch_dim(batched_outputs, 1, 12, 0); batched_outputs = None
_vmap_decrement_nesting = torch._C._functorch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
_vmap_decrement_nesting = torch._functorch.predispatch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
split = chunked_result.split((12,), dim = 0); chunked_result = None
split_1: "f32[12, 3, 4]" = split[0]; split = None
@ -5229,11 +5229,11 @@ class GraphModule(torch.nn.Module):
child: "f32[12, 4, 3]" = chunk.view(12, 4, 3); chunk = None
lazy_load_decompositions = torch._functorch.vmap.lazy_load_decompositions(); lazy_load_decompositions = None
lazy_load_decompositions = torch._functorch.predispatch.lazy_load_decompositions(); lazy_load_decompositions = None
_vmap_increment_nesting = torch._C._functorch._vmap_increment_nesting(12, 'error'); _vmap_increment_nesting = None
_vmap_increment_nesting = torch._functorch.predispatch._vmap_increment_nesting(12, 'error'); _vmap_increment_nesting = None
child_1: "f32[4, 3]" = torch._C._functorch._add_batch_dim(child, 0, 1); child = None
child_1: "f32[4, 3]" = torch._functorch.predispatch._add_batch_dim(child, 0, 1); child = None
_jvp_increment_nesting = torch._C._functorch._jvp_increment_nesting(); _jvp_increment_nesting = None
_set_fwd_grad_enabled = torch._C._set_fwd_grad_enabled(True); _set_fwd_grad_enabled = None
@ -5259,9 +5259,9 @@ class GraphModule(torch.nn.Module):
_set_fwd_grad_enabled_1 = torch._C._set_fwd_grad_enabled(True); _set_fwd_grad_enabled_1 = None
_jvp_decrement_nesting = torch._C._functorch._jvp_decrement_nesting(); _jvp_decrement_nesting = None
results: "f32[12, 4, 3]" = torch._C._functorch._remove_batch_dim(tangents_out_unflatten, 1, 12, 0); tangents_out_unflatten = None
results: "f32[12, 4, 3]" = torch._functorch.predispatch._remove_batch_dim(tangents_out_unflatten, 1, 12, 0); tangents_out_unflatten = None
_vmap_decrement_nesting = torch._C._functorch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
_vmap_decrement_nesting = torch._functorch.predispatch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
movedim: "f32[4, 3, 12]" = results.movedim(0, -1); results = None
split = movedim.split((12,), dim = -1); movedim = None
@ -5310,11 +5310,11 @@ class GraphModule(torch.nn.Module):
child: "f32[12, 3, 4]" = chunk.view(12, 3, 4); chunk = None
lazy_load_decompositions = torch._functorch.vmap.lazy_load_decompositions(); lazy_load_decompositions = None
lazy_load_decompositions = torch._functorch.predispatch.lazy_load_decompositions(); lazy_load_decompositions = None
_vmap_increment_nesting = torch._C._functorch._vmap_increment_nesting(12, 'error'); _vmap_increment_nesting = None
_vmap_increment_nesting = torch._functorch.predispatch._vmap_increment_nesting(12, 'error'); _vmap_increment_nesting = None
child_1: "f32[3, 4]" = torch._C._functorch._add_batch_dim(child, 0, 1); child = None
child_1: "f32[3, 4]" = torch._functorch.predispatch._add_batch_dim(child, 0, 1); child = None
_jvp_increment_nesting = torch._C._functorch._jvp_increment_nesting(); _jvp_increment_nesting = None
_set_fwd_grad_enabled = torch._C._set_fwd_grad_enabled(True); _set_fwd_grad_enabled = None
@ -5341,9 +5341,9 @@ class GraphModule(torch.nn.Module):
_set_fwd_grad_enabled_1 = torch._C._set_fwd_grad_enabled(True); _set_fwd_grad_enabled_1 = None
_jvp_decrement_nesting = torch._C._functorch._jvp_decrement_nesting(); _jvp_decrement_nesting = None
results: "f32[12, 3, 4]" = torch._C._functorch._remove_batch_dim(tangents_out_unflatten, 1, 12, 0); tangents_out_unflatten = None
results: "f32[12, 3, 4]" = torch._functorch.predispatch._remove_batch_dim(tangents_out_unflatten, 1, 12, 0); tangents_out_unflatten = None
_vmap_decrement_nesting = torch._C._functorch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
_vmap_decrement_nesting = torch._functorch.predispatch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
movedim: "f32[3, 4, 12]" = results.movedim(0, -1); results = None
split = movedim.split((12,), dim = -1); movedim = None
@ -5392,11 +5392,11 @@ class GraphModule(torch.nn.Module):
child: "f32[12, 3, 4]" = chunk.view(12, 3, 4); chunk = None
lazy_load_decompositions = torch._functorch.vmap.lazy_load_decompositions(); lazy_load_decompositions = None
lazy_load_decompositions = torch._functorch.predispatch.lazy_load_decompositions(); lazy_load_decompositions = None
_vmap_increment_nesting = torch._C._functorch._vmap_increment_nesting(12, 'error'); _vmap_increment_nesting = None
_vmap_increment_nesting = torch._functorch.predispatch._vmap_increment_nesting(12, 'error'); _vmap_increment_nesting = None
child_1: "f32[3, 4]" = torch._C._functorch._add_batch_dim(child, 0, 1); child = None
child_1: "f32[3, 4]" = torch._functorch.predispatch._add_batch_dim(child, 0, 1); child = None
_jvp_increment_nesting = torch._C._functorch._jvp_increment_nesting(); _jvp_increment_nesting = None
_set_fwd_grad_enabled = torch._C._set_fwd_grad_enabled(True); _set_fwd_grad_enabled = None
@ -5425,10 +5425,10 @@ class GraphModule(torch.nn.Module):
_set_fwd_grad_enabled_1 = torch._C._set_fwd_grad_enabled(True); _set_fwd_grad_enabled_1 = None
_jvp_decrement_nesting = torch._C._functorch._jvp_decrement_nesting(); _jvp_decrement_nesting = None
results: "f32[12, 3, 4]" = torch._C._functorch._remove_batch_dim(tangents_out_unflatten, 1, 12, 0); tangents_out_unflatten = None
aux_2: "f32[12, 4, 3]" = torch._C._functorch._remove_batch_dim(aux_1, 1, 12, 0); aux_1 = None
results: "f32[12, 3, 4]" = torch._functorch.predispatch._remove_batch_dim(tangents_out_unflatten, 1, 12, 0); tangents_out_unflatten = None
aux_2: "f32[12, 4, 3]" = torch._functorch.predispatch._remove_batch_dim(aux_1, 1, 12, 0); aux_1 = None
_vmap_decrement_nesting = torch._C._functorch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
_vmap_decrement_nesting = torch._functorch.predispatch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
aux_3: "f32[4, 3]" = aux_2[0]; aux_2 = None
@ -5479,11 +5479,11 @@ class GraphModule(torch.nn.Module):
child: "f32[12, 4, 3]" = chunk.view(12, 4, 3); chunk = None
lazy_load_decompositions = torch._functorch.vmap.lazy_load_decompositions(); lazy_load_decompositions = None
lazy_load_decompositions = torch._functorch.predispatch.lazy_load_decompositions(); lazy_load_decompositions = None
_vmap_increment_nesting = torch._C._functorch._vmap_increment_nesting(12, 'same'); _vmap_increment_nesting = None
_vmap_increment_nesting = torch._functorch.predispatch._vmap_increment_nesting(12, 'same'); _vmap_increment_nesting = None
child_1: "f32[4, 3]" = torch._C._functorch._add_batch_dim(child, 0, 1); child = None
child_1: "f32[4, 3]" = torch._functorch.predispatch._add_batch_dim(child, 0, 1); child = None
_jvp_increment_nesting = torch._C._functorch._jvp_increment_nesting(); _jvp_increment_nesting = None
_set_fwd_grad_enabled = torch._C._set_fwd_grad_enabled(True); _set_fwd_grad_enabled = None
@ -5517,10 +5517,10 @@ class GraphModule(torch.nn.Module):
_set_fwd_grad_enabled_1 = torch._C._set_fwd_grad_enabled(True); _set_fwd_grad_enabled_1 = None
_jvp_decrement_nesting = torch._C._functorch._jvp_decrement_nesting(); _jvp_decrement_nesting = None
child_8: "f32[12, 3, 4]" = torch._C._functorch._remove_batch_dim(child_6, 1, 12, 0); child_6 = None
child_9: "f32[12, 4, 3]" = torch._C._functorch._remove_batch_dim(child_7, 1, 12, 0); child_7 = None
child_8: "f32[12, 3, 4]" = torch._functorch.predispatch._remove_batch_dim(child_6, 1, 12, 0); child_6 = None
child_9: "f32[12, 4, 3]" = torch._functorch.predispatch._remove_batch_dim(child_7, 1, 12, 0); child_7 = None
_vmap_decrement_nesting = torch._C._functorch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
_vmap_decrement_nesting = torch._functorch.predispatch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
movedim: "f32[3, 4, 12]" = child_8.movedim(0, -1); child_8 = None
split = movedim.split((12,), dim = -1); movedim = None
@ -6260,19 +6260,19 @@ class GraphModule(torch.nn.Module):
def forward(self, L_x_: "f32[3, 3, 3]"):
l_x_ = L_x_
lazy_load_decompositions = torch._functorch.vmap.lazy_load_decompositions(); lazy_load_decompositions = None
lazy_load_decompositions = torch._functorch.predispatch.lazy_load_decompositions(); lazy_load_decompositions = None
_vmap_increment_nesting = torch._C._functorch._vmap_increment_nesting(3, 'error'); _vmap_increment_nesting = None
_vmap_increment_nesting = torch._functorch.predispatch._vmap_increment_nesting(3, 'error'); _vmap_increment_nesting = None
_add_batch_dim: "f32[3, 3]" = torch._C._functorch._add_batch_dim(l_x_, 0, 1); l_x_ = None
_add_batch_dim: "f32[3, 3]" = torch._functorch.predispatch._add_batch_dim(l_x_, 0, 1); l_x_ = None
sum_1: "f32[3]" = _add_batch_dim.sum(0)
sum_2: "f32[3]" = _add_batch_dim.sum(1); _add_batch_dim = None
batched_outputs: "f32[3]" = sum_1 + sum_2; sum_1 = sum_2 = None
_remove_batch_dim: "f32[3, 3]" = torch._C._functorch._remove_batch_dim(batched_outputs, 1, 3, 0); batched_outputs = None
_remove_batch_dim: "f32[3, 3]" = torch._functorch.predispatch._remove_batch_dim(batched_outputs, 1, 3, 0); batched_outputs = None
_vmap_decrement_nesting = torch._C._functorch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
_vmap_decrement_nesting = torch._functorch.predispatch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
return (_remove_batch_dim,)
""",
)
@ -6298,20 +6298,20 @@ class GraphModule(torch.nn.Module):
def forward(self, L_x_: "f32[3, 3, 3]"):
l_x_ = L_x_
lazy_load_decompositions = torch._functorch.vmap.lazy_load_decompositions(); lazy_load_decompositions = None
lazy_load_decompositions = torch._functorch.predispatch.lazy_load_decompositions(); lazy_load_decompositions = None
_vmap_increment_nesting = torch._C._functorch._vmap_increment_nesting(3, 'error'); _vmap_increment_nesting = None
_vmap_increment_nesting = torch._functorch.predispatch._vmap_increment_nesting(3, 'error'); _vmap_increment_nesting = None
_add_batch_dim: "f32[3, 3]" = torch._C._functorch._add_batch_dim(l_x_, 0, 1); l_x_ = None
_add_batch_dim: "f32[3, 3]" = torch._functorch.predispatch._add_batch_dim(l_x_, 0, 1); l_x_ = None
sum_1: "f32[3]" = _add_batch_dim.sum(0)
sum_2: "f32[3]" = _add_batch_dim.sum(1); _add_batch_dim = None
add: "f32[3]" = sum_1 + sum_2; sum_1 = sum_2 = None
batched_outputs: "f32[3]" = add + 3; add = None
_remove_batch_dim: "f32[3, 3]" = torch._C._functorch._remove_batch_dim(batched_outputs, 1, 3, 0); batched_outputs = None
_remove_batch_dim: "f32[3, 3]" = torch._functorch.predispatch._remove_batch_dim(batched_outputs, 1, 3, 0); batched_outputs = None
_vmap_decrement_nesting = torch._C._functorch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
_vmap_decrement_nesting = torch._functorch.predispatch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
return (_remove_batch_dim,)
""",
)
@ -6338,20 +6338,20 @@ class GraphModule(torch.nn.Module):
l_x_ = L_x_
l_y_ = L_y_
lazy_load_decompositions = torch._functorch.vmap.lazy_load_decompositions(); lazy_load_decompositions = None
lazy_load_decompositions = torch._functorch.predispatch.lazy_load_decompositions(); lazy_load_decompositions = None
_vmap_increment_nesting = torch._C._functorch._vmap_increment_nesting(3, 'error'); _vmap_increment_nesting = None
_vmap_increment_nesting = torch._functorch.predispatch._vmap_increment_nesting(3, 'error'); _vmap_increment_nesting = None
_add_batch_dim: "f32[3, 3]" = torch._C._functorch._add_batch_dim(l_x_, 0, 1); l_x_ = None
_add_batch_dim: "f32[3, 3]" = torch._functorch.predispatch._add_batch_dim(l_x_, 0, 1); l_x_ = None
sum_1: "f32[3]" = _add_batch_dim.sum(0)
sum_2: "f32[3]" = _add_batch_dim.sum(1); _add_batch_dim = None
add: "f32[3]" = sum_1 + sum_2; sum_1 = sum_2 = None
batched_outputs: "f32[3, 3]" = add + l_y_; add = l_y_ = None
_remove_batch_dim: "f32[3, 3, 3]" = torch._C._functorch._remove_batch_dim(batched_outputs, 1, 3, 0); batched_outputs = None
_remove_batch_dim: "f32[3, 3, 3]" = torch._functorch.predispatch._remove_batch_dim(batched_outputs, 1, 3, 0); batched_outputs = None
_vmap_decrement_nesting = torch._C._functorch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
_vmap_decrement_nesting = torch._functorch.predispatch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
return (_remove_batch_dim,)
""",
)
@ -6379,21 +6379,21 @@ class GraphModule(torch.nn.Module):
l_x_ = L_x_
l_y_ = L_y_
lazy_load_decompositions = torch._functorch.vmap.lazy_load_decompositions(); lazy_load_decompositions = None
lazy_load_decompositions = torch._functorch.predispatch.lazy_load_decompositions(); lazy_load_decompositions = None
_vmap_increment_nesting = torch._C._functorch._vmap_increment_nesting(3, 'error'); _vmap_increment_nesting = None
_vmap_increment_nesting = torch._functorch.predispatch._vmap_increment_nesting(3, 'error'); _vmap_increment_nesting = None
_add_batch_dim: "f32[3, 3]" = torch._C._functorch._add_batch_dim(l_x_, 0, 1); l_x_ = None
_add_batch_dim_1: "f32[3]" = torch._C._functorch._add_batch_dim(l_y_, 1, 1); l_y_ = None
_add_batch_dim: "f32[3, 3]" = torch._functorch.predispatch._add_batch_dim(l_x_, 0, 1); l_x_ = None
_add_batch_dim_1: "f32[3]" = torch._functorch.predispatch._add_batch_dim(l_y_, 1, 1); l_y_ = None
sum_1: "f32[3]" = _add_batch_dim.sum(0)
sum_2: "f32[3]" = _add_batch_dim.sum(1); _add_batch_dim = None
add: "f32[3]" = sum_1 + sum_2; sum_1 = sum_2 = None
batched_outputs: "f32[3]" = add + _add_batch_dim_1; add = _add_batch_dim_1 = None
_remove_batch_dim: "f32[3, 3]" = torch._C._functorch._remove_batch_dim(batched_outputs, 1, 3, 0); batched_outputs = None
_remove_batch_dim: "f32[3, 3]" = torch._functorch.predispatch._remove_batch_dim(batched_outputs, 1, 3, 0); batched_outputs = None
_vmap_decrement_nesting = torch._C._functorch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
_vmap_decrement_nesting = torch._functorch.predispatch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
return (_remove_batch_dim,)
""",
)
@ -6423,21 +6423,21 @@ class GraphModule(torch.nn.Module):
l_x_ = L_x_
l_y_ = L_y_
lazy_load_decompositions = torch._functorch.vmap.lazy_load_decompositions(); lazy_load_decompositions = None
lazy_load_decompositions = torch._functorch.predispatch.lazy_load_decompositions(); lazy_load_decompositions = None
_vmap_increment_nesting = torch._C._functorch._vmap_increment_nesting(3, 'error'); _vmap_increment_nesting = None
_vmap_increment_nesting = torch._functorch.predispatch._vmap_increment_nesting(3, 'error'); _vmap_increment_nesting = None
_add_batch_dim: "f32[3, 3]" = torch._C._functorch._add_batch_dim(l_x_, 0, 1); l_x_ = None
_add_batch_dim_1: "f32[3]" = torch._C._functorch._add_batch_dim(l_y_, 1, 1); l_y_ = None
_add_batch_dim: "f32[3, 3]" = torch._functorch.predispatch._add_batch_dim(l_x_, 0, 1); l_x_ = None
_add_batch_dim_1: "f32[3]" = torch._functorch.predispatch._add_batch_dim(l_y_, 1, 1); l_y_ = None
sum_1: "f32[3]" = _add_batch_dim.sum(0)
sum_2: "f32[3]" = _add_batch_dim.sum(1); _add_batch_dim = None
add: "f32[3]" = sum_1 + sum_2; sum_1 = sum_2 = None
batched_outputs: "f32[3]" = add + _add_batch_dim_1; add = _add_batch_dim_1 = None
_remove_batch_dim: "f32[3, 3]" = torch._C._functorch._remove_batch_dim(batched_outputs, 1, 3, 0); batched_outputs = None
_remove_batch_dim: "f32[3, 3]" = torch._functorch.predispatch._remove_batch_dim(batched_outputs, 1, 3, 0); batched_outputs = None
_vmap_decrement_nesting = torch._C._functorch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
_vmap_decrement_nesting = torch._functorch.predispatch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
return (_remove_batch_dim,)
""",
)
@ -6463,29 +6463,29 @@ class GraphModule(torch.nn.Module):
l_x_ = L_x_
l_y_ = L_y_
lazy_load_decompositions = torch._functorch.vmap.lazy_load_decompositions(); lazy_load_decompositions = None
lazy_load_decompositions = torch._functorch.predispatch.lazy_load_decompositions(); lazy_load_decompositions = None
_vmap_increment_nesting = torch._C._functorch._vmap_increment_nesting(3, 'error'); _vmap_increment_nesting = None
_vmap_increment_nesting = torch._functorch.predispatch._vmap_increment_nesting(3, 'error'); _vmap_increment_nesting = None
child: "f32[3, 3]" = torch._C._functorch._add_batch_dim(l_x_, 0, 1); l_x_ = None
child_1: "f32[3, 3]" = torch._C._functorch._add_batch_dim(l_y_, 0, 1); l_y_ = None
child: "f32[3, 3]" = torch._functorch.predispatch._add_batch_dim(l_x_, 0, 1); l_x_ = None
child_1: "f32[3, 3]" = torch._functorch.predispatch._add_batch_dim(l_y_, 0, 1); l_y_ = None
lazy_load_decompositions_1 = torch._functorch.vmap.lazy_load_decompositions(); lazy_load_decompositions_1 = None
lazy_load_decompositions_1 = torch._functorch.predispatch.lazy_load_decompositions(); lazy_load_decompositions_1 = None
_vmap_increment_nesting_1 = torch._C._functorch._vmap_increment_nesting(3, 'error'); _vmap_increment_nesting_1 = None
_vmap_increment_nesting_1 = torch._functorch.predispatch._vmap_increment_nesting(3, 'error'); _vmap_increment_nesting_1 = None
_add_batch_dim_2: "f32[3]" = torch._C._functorch._add_batch_dim(child, 1, 2); child = None
_add_batch_dim_3: "f32[3]" = torch._C._functorch._add_batch_dim(child_1, 1, 2); child_1 = None
_add_batch_dim_2: "f32[3]" = torch._functorch.predispatch._add_batch_dim(child, 1, 2); child = None
_add_batch_dim_3: "f32[3]" = torch._functorch.predispatch._add_batch_dim(child_1, 1, 2); child_1 = None
batched_outputs: "f32[3]" = _add_batch_dim_2 + _add_batch_dim_3; _add_batch_dim_2 = _add_batch_dim_3 = None
batched_outputs_1: "f32[3, 3]" = torch._C._functorch._remove_batch_dim(batched_outputs, 2, 3, 0); batched_outputs = None
batched_outputs_1: "f32[3, 3]" = torch._functorch.predispatch._remove_batch_dim(batched_outputs, 2, 3, 0); batched_outputs = None
_vmap_decrement_nesting = torch._C._functorch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
_vmap_decrement_nesting = torch._functorch.predispatch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
_remove_batch_dim_1: "f32[3, 3, 3]" = torch._C._functorch._remove_batch_dim(batched_outputs_1, 1, 3, 0); batched_outputs_1 = None
_remove_batch_dim_1: "f32[3, 3, 3]" = torch._functorch.predispatch._remove_batch_dim(batched_outputs_1, 1, 3, 0); batched_outputs_1 = None
_vmap_decrement_nesting_1 = torch._C._functorch._vmap_decrement_nesting(); _vmap_decrement_nesting_1 = None
_vmap_decrement_nesting_1 = torch._functorch.predispatch._vmap_decrement_nesting(); _vmap_decrement_nesting_1 = None
return (_remove_batch_dim_1,)
""",
)
@ -6512,27 +6512,27 @@ class GraphModule(torch.nn.Module):
l_y_ = L_y_
l_x_ = L_x_
lazy_load_decompositions = torch._functorch.vmap.lazy_load_decompositions(); lazy_load_decompositions = None
lazy_load_decompositions = torch._functorch.predispatch.lazy_load_decompositions(); lazy_load_decompositions = None
_vmap_increment_nesting = torch._C._functorch._vmap_increment_nesting(5, 'error'); _vmap_increment_nesting = None
_vmap_increment_nesting = torch._functorch.predispatch._vmap_increment_nesting(5, 'error'); _vmap_increment_nesting = None
child: "f32[3]" = torch._C._functorch._add_batch_dim(l_y_, 0, 1); l_y_ = None
child: "f32[3]" = torch._functorch.predispatch._add_batch_dim(l_y_, 0, 1); l_y_ = None
lazy_load_decompositions_1 = torch._functorch.vmap.lazy_load_decompositions(); lazy_load_decompositions_1 = None
lazy_load_decompositions_1 = torch._functorch.predispatch.lazy_load_decompositions(); lazy_load_decompositions_1 = None
_vmap_increment_nesting_1 = torch._C._functorch._vmap_increment_nesting(3, 'error'); _vmap_increment_nesting_1 = None
_vmap_increment_nesting_1 = torch._functorch.predispatch._vmap_increment_nesting(3, 'error'); _vmap_increment_nesting_1 = None
_add_batch_dim_1: "f32[]" = torch._C._functorch._add_batch_dim(child, 0, 2); child = None
_add_batch_dim_1: "f32[]" = torch._functorch.predispatch._add_batch_dim(child, 0, 2); child = None
batched_outputs: "f32[2, 3]" = l_x_ * _add_batch_dim_1; l_x_ = _add_batch_dim_1 = None
batched_outputs_1: "f32[3, 2, 3]" = torch._C._functorch._remove_batch_dim(batched_outputs, 2, 3, 0); batched_outputs = None
batched_outputs_1: "f32[3, 2, 3]" = torch._functorch.predispatch._remove_batch_dim(batched_outputs, 2, 3, 0); batched_outputs = None
_vmap_decrement_nesting = torch._C._functorch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
_vmap_decrement_nesting = torch._functorch.predispatch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
_remove_batch_dim_1: "f32[5, 3, 2, 3]" = torch._C._functorch._remove_batch_dim(batched_outputs_1, 1, 5, 0); batched_outputs_1 = None
_remove_batch_dim_1: "f32[5, 3, 2, 3]" = torch._functorch.predispatch._remove_batch_dim(batched_outputs_1, 1, 5, 0); batched_outputs_1 = None
_vmap_decrement_nesting_1 = torch._C._functorch._vmap_decrement_nesting(); _vmap_decrement_nesting_1 = None
_vmap_decrement_nesting_1 = torch._functorch.predispatch._vmap_decrement_nesting(); _vmap_decrement_nesting_1 = None
return (_remove_batch_dim_1,)
""",
)
@ -6557,19 +6557,19 @@ class GraphModule(torch.nn.Module):
def forward(self, L_x_: "f32[2, 4, 3]"):
l_x_ = L_x_
lazy_load_decompositions = torch._functorch.vmap.lazy_load_decompositions(); lazy_load_decompositions = None
lazy_load_decompositions = torch._functorch.predispatch.lazy_load_decompositions(); lazy_load_decompositions = None
_vmap_increment_nesting = torch._C._functorch._vmap_increment_nesting(2, 'error'); _vmap_increment_nesting = None
_vmap_increment_nesting = torch._functorch.predispatch._vmap_increment_nesting(2, 'error'); _vmap_increment_nesting = None
_add_batch_dim: "f32[4, 3]" = torch._C._functorch._add_batch_dim(l_x_, 0, 1); l_x_ = None
_add_batch_dim: "f32[4, 3]" = torch._functorch.predispatch._add_batch_dim(l_x_, 0, 1); l_x_ = None
child: "f32[3]" = _add_batch_dim.sum(0)
child_1: "f32[4]" = _add_batch_dim.sum(1); _add_batch_dim = None
_remove_batch_dim: "f32[2, 3]" = torch._C._functorch._remove_batch_dim(child, 1, 2, 0); child = None
_remove_batch_dim_1: "f32[2, 4]" = torch._C._functorch._remove_batch_dim(child_1, 1, 2, 0); child_1 = None
_remove_batch_dim: "f32[2, 3]" = torch._functorch.predispatch._remove_batch_dim(child, 1, 2, 0); child = None
_remove_batch_dim_1: "f32[2, 4]" = torch._functorch.predispatch._remove_batch_dim(child_1, 1, 2, 0); child_1 = None
_vmap_decrement_nesting = torch._C._functorch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
_vmap_decrement_nesting = torch._functorch.predispatch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
return (_remove_batch_dim, _remove_batch_dim_1)
""",
)
@ -6594,19 +6594,19 @@ class GraphModule(torch.nn.Module):
def forward(self, L_x_: "f32[2, 4, 3]"):
l_x_ = L_x_
lazy_load_decompositions = torch._functorch.vmap.lazy_load_decompositions(); lazy_load_decompositions = None
lazy_load_decompositions = torch._functorch.predispatch.lazy_load_decompositions(); lazy_load_decompositions = None
_vmap_increment_nesting = torch._C._functorch._vmap_increment_nesting(2, 'error'); _vmap_increment_nesting = None
_vmap_increment_nesting = torch._functorch.predispatch._vmap_increment_nesting(2, 'error'); _vmap_increment_nesting = None
_add_batch_dim: "f32[4, 3]" = torch._C._functorch._add_batch_dim(l_x_, 0, 1); l_x_ = None
_add_batch_dim: "f32[4, 3]" = torch._functorch.predispatch._add_batch_dim(l_x_, 0, 1); l_x_ = None
child: "f32[3]" = _add_batch_dim.sum(0)
child_1: "f32[4]" = _add_batch_dim.sum(1); _add_batch_dim = None
_remove_batch_dim: "f32[3, 2]" = torch._C._functorch._remove_batch_dim(child, 1, 2, 1); child = None
_remove_batch_dim_1: "f32[2, 4]" = torch._C._functorch._remove_batch_dim(child_1, 1, 2, 0); child_1 = None
_remove_batch_dim: "f32[3, 2]" = torch._functorch.predispatch._remove_batch_dim(child, 1, 2, 1); child = None
_remove_batch_dim_1: "f32[2, 4]" = torch._functorch.predispatch._remove_batch_dim(child_1, 1, 2, 0); child_1 = None
_vmap_decrement_nesting = torch._C._functorch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
_vmap_decrement_nesting = torch._functorch.predispatch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
return (_remove_batch_dim, _remove_batch_dim_1)
""",
)
@ -6632,19 +6632,19 @@ class GraphModule(torch.nn.Module):
def forward(self, L_x_: "f32[2, 4, 3]"):
l_x_ = L_x_
lazy_load_decompositions = torch._functorch.vmap.lazy_load_decompositions(); lazy_load_decompositions = None
lazy_load_decompositions = torch._functorch.predispatch.lazy_load_decompositions(); lazy_load_decompositions = None
_vmap_increment_nesting = torch._C._functorch._vmap_increment_nesting(2, 'error'); _vmap_increment_nesting = None
_vmap_increment_nesting = torch._functorch.predispatch._vmap_increment_nesting(2, 'error'); _vmap_increment_nesting = None
_add_batch_dim: "f32[4, 3]" = torch._C._functorch._add_batch_dim(l_x_, 0, 1); l_x_ = None
_add_batch_dim: "f32[4, 3]" = torch._functorch.predispatch._add_batch_dim(l_x_, 0, 1); l_x_ = None
child: "f32[3]" = _add_batch_dim.sum(0)
child_1: "f32[4]" = _add_batch_dim.sum(1); _add_batch_dim = None
_remove_batch_dim: "f32[3, 2]" = torch._C._functorch._remove_batch_dim(child, 1, 2, 1); child = None
_remove_batch_dim_1: "f32[2, 4]" = torch._C._functorch._remove_batch_dim(child_1, 1, 2, 0); child_1 = None
_remove_batch_dim: "f32[3, 2]" = torch._functorch.predispatch._remove_batch_dim(child, 1, 2, 1); child = None
_remove_batch_dim_1: "f32[2, 4]" = torch._functorch.predispatch._remove_batch_dim(child_1, 1, 2, 0); child_1 = None
_vmap_decrement_nesting = torch._C._functorch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
_vmap_decrement_nesting = torch._functorch.predispatch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
return (_remove_batch_dim, _remove_batch_dim_1)
""",
)

View File

@ -2547,6 +2547,67 @@ graph():
res = ep.module()(ref_x)
self.assertEqual(res, ref_out)
@testing.expectedFailureSerDer # can't serialize functorch ops
@testing.expectedFailureSerDerNonStrict # can't serialize functorch ops
@testing.expectedFailureCppRuntime
def test_vmap(self):
class Vmap(torch.nn.Module):
def forward(self, x, y):
f = lambda x, y: (x * y + 1).sum(dim=0) # noqa: E731
vmapped = torch.vmap(f)(x, y)
return vmapped.sum(dim=0)
DYN = torch.export.Dim.DYNAMIC
inputs = (torch.tensor([1.0, 2.0, 3.0]), torch.tensor([0.1, 0.2, 0.3]))
dynamic = {"x": {0: DYN}, "y": {0: DYN}}
ep = torch.export.export(Vmap(), inputs, {}, dynamic_shapes=dynamic)
self.assertExpectedInline(
str(ep.graph).strip(),
"""\
graph():
%x : [num_users=1] = placeholder[target=x]
%y : [num_users=2] = placeholder[target=y]
%sym_size_int_3 : [num_users=2] = call_function[target=torch.ops.aten.sym_size.int](args = (%y, 0), kwargs = {})
%lazy_load_decompositions : [num_users=0] = call_function[target=torch._functorch.predispatch.lazy_load_decompositions](args = (), kwargs = {})
%_vmap_increment_nesting : [num_users=0] = call_function[target=torch._functorch.predispatch._vmap_increment_nesting](args = (%sym_size_int_3, error), kwargs = {})
%_add_batch_dim : [num_users=1] = call_function[target=torch._functorch.predispatch._add_batch_dim](args = (%x, 0, 1), kwargs = {})
%_add_batch_dim_1 : [num_users=1] = call_function[target=torch._functorch.predispatch._add_batch_dim](args = (%y, 0, 1), kwargs = {})
%mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_add_batch_dim, %_add_batch_dim_1), kwargs = {})
%add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 1), kwargs = {})
%sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%add, [0]), kwargs = {})
%_remove_batch_dim : [num_users=1] = call_function[target=torch._functorch.predispatch._remove_batch_dim](args = (%sum_1, 1, %sym_size_int_3, 0), kwargs = {})
%_vmap_decrement_nesting : [num_users=0] = call_function[target=torch._functorch.predispatch._vmap_decrement_nesting](args = (), kwargs = {})
%sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%_remove_batch_dim, [0]), kwargs = {})
return (sum_2,)""",
)
ep = torch.export.export(
Vmap(), inputs, {}, dynamic_shapes=dynamic, strict=True
)
self.assertExpectedInline(
str(ep.graph).strip(),
"""\
graph():
%x : [num_users=1] = placeholder[target=x]
%y : [num_users=2] = placeholder[target=y]
%sym_size_int_2 : [num_users=2] = call_function[target=torch.ops.aten.sym_size.int](args = (%y, 0), kwargs = {})
%lazy_load_decompositions : [num_users=0] = call_function[target=torch._functorch.predispatch.lazy_load_decompositions](args = (), kwargs = {})
%_vmap_increment_nesting : [num_users=0] = call_function[target=torch._functorch.predispatch._vmap_increment_nesting](args = (%sym_size_int_2, error), kwargs = {})
%_add_batch_dim : [num_users=1] = call_function[target=torch._functorch.predispatch._add_batch_dim](args = (%x, 0, 1), kwargs = {})
%_add_batch_dim_1 : [num_users=1] = call_function[target=torch._functorch.predispatch._add_batch_dim](args = (%y, 0, 1), kwargs = {})
%mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%_add_batch_dim, %_add_batch_dim_1), kwargs = {})
%add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 1), kwargs = {})
%sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%add, [0]), kwargs = {})
%_remove_batch_dim : [num_users=1] = call_function[target=torch._functorch.predispatch._remove_batch_dim](args = (%sum_1, 1, %sym_size_int_2, 0), kwargs = {})
%_vmap_decrement_nesting : [num_users=0] = call_function[target=torch._functorch.predispatch._vmap_decrement_nesting](args = (), kwargs = {})
%sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%_remove_batch_dim, [0]), kwargs = {})
return (sum_2,)""",
)
self.assertTrue(torch.allclose(ep.module()(*inputs), Vmap()(*inputs)))
ep = export(Vmap(), inputs, {}, dynamic_shapes=dynamic).run_decompositions({})
self.assertTrue(torch.allclose(ep.module()(*inputs), Vmap()(*inputs)))
@testing.expectedFailureLegacyExportNonStrict # Old export doesn't work with subclasses
@testing.expectedFailureLegacyExportStrict # Old export doesn't work with subclasses
def test_subclass_nested_attr_access(self):
class Foo(torch.nn.Module):
def __init__(self):

View File

@ -4061,53 +4061,53 @@ class GraphModule(torch.nn.Module):
child_4: "f32[1, 10, 2]" = torch.ops.aten.slice(elem_4, 0, 1, None, 2)
child_5: "f32[1, 10, 2]" = torch.ops.aten.slice(elem_5, 0, 1, None, 2)
lazy_load_decompositions = torch._functorch.vmap.lazy_load_decompositions(); lazy_load_decompositions = None
lazy_load_decompositions = torch._functorch.predispatch.lazy_load_decompositions(); lazy_load_decompositions = None
_vmap_increment_nesting = torch._C._functorch._vmap_increment_nesting(1, 'error'); _vmap_increment_nesting = None
_vmap_increment_nesting = torch._functorch.predispatch._vmap_increment_nesting(1, 'error'); _vmap_increment_nesting = None
_add_batch_dim: "f32[10, 2]" = torch._C._functorch._add_batch_dim(child, 0, 1); child = None
_add_batch_dim_1: "f32[10, 2]" = torch._C._functorch._add_batch_dim(child_1, 0, 1); child_1 = None
_add_batch_dim_2: "f32[10, 2]" = torch._C._functorch._add_batch_dim(child_2, 0, 1); child_2 = _add_batch_dim_2 = None
_add_batch_dim_3: "f32[10, 2]" = torch._C._functorch._add_batch_dim(child_3, 0, 1); child_3 = _add_batch_dim_3 = None
_add_batch_dim_4: "f32[10, 2]" = torch._C._functorch._add_batch_dim(child_4, 0, 1); child_4 = _add_batch_dim_4 = None
_add_batch_dim_5: "f32[10, 2]" = torch._C._functorch._add_batch_dim(child_5, 0, 1); child_5 = None
_add_batch_dim: "f32[10, 2]" = torch._functorch.predispatch._add_batch_dim(child, 0, 1); child = None
_add_batch_dim_1: "f32[10, 2]" = torch._functorch.predispatch._add_batch_dim(child_1, 0, 1); child_1 = None
_add_batch_dim_2: "f32[10, 2]" = torch._functorch.predispatch._add_batch_dim(child_2, 0, 1); child_2 = _add_batch_dim_2 = None
_add_batch_dim_3: "f32[10, 2]" = torch._functorch.predispatch._add_batch_dim(child_3, 0, 1); child_3 = _add_batch_dim_3 = None
_add_batch_dim_4: "f32[10, 2]" = torch._functorch.predispatch._add_batch_dim(child_4, 0, 1); child_4 = _add_batch_dim_4 = None
_add_batch_dim_5: "f32[10, 2]" = torch._functorch.predispatch._add_batch_dim(child_5, 0, 1); child_5 = None
a: "f32[10, 2]" = _add_batch_dim + _add_batch_dim_5; _add_batch_dim = None
b: "f32[10, 2]" = _add_batch_dim_1 - _add_batch_dim_5; _add_batch_dim_1 = _add_batch_dim_5 = None
child_6: "f32[10, 2]" = a - b
child_7: "f32[1, 10, 2]" = torch._C._functorch._remove_batch_dim(a, 1, 1, 0); a = None
child_8: "f32[1, 10, 2]" = torch._C._functorch._remove_batch_dim(b, 1, 1, 0); b = None
child_9: "f32[1, 10, 2]" = torch._C._functorch._remove_batch_dim(child_6, 1, 1, 0); child_6 = None
child_7: "f32[1, 10, 2]" = torch._functorch.predispatch._remove_batch_dim(a, 1, 1, 0); a = None
child_8: "f32[1, 10, 2]" = torch._functorch.predispatch._remove_batch_dim(b, 1, 1, 0); b = None
child_9: "f32[1, 10, 2]" = torch._functorch.predispatch._remove_batch_dim(child_6, 1, 1, 0); child_6 = None
_vmap_decrement_nesting = torch._C._functorch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
_vmap_decrement_nesting = torch._functorch.predispatch._vmap_decrement_nesting(); _vmap_decrement_nesting = None
child_10: "f32[1, 10, 2]" = torch.ops.aten.slice(elem_3, 0, 2, None, 2)
child_11: "f32[1, 10, 2]" = torch.ops.aten.slice(elem_4, 0, 2, None, 2)
child_12: "f32[1, 10, 2]" = torch.ops.aten.slice(elem_5, 0, 2, None, 2)
lazy_load_decompositions_1 = torch._functorch.vmap.lazy_load_decompositions(); lazy_load_decompositions_1 = None
lazy_load_decompositions_1 = torch._functorch.predispatch.lazy_load_decompositions(); lazy_load_decompositions_1 = None
_vmap_increment_nesting_1 = torch._C._functorch._vmap_increment_nesting(1, 'error'); _vmap_increment_nesting_1 = None
_vmap_increment_nesting_1 = torch._functorch.predispatch._vmap_increment_nesting(1, 'error'); _vmap_increment_nesting_1 = None
_add_batch_dim_6: "f32[10, 2]" = torch._C._functorch._add_batch_dim(child_7, 0, 1)
_add_batch_dim_7: "f32[10, 2]" = torch._C._functorch._add_batch_dim(child_8, 0, 1)
_add_batch_dim_8: "f32[10, 2]" = torch._C._functorch._add_batch_dim(child_9, 0, 1); _add_batch_dim_8 = None
_add_batch_dim_9: "f32[10, 2]" = torch._C._functorch._add_batch_dim(child_10, 0, 1); child_10 = _add_batch_dim_9 = None
_add_batch_dim_10: "f32[10, 2]" = torch._C._functorch._add_batch_dim(child_11, 0, 1); child_11 = _add_batch_dim_10 = None
_add_batch_dim_11: "f32[10, 2]" = torch._C._functorch._add_batch_dim(child_12, 0, 1); child_12 = None
_add_batch_dim_6: "f32[10, 2]" = torch._functorch.predispatch._add_batch_dim(child_7, 0, 1)
_add_batch_dim_7: "f32[10, 2]" = torch._functorch.predispatch._add_batch_dim(child_8, 0, 1)
_add_batch_dim_8: "f32[10, 2]" = torch._functorch.predispatch._add_batch_dim(child_9, 0, 1); _add_batch_dim_8 = None
_add_batch_dim_9: "f32[10, 2]" = torch._functorch.predispatch._add_batch_dim(child_10, 0, 1); child_10 = _add_batch_dim_9 = None
_add_batch_dim_10: "f32[10, 2]" = torch._functorch.predispatch._add_batch_dim(child_11, 0, 1); child_11 = _add_batch_dim_10 = None
_add_batch_dim_11: "f32[10, 2]" = torch._functorch.predispatch._add_batch_dim(child_12, 0, 1); child_12 = None
a_1: "f32[10, 2]" = _add_batch_dim_6 + _add_batch_dim_11; _add_batch_dim_6 = None
b_1: "f32[10, 2]" = _add_batch_dim_7 - _add_batch_dim_11; _add_batch_dim_7 = _add_batch_dim_11 = None
child_13: "f32[10, 2]" = a_1 - b_1
child_14: "f32[1, 10, 2]" = torch._C._functorch._remove_batch_dim(a_1, 1, 1, 0); a_1 = None
child_15: "f32[1, 10, 2]" = torch._C._functorch._remove_batch_dim(b_1, 1, 1, 0); b_1 = None
child_16: "f32[1, 10, 2]" = torch._C._functorch._remove_batch_dim(child_13, 1, 1, 0); child_13 = None
child_14: "f32[1, 10, 2]" = torch._functorch.predispatch._remove_batch_dim(a_1, 1, 1, 0); a_1 = None
child_15: "f32[1, 10, 2]" = torch._functorch.predispatch._remove_batch_dim(b_1, 1, 1, 0); b_1 = None
child_16: "f32[1, 10, 2]" = torch._functorch.predispatch._remove_batch_dim(child_13, 1, 1, 0); child_13 = None
_vmap_decrement_nesting_1 = torch._C._functorch._vmap_decrement_nesting(); _vmap_decrement_nesting_1 = None
_vmap_decrement_nesting_1 = torch._functorch.predispatch._vmap_decrement_nesting(); _vmap_decrement_nesting_1 = None
slice_10: "f32[1, 10, 2]" = torch.ops.aten.slice(elem_3, 0, 0, 1); elem_3 = None
cat: "f32[2, 10, 2]" = torch.cat([slice_10, child_14], dim = 0); slice_10 = child_14 = None

View File

@ -243,6 +243,8 @@ manual_torch_name_rule_map: dict[
"torch._C.set_autocast_xla_dtype": SkipFunctionVariable,
"torch._C.set_autocast_xla_enabled": SkipFunctionVariable,
"torch.resize_as_": SkipFunctionVariable,
"torch._functorch.predispatch._add_batch_dim": TorchInGraphFunctionVariable,
"torch._functorch.predispatch._remove_batch_dim": TorchInGraphFunctionVariable,
"torch.resize_as_sparse_": SkipFunctionVariable,
"torch.get_default_device": TorchInGraphFunctionVariable,
# functorch/vmap
@ -323,8 +325,6 @@ manual_torch_name_rule_map: dict[
"torch._functorch.deprecated.grad_and_value": UserFunctionVariable,
"torch._functorch.deprecated.vjp": UserFunctionVariable,
# functorch/C++ bindings
"torch._C._functorch._add_batch_dim": TorchInGraphFunctionVariable,
"torch._C._functorch._remove_batch_dim": TorchInGraphFunctionVariable,
"torch._C._functorch._wrap_for_grad": TorchInGraphFunctionVariable,
"torch._C._functorch._unwrap_for_grad": TorchInGraphFunctionVariable,
"torch._C._functorch._unwrap_batched": TorchInGraphFunctionVariable,
@ -333,6 +333,8 @@ manual_torch_name_rule_map: dict[
"torch._C._functorch.is_batchedtensor": TorchInGraphFunctionVariable,
"torch._C._functorch.peek_interpreter_stack": TorchInGraphFunctionVariable,
"torch._C._functorch.unwrap_if_dead": TorchInGraphFunctionVariable,
"torch._functorch.predispatch._vmap_increment_nesting": TorchInGraphFunctionVariable,
"torch._functorch.predispatch._vmap_decrement_nesting": TorchInGraphFunctionVariable,
# everything else
"torch._functorch.pyfunctorch.coerce_cinterpreter": TorchInGraphFunctionVariable,
"torch._higher_order_ops.triton_kernel_wrap.do_prune_configs": UserFunctionVariable,
@ -2364,7 +2366,11 @@ torch_non_c_binding_in_graph_functions = dict.fromkeys(
"torch._functorch.utils.enable_single_level_autograd_function",
"torch._functorch.utils.exposed_in",
"torch._functorch.utils.unwrap_dead_wrappers",
"torch._functorch.vmap.lazy_load_decompositions",
"torch._functorch.predispatch.lazy_load_decompositions",
"torch._functorch.predispatch._vmap_increment_nesting",
"torch._functorch.predispatch._vmap_decrement_nesting",
"torch._functorch.predispatch._add_batch_dim",
"torch._functorch.predispatch._remove_batch_dim",
"torch._guards.compile_context",
"torch._guards.detect_fake_mode",
"torch._guards.tracing",

View File

@ -2985,6 +2985,8 @@ def handle_traced_output(example_value, tx, proxy, options, subclass_type, targe
torch.seed,
operator.mod,
torch._functorch.vmap._validate_and_get_batch_size,
torch._functorch.predispatch._vmap_increment_nesting,
torch._functorch.predispatch._vmap_decrement_nesting,
# some mac builds are missing torch.distributed.get_rank()
getattr(torch.distributed, "get_rank", _missing),
getattr(torch.distributed, "get_world_size", _missing),
@ -3018,9 +3020,8 @@ def handle_traced_output(example_value, tx, proxy, options, subclass_type, targe
):
set_example_value(proxy.node, example_value)
return ConstantVariable.create(example_value, **options)
elif (
isinstance(example_value, (int, float, bool))
and proxy.node.target is call_torchbind
elif isinstance(example_value, (int, float, bool)) and (
proxy.node.target is call_torchbind
):
set_example_value(proxy.node, example_value)
return ConstantVariable.create(example_value, **options)

View File

@ -523,7 +523,7 @@ class VmapIncrementNestingCtxManagerVariable(ContextWrappingVariable):
self.set_cleanup_hook(tx, lambda: torch._C._functorch._vmap_decrement_nesting())
self.proxy = tx.output.create_node(
"call_function",
torch._C._functorch._vmap_increment_nesting,
torch._functorch.predispatch._vmap_increment_nesting,
(batch_size_node, randomness),
{},
)
@ -532,7 +532,10 @@ class VmapIncrementNestingCtxManagerVariable(ContextWrappingVariable):
def exit(self, tx: "InstructionTranslator", *args):
self.cleanup()
tx.output.create_node(
"call_function", torch._C._functorch._vmap_decrement_nesting, (), {}
"call_function",
torch._functorch.predispatch._vmap_decrement_nesting,
(),
{},
)
return variables.ConstantVariable.create(None)

View File

@ -19,6 +19,7 @@ from torch._guards import detect_fake_mode
from torch._subclasses.fake_tensor import FakeTensor, FakeTensorMode
from torch._subclasses.functional_tensor import FunctionalTensor
from torch.fx._utils import first_call_function_nn_module_stack
from torch.fx.experimental.proxy_tensor import PreDispatchTorchFunctionMode
from torch.fx.passes.runtime_assert import insert_deferred_runtime_asserts
@ -211,6 +212,29 @@ def _collect_param_buffer_metadata(mod: torch.fx.GraphModule) -> dict[str, Any]:
return params_buffers_to_node_meta
def _maybe_find_pre_dispatch_tf_mode_for_export():
if not torch._C._is_torch_function_mode_enabled():
return None
torch_function_mode_stack = torch.overrides._get_current_function_mode_stack()
pre_dispatch_tf_modes = [
mode
for mode in torch_function_mode_stack
if isinstance(mode, PreDispatchTorchFunctionMode)
]
assert len(pre_dispatch_tf_modes) <= 1, (
f"Expected only one PreDispatchTorchFunctionMode, found {len(pre_dispatch_tf_modes)}"
)
if len(pre_dispatch_tf_modes) == 0:
return None
mode = pre_dispatch_tf_modes[0]
return mode
def _populate_param_buffer_metadata_to_new_gm(
params_buffers_to_node_meta: dict[str, Any],
gm: torch.fx.GraphModule,

View File

@ -223,6 +223,11 @@ class Verifier(metaclass=_VerifierMeta):
torch.amp.autocast_mode._enter_autocast,
torch.amp.autocast_mode._exit_autocast,
torch.fx.experimental.symbolic_shapes.cast_symbool_to_symint_guardless,
torch._functorch.predispatch._add_batch_dim,
torch._functorch.predispatch._remove_batch_dim,
torch._functorch.predispatch._vmap_increment_nesting,
torch._functorch.predispatch._vmap_decrement_nesting,
torch._functorch.predispatch.lazy_load_decompositions,
)
if not isinstance(op, _allowed_op_types()):

View File

@ -4,6 +4,7 @@ from contextlib import contextmanager
import torch
import torch._custom_ops
from torch._C import DispatchKey
from torch._export.utils import _maybe_find_pre_dispatch_tf_mode_for_export
from torch._higher_order_ops.flat_apply import (
_ConstantFunction,
flat_apply,
@ -186,23 +187,12 @@ def mark_subclass_constructor_exportable_experimental(constructor_subclass):
f"tensor subclass. Please look at DTensor.__init__ implementation as an example of proper usage of this API."
)
constructor_subclass(*args, **kwargs)
if not torch._C._is_torch_function_mode_enabled():
return
torch_function_mode_stack = torch.overrides._get_current_function_mode_stack()
pre_dispatch_tf_modes = [
mode
for mode in torch_function_mode_stack
if isinstance(mode, PreDispatchTorchFunctionMode)
]
assert len(pre_dispatch_tf_modes) <= 1, (
f"Expected only one PreDispatchTorchFunctionMode, found {len(pre_dispatch_tf_modes)}"
)
if len(pre_dispatch_tf_modes) == 0:
mode = _maybe_find_pre_dispatch_tf_mode_for_export()
if mode is None:
return
mode = pre_dispatch_tf_modes[0]
assert isinstance(mode, PreDispatchTorchFunctionMode)
tracer = mode.tracer
subclass = args[0]

View File

@ -0,0 +1,158 @@
# mypy: ignore-errors
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
"""
This module contains pre-dispatch wrappers for functorch operations
that enable proper tracing in PT2 non-strict export/compile fx graph.
"""
import torch
from torch._C._functorch import (
_add_batch_dim as _add_batch_dim_impl,
_remove_batch_dim as _remove_batch_dim_impl,
_vmap_decrement_nesting as _vmap_decrement_nesting_impl,
_vmap_increment_nesting as _vmap_increment_nesting_impl,
)
def _add_batch_dim(self, batch_dim, level):
"""
Thin wrapper around torch._C._add_batch_dim that is used to proxy in
PT2 export/compile fx graph
"""
from torch._export.utils import _maybe_find_pre_dispatch_tf_mode_for_export
mode = _maybe_find_pre_dispatch_tf_mode_for_export()
if mode:
return torch.overrides.handle_torch_function(
_add_batch_dim, (self,), self, batch_dim, level
)
res = _add_batch_dim_impl(self, batch_dim, level)
return res
def _remove_batch_dim(self, level, batch_size, out_dim):
"""
Thin wrapper around torch._C._remove_batch_dim that is used to proxy in
PT2 export/compile fx graph
"""
from torch._export.utils import _maybe_find_pre_dispatch_tf_mode_for_export
mode = _maybe_find_pre_dispatch_tf_mode_for_export()
if mode:
return torch.overrides.handle_torch_function(
_remove_batch_dim, (self,), self, level, batch_size, out_dim
)
res = _remove_batch_dim_impl(self, level, batch_size, out_dim)
return res
def _vmap_increment_nesting(batch_size, randomness):
"""
Thin wrapper around torch._C._vmap_increment_nesting that is used
to proxy in export/compile graph
"""
from torch._export.utils import _maybe_find_pre_dispatch_tf_mode_for_export
mode = _maybe_find_pre_dispatch_tf_mode_for_export()
if mode:
return torch.overrides.handle_torch_function(
_vmap_increment_nesting, (batch_size,), batch_size, randomness
)
res = _vmap_increment_nesting_impl(batch_size, randomness)
return res
def _vmap_decrement_nesting():
"""
Thin wrapper around torch._C._vmap_increment_nesting that is used
to proxy in export/compile graph
"""
from torch._export.utils import _maybe_find_pre_dispatch_tf_mode_for_export
mode = _maybe_find_pre_dispatch_tf_mode_for_export()
if mode:
return torch.overrides.handle_torch_function(
_vmap_decrement_nesting,
(),
)
return _vmap_decrement_nesting_impl()
# Global variables for lazy_load_decompositions
DECOMPOSITIONS_LOADED = False
DECOMPOSITIONS_LOCK = None # Will be initialized when needed
VMAP_DECOMPOSITIONS_LIB = None
def lazy_load_decompositions():
"""
Lazy loading of vmap decompositions with pre-dispatch support.
"""
from torch._export.utils import _maybe_find_pre_dispatch_tf_mode_for_export
mode = _maybe_find_pre_dispatch_tf_mode_for_export()
if mode:
return torch.overrides.handle_torch_function(lazy_load_decompositions, ())
global DECOMPOSITIONS_LOADED, DECOMPOSITIONS_LOCK, VMAP_DECOMPOSITIONS_LIB
if DECOMPOSITIONS_LOADED:
return
# Initialize lock if needed
if DECOMPOSITIONS_LOCK is None:
import threading
DECOMPOSITIONS_LOCK = threading.Lock()
with DECOMPOSITIONS_LOCK:
if DECOMPOSITIONS_LOADED:
return
import os
if not (os.environ.get("PYTORCH_JIT", "1") == "1" and __debug__):
DECOMPOSITIONS_LOADED = True
return
# use an alternate way to register an operator into the decomposition table
# _register_jit_decomposition doesn't work for some operators, e.g. addr,
# because the Tensor types generated cannot be unioned by torchscript
# decomp should be type OpOverload
VMAP_DECOMPOSITIONS_LIB = torch.library.Library(
"aten", "IMPL", "FuncTorchBatched"
)
from torch._decomp import decomposition_table
def _register_python_decomposition_vmap(decomp):
if decomp in decomposition_table:
VMAP_DECOMPOSITIONS_LIB.impl(decomp, decomposition_table[decomp])
else:
raise RuntimeError(f"could not find decomposition for {decomp}")
_register_python_decomposition_vmap(torch.ops.aten.mse_loss_backward.default)
_register_python_decomposition_vmap(
torch.ops.aten.smooth_l1_loss_backward.default
)
_register_python_decomposition_vmap(torch.ops.aten.huber_loss_backward.default)
_register_python_decomposition_vmap(torch.ops.aten.nll_loss_forward.default)
_register_python_decomposition_vmap(torch.ops.aten.nll_loss2d_forward.default)
_register_python_decomposition_vmap(torch.ops.aten.nll_loss_backward.default)
_register_python_decomposition_vmap(torch.ops.aten.nll_loss2d_backward.default)
_register_python_decomposition_vmap(torch.ops.aten.addr.default)
DECOMPOSITIONS_LOADED = True

View File

@ -9,19 +9,18 @@
import contextlib
import functools
import itertools
import os
import threading
from functools import partial
from typing import Any, Callable, Optional, Union
import torch
from torch import Tensor
from torch._C._functorch import (
from torch._C._functorch import is_batchedtensor
from torch._functorch.predispatch import (
_add_batch_dim,
_remove_batch_dim,
_vmap_decrement_nesting,
_vmap_increment_nesting,
is_batchedtensor,
lazy_load_decompositions,
)
from torch.utils._pytree import (
_broadcast_to_and_flatten,
@ -258,57 +257,6 @@ def _get_name(func: Callable):
return repr(func)
DECOMPOSITIONS_LOADED = False
DECOMPOSITIONS_LOCK = threading.Lock()
VMAP_DECOMPOSITIONS_LIB = None
# torch.package, Python 3.11, and torch.jit-less environments are unhappy with
# decompositions. Only load them when needed if possible.
def lazy_load_decompositions():
global DECOMPOSITIONS_LOADED
if DECOMPOSITIONS_LOADED:
return
with DECOMPOSITIONS_LOCK:
if DECOMPOSITIONS_LOADED:
return
if not (os.environ.get("PYTORCH_JIT", "1") == "1" and __debug__):
DECOMPOSITIONS_LOADED = True
return
# use an alternate way to register an operator into the decomposition table
# _register_jit_decomposition doesn't work for some operators, e.g. addr,
# because the Tensor types generated cannot be unioned by torchscript
# decomp should be type OpOverload
global VMAP_DECOMPOSITIONS_LIB
VMAP_DECOMPOSITIONS_LIB = torch.library.Library(
"aten", "IMPL", "FuncTorchBatched"
)
from torch._decomp import decomposition_table
def _register_python_decomposition_vmap(decomp):
if decomp in decomposition_table:
VMAP_DECOMPOSITIONS_LIB.impl(decomp, decomposition_table[decomp])
else:
raise RuntimeError(f"could not find decomposition for {decomp}")
_register_python_decomposition_vmap(torch.ops.aten.mse_loss_backward.default)
_register_python_decomposition_vmap(
torch.ops.aten.smooth_l1_loss_backward.default
)
_register_python_decomposition_vmap(torch.ops.aten.huber_loss_backward.default)
_register_python_decomposition_vmap(torch.ops.aten.nll_loss_forward.default)
_register_python_decomposition_vmap(torch.ops.aten.nll_loss2d_forward.default)
_register_python_decomposition_vmap(torch.ops.aten.nll_loss_backward.default)
_register_python_decomposition_vmap(torch.ops.aten.nll_loss2d_backward.default)
_register_python_decomposition_vmap(torch.ops.aten.addr.default)
DECOMPOSITIONS_LOADED = True
def vmap_impl(func, in_dims, out_dims, randomness, chunk_size, *args, **kwargs):
lazy_load_decompositions()
_check_out_dims_is_int_or_int_pytree(out_dims, func)

View File

@ -435,7 +435,6 @@ class Tracer(TracerBase):
setattr(self.root, qualname, a)
return self.create_node("get_attr", qualname, (), {})
return super().create_arg(a)
@compatibility(is_backward_compatible=True)

View File

@ -817,6 +817,49 @@ def _maybe_record_pointwise_barrier(
last_node.meta["low_precision_pointwise_barrier"] = True
def _fetch_proxies_and_all_constant_flag(
flat_args_kwargs: Union[list[object], tuple[object, ...]], tracer: _ProxyTracer
) -> tuple[list[object], tuple[object, ...], bool]:
"""
Given flat arguments, fetch the proxies and whether they are all constants.
This is later used in proxy_call or when someone is trying to stitch together
graph node in tf or td modes.
"""
f_flat_args_kwargs = [
(
fetch_object_proxy(tracer, x)
if isinstance(x, (Tensor, _AnyScriptObject))
else x
)
for x in flat_args_kwargs
]
# If there are SymInts, we also should not consider this constant.
# However, fake tensor handling of SymInts is sufficiently broken that
# I couldn't write a test for this case
all_constant = (
not any(
t.constant is None
for t in f_flat_args_kwargs
if isinstance(t, _ProxyTensor)
)
# TODO: maybe constant SymInts should also be allowed? Not sure if
# this can happen
and not any(isinstance(x, py_sym_types) for x in flat_args_kwargs)
)
proxy_flat_args_kwargs = [
e.proxy if isinstance(e, _ProxyTensor) else e for e in f_flat_args_kwargs
]
proxy_flat_args_kwargs = [
(fetch_sym_proxy(tracer)(e) if isinstance(e, py_sym_types) else e)
for e in proxy_flat_args_kwargs
]
return f_flat_args_kwargs, tuple(proxy_flat_args_kwargs), all_constant
def proxy_call(
proxy_mode: ProxyTorchDispatchMode,
func: OpOverload,
@ -869,27 +912,8 @@ def proxy_call(
return (args[0] != 0).item() # type: ignore[attr-defined]
tracer = proxy_mode.tracer
f_flat_args_kwargs = [
(
fetch_object_proxy(tracer, x)
if isinstance(x, (Tensor, _AnyScriptObject))
else x
)
for x in flat_args_kwargs
]
# If there are SymInts, we also should not consider this constant.
# However, fake tensor handling of SymInts is sufficiently broken that
# I couldn't write a test for this case
all_constant = (
not any(
t.constant is None
for t in f_flat_args_kwargs
if isinstance(t, _ProxyTensor)
)
# TODO: maybe constant SymInts should also be allowed? Not sure if
# this can happen
and not any(isinstance(x, py_sym_types) for x in flat_args_kwargs)
f_flat_args_kwargs, proxy_flat_args_kwargs, all_constant = (
_fetch_proxies_and_all_constant_flag(flat_args_kwargs, tracer)
)
if torch.Tag.data_dependent_output in func.tags:
@ -917,13 +941,6 @@ def proxy_call(
"in your make_fx call."
)
proxy_flat_args_kwargs = [
e.proxy if isinstance(e, _ProxyTensor) else e for e in f_flat_args_kwargs
]
proxy_flat_args_kwargs = [
(fetch_sym_proxy(proxy_mode.tracer)(e) if isinstance(e, py_sym_types) else e)
for e in proxy_flat_args_kwargs
]
proxy_args, proxy_kwargs = pytree.tree_unflatten(proxy_flat_args_kwargs, spec)
# When we trace through a torch.tensor invocation, you never actually
@ -1435,6 +1452,27 @@ class PreDispatchTorchFunctionMode(TorchFunctionMode):
if func is torch._C._set_grad_enabled:
func(*args, **kwargs)
return node
# We need more complicated handling here because the inputs
# to these functions are sometimes tensors or symints where
# we need to fetch the proxies properly.
if func in [
torch._functorch.predispatch._add_batch_dim,
torch._functorch.predispatch._remove_batch_dim,
torch._functorch.predispatch._vmap_increment_nesting,
torch._functorch.predispatch._vmap_decrement_nesting,
torch._functorch.vmap.lazy_load_decompositions,
]:
_, proxies, _ = _fetch_proxies_and_all_constant_flag(args, self.tracer)
out_proxy = self.tracer.create_proxy(
"call_function",
func,
proxies,
{},
)
res = func(*args, **kwargs)
track_tensor_tree(res, out_proxy, constant=None, tracer=self.tracer)
return res
return func(*args, **kwargs)

View File

@ -56,6 +56,7 @@ import torch.utils._pytree as pytree
# NB: The sym_* functions are used via getattr() and must be imported here.
from torch import SymBool, SymFloat, SymInt
from torch._C._functorch import get_unwrapped, is_batchedtensor
from torch._guards import ShapeGuard, SLoc, Source, TracingContext
from torch._logging import dtrace_structured, LazyString, structured, trace_structured
from torch._subclasses.meta_utils import is_sparse_any
@ -1146,7 +1147,10 @@ def _free_unbacked_symbols_with_path(
for attr in attrs:
sub = getattr(a, attr)
r.update(go(sub, path + (InnerTensorKey(attr),)))
elif isinstance(a, torch.Tensor):
elif isinstance(a, torch.Tensor) and is_batchedtensor(a):
unwrapped_tensor = get_unwrapped(a)
r.update(go(unwrapped_tensor, path))
elif isinstance(a, torch.Tensor) and not is_batchedtensor(a):
from torch._subclasses.fake_tensor import FakeTensor
assert isinstance(a, FakeTensor)