mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Add TorchFix to the CI (#113403)
Enable flake8 plugin for https://github.com/pytorch/test-infra/tree/main/tools/torchfix - TorchFix 0.1.1. Disable TorchFix codes that don't make sense for PyTorch itself. Update deprecated TorchVision APIs to make TorchFix pass. Pull Request resolved: https://github.com/pytorch/pytorch/pull/113403 Approved by: https://github.com/Skylion007, https://github.com/malfet
This commit is contained in:
committed by
PyTorch MergeBot
parent
e1c872e009
commit
d94bfaff2e
5
.flake8
5
.flake8
@ -2,7 +2,7 @@
|
|||||||
# NOTE: **Mirror any changes** to this file the [tool.ruff] config in pyproject.toml
|
# NOTE: **Mirror any changes** to this file the [tool.ruff] config in pyproject.toml
|
||||||
# before we can fully move to use ruff
|
# before we can fully move to use ruff
|
||||||
enable-extensions = G
|
enable-extensions = G
|
||||||
select = B,C,E,F,G,P,SIM1,T4,W,B9
|
select = B,C,E,F,G,P,SIM1,T4,W,B9,TOR0,TOR1,TOR2
|
||||||
max-line-length = 120
|
max-line-length = 120
|
||||||
# C408 ignored because we like the dict keyword argument syntax
|
# C408 ignored because we like the dict keyword argument syntax
|
||||||
# E501 is not flexible enough, we're using B950 instead
|
# E501 is not flexible enough, we're using B950 instead
|
||||||
@ -23,6 +23,9 @@ ignore =
|
|||||||
SIM105,SIM108,SIM110,SIM111,SIM113,SIM114,SIM115,SIM116,SIM117,SIM118,SIM119,SIM12,
|
SIM105,SIM108,SIM110,SIM111,SIM113,SIM114,SIM115,SIM116,SIM117,SIM118,SIM119,SIM12,
|
||||||
# flake8-simplify code styles
|
# flake8-simplify code styles
|
||||||
SIM102,SIM103,SIM106,SIM112,
|
SIM102,SIM103,SIM106,SIM112,
|
||||||
|
# TorchFix codes that don't make sense for PyTorch itself:
|
||||||
|
# removed and deprecated PyTorch functions.
|
||||||
|
TOR001,TOR101,
|
||||||
per-file-ignores =
|
per-file-ignores =
|
||||||
__init__.py: F401
|
__init__.py: F401
|
||||||
torch/utils/cpp_extension.py: B950
|
torch/utils/cpp_extension.py: B950
|
||||||
|
@ -48,6 +48,7 @@ init_command = [
|
|||||||
'mccabe==0.7.0',
|
'mccabe==0.7.0',
|
||||||
'pycodestyle==2.10.0',
|
'pycodestyle==2.10.0',
|
||||||
'pyflakes==3.0.1',
|
'pyflakes==3.0.1',
|
||||||
|
'torchfix==0.1.1',
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
|
@ -1,23 +1,21 @@
|
|||||||
import torch
|
import torch
|
||||||
import torchvision
|
from torchvision import models
|
||||||
|
|
||||||
print(torch.version.__version__)
|
print(torch.version.__version__)
|
||||||
|
|
||||||
resnet18 = torchvision.models.resnet18(pretrained=True)
|
resnet18 = models.resnet18(weights=models.ResNet18_Weights.IMAGENET1K_V1)
|
||||||
resnet18.eval()
|
resnet18.eval()
|
||||||
resnet18_traced = torch.jit.trace(resnet18, torch.rand(1, 3, 224, 224)).save(
|
resnet18_traced = torch.jit.trace(resnet18, torch.rand(1, 3, 224, 224)).save(
|
||||||
"app/src/main/assets/resnet18.pt"
|
"app/src/main/assets/resnet18.pt"
|
||||||
)
|
)
|
||||||
|
|
||||||
resnet50 = torchvision.models.resnet50(pretrained=True)
|
resnet50 = models.resnet50(weights=models.ResNet50_Weights.IMAGENET1K_V1)
|
||||||
resnet50.eval()
|
resnet50.eval()
|
||||||
torch.jit.trace(resnet50, torch.rand(1, 3, 224, 224)).save(
|
torch.jit.trace(resnet50, torch.rand(1, 3, 224, 224)).save(
|
||||||
"app/src/main/assets/resnet50.pt"
|
"app/src/main/assets/resnet50.pt"
|
||||||
)
|
)
|
||||||
|
|
||||||
mobilenet2q = torchvision.models.quantization.mobilenet_v2(
|
mobilenet2q = models.quantization.mobilenet_v2(pretrained=True, quantize=True)
|
||||||
pretrained=True, quantize=True
|
|
||||||
)
|
|
||||||
mobilenet2q.eval()
|
mobilenet2q.eval()
|
||||||
torch.jit.trace(mobilenet2q, torch.rand(1, 3, 224, 224)).save(
|
torch.jit.trace(mobilenet2q, torch.rand(1, 3, 224, 224)).save(
|
||||||
"app/src/main/assets/mobilenet2q.pt"
|
"app/src/main/assets/mobilenet2q.pt"
|
||||||
|
@ -5,11 +5,11 @@ build script to create a tailored build which only contains these used ops.
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torchvision
|
|
||||||
import yaml
|
import yaml
|
||||||
|
from torchvision import models
|
||||||
|
|
||||||
# Download and trace the model.
|
# Download and trace the model.
|
||||||
model = torchvision.models.mobilenet_v2(pretrained=True)
|
model = models.mobilenet_v2(weights=models.MobileNet_V2_Weights.IMAGENET1K_V1)
|
||||||
model.eval()
|
model.eval()
|
||||||
example = torch.rand(1, 3, 224, 224)
|
example = torch.rand(1, 3, 224, 224)
|
||||||
# TODO: create script model with `torch.jit.script`
|
# TODO: create script model with `torch.jit.script`
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
import torch
|
import torch
|
||||||
import torchvision
|
|
||||||
|
|
||||||
from torch.backends._coreml.preprocess import CompileSpec, CoreMLComputeUnit, TensorSpec
|
from torch.backends._coreml.preprocess import CompileSpec, CoreMLComputeUnit, TensorSpec
|
||||||
|
from torchvision import models
|
||||||
|
|
||||||
|
|
||||||
def mobilenetv2_spec():
|
def mobilenetv2_spec():
|
||||||
@ -24,7 +24,7 @@ def mobilenetv2_spec():
|
|||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
model = torchvision.models.mobilenet_v2(pretrained=True)
|
model = models.mobilenet_v2(weights=models.MobileNet_V2_Weights.IMAGENET1K_V1)
|
||||||
model.eval()
|
model.eval()
|
||||||
example = torch.rand(1, 3, 224, 224)
|
example = torch.rand(1, 3, 224, 224)
|
||||||
model = torch.jit.trace(model, example)
|
model = torch.jit.trace(model, example)
|
||||||
|
@ -1,8 +1,8 @@
|
|||||||
import torch
|
import torch
|
||||||
import torchvision
|
|
||||||
from torch.utils.mobile_optimizer import optimize_for_mobile
|
from torch.utils.mobile_optimizer import optimize_for_mobile
|
||||||
|
from torchvision import models
|
||||||
|
|
||||||
model = torchvision.models.mobilenet_v2(pretrained=True)
|
model = models.mobilenet_v2(weights=models.MobileNet_V2_Weights.IMAGENET1K_V1)
|
||||||
model.eval()
|
model.eval()
|
||||||
example = torch.rand(1, 3, 224, 224)
|
example = torch.rand(1, 3, 224, 224)
|
||||||
traced_script_module = torch.jit.trace(model, example)
|
traced_script_module = torch.jit.trace(model, example)
|
||||||
|
@ -1,8 +1,8 @@
|
|||||||
import torch
|
import torch
|
||||||
import torchvision
|
|
||||||
import yaml
|
import yaml
|
||||||
|
from torchvision import models
|
||||||
|
|
||||||
model = torchvision.models.mobilenet_v2(pretrained=True)
|
model = models.mobilenet_v2(weights=models.MobileNet_V2_Weights.IMAGENET1K_V1)
|
||||||
model.eval()
|
model.eval()
|
||||||
example = torch.rand(1, 3, 224, 224)
|
example = torch.rand(1, 3, 224, 224)
|
||||||
traced_script_module = torch.jit.trace(model, example)
|
traced_script_module = torch.jit.trace(model, example)
|
||||||
|
@ -8,3 +8,4 @@ flake8-pyi==20.5.0
|
|||||||
mccabe==0.6.1
|
mccabe==0.6.1
|
||||||
pycodestyle==2.6.0
|
pycodestyle==2.6.0
|
||||||
pyflakes==2.2.0
|
pyflakes==2.2.0
|
||||||
|
torchfix==0.1.1
|
||||||
|
Reference in New Issue
Block a user