[Lint] replace [assigment] with [method-assign] for methods (#119706)

started with TODO fix from here https://github.com/pytorch/pytorch/blob/main/torch/testing/_internal/common_utils.py#L746
using ignore[method-assign] instead of ignore[assigment]

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119706
Approved by: https://github.com/Skylion007, https://github.com/malfet, https://github.com/kit1980
This commit is contained in:
SandishKumarHN
2024-02-13 02:06:00 +00:00
committed by PyTorch MergeBot
parent 9f8c84a399
commit db228f1efd
5 changed files with 9 additions and 10 deletions

View File

@ -88,7 +88,7 @@ def _load_storages(id, zip_reader, obj_bytes, serialized_storages, serialized_dt
importer = sys_importer
unpickler = PackageUnpickler(importer, io.BytesIO(obj_bytes))
unpickler.persistent_load = persistent_load # type: ignore[assignment]
unpickler.persistent_load = persistent_load # type: ignore[method-assign]
result = _deploy_objects[id] = unpickler.load()
return result

View File

@ -648,7 +648,7 @@ def _lobpcg(
bparams["ortho_use_drop"] = bparams.get("ortho_use_drop", False)
if not torch.jit.is_scripting():
LOBPCG.call_tracker = LOBPCG_call_tracker # type: ignore[assignment]
LOBPCG.call_tracker = LOBPCG_call_tracker # type: ignore[method-assign]
if len(A.shape) > 2:
N = int(torch.prod(torch.tensor(A.shape[:-2])))
@ -672,7 +672,7 @@ def _lobpcg(
bXret[i] = worker.X[:, :k]
if not torch.jit.is_scripting():
LOBPCG.call_tracker = LOBPCG_call_tracker_orig # type: ignore[assignment]
LOBPCG.call_tracker = LOBPCG_call_tracker_orig # type: ignore[method-assign]
return bE.reshape(A.shape[:-2] + (k,)), bXret.reshape(A.shape[:-2] + (m, k))
@ -684,7 +684,7 @@ def _lobpcg(
worker.run()
if not torch.jit.is_scripting():
LOBPCG.call_tracker = LOBPCG_call_tracker_orig # type: ignore[assignment]
LOBPCG.call_tracker = LOBPCG_call_tracker_orig # type: ignore[method-assign]
return worker.E[:k], worker.X[:, :k]

View File

@ -2161,7 +2161,7 @@ def _reduction(
computation_dtype, result_dtype = utils.reduction_dtypes(
a, output_dtype_kind, dtype
)
a = _maybe_convert_to_dtype(a, computation_dtype) # type: ignore[assignment]
a = _maybe_convert_to_dtype(a, computation_dtype) # type: ignore[method-assign]
result = prim(a, dims)
if keepdims:
output_shape = [a.shape[i] if i not in dims else 1 for i in range(a.ndim)]
@ -2480,7 +2480,7 @@ def mean(
nelem = 1 if a.ndim == 0 else reduce(operator.mul, (a.shape[i] for i in dims), 1)
result = true_divide(result, nelem)
result_dtype = a.dtype if dtype is None else dtype
result = _maybe_convert_to_dtype(result, result_dtype) # type: ignore[assignment]
result = _maybe_convert_to_dtype(result, result_dtype) # type: ignore[method-assign]
if out is not None:
assert isinstance(out, TensorLike)
out = _maybe_resize_out(out, result.shape)

View File

@ -287,7 +287,7 @@ def parse_args(*arg_descriptors: _ValueDescriptor):
arg_names = [None] * len(args) # type: ignore[list-item]
fn_name = None
args = [
_parse_arg(arg, arg_desc, arg_name, fn_name) # type: ignore[assignment]
_parse_arg(arg, arg_desc, arg_name, fn_name) # type: ignore[method-assign]
for arg, arg_desc, arg_name in zip(args, arg_descriptors, arg_names)
]
# only support _outputs in kwargs

View File

@ -743,9 +743,8 @@ def prof_func_call(*args, **kwargs):
def prof_meth_call(*args, **kwargs):
return prof_callable(meth_call, *args, **kwargs)
# TODO fix when https://github.com/python/mypy/issues/2427 is address
torch._C.ScriptFunction.__call__ = prof_func_call # type: ignore[assignment]
torch._C.ScriptMethod.__call__ = prof_meth_call # type: ignore[assignment]
torch._C.ScriptFunction.__call__ = prof_func_call # type: ignore[method-assign]
torch._C.ScriptMethod.__call__ = prof_meth_call # type: ignore[method-assign]
def _get_test_report_path():
# allow users to override the test file location. We need this