mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Tensor construction codemod(raw_mutable_data) (#16373)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/16373 motivation: https://github.com/pytorch/pytorch/pull/12407 This is a manual diff. most of the fixes should be: ``` auto* Y = Output(0); Y->Resize(dims); Y->raw_mutable_data(dtype); ``` --> ``` auto* Y = Output(0, dims, at::dtype(dtype)); ``` But there might be other cases. Reviewed By: dzhulgakov Differential Revision: D13725460 fbshipit-source-id: 649a4b0e42f62cda1a60171dd9fa3e440dc9dca1
This commit is contained in:
committed by
Facebook Github Bot
parent
7b0ef31780
commit
d73c830e23
@ -50,7 +50,6 @@ template <>
|
||||
bool BooleanMaskOp<CPUContext>::RunOnDevice() {
|
||||
auto& data = Input(0);
|
||||
auto& mask = Input(1);
|
||||
auto* dataOut = Output(0);
|
||||
CAFFE_ENFORCE(data.dim() >= 1);
|
||||
CAFFE_ENFORCE_EQ(mask.dim(), 1);
|
||||
CAFFE_ENFORCE(data.size(0) == mask.size(0));
|
||||
@ -66,7 +65,7 @@ bool BooleanMaskOp<CPUContext>::RunOnDevice() {
|
||||
std::vector<int64_t> outShape;
|
||||
outShape.push_back(numOutputs);
|
||||
outShape.insert(outShape.end(), data.sizes().begin() + 1, data.sizes().end());
|
||||
dataOut->Resize(outShape);
|
||||
auto* dataOut = Output(0, outShape, at::dtype(data.dtype()));
|
||||
auto* outPtr = (char*)dataOut->raw_mutable_data(data.dtype());
|
||||
|
||||
int64_t* out_vec = nullptr;
|
||||
|
@ -31,7 +31,6 @@ class BooleanMaskOp<CUDAContext> final : public Operator<CUDAContext> {
|
||||
bool RunOnDevice() override {
|
||||
const auto& src = Input(0);
|
||||
const auto& mask = Input(1);
|
||||
auto* dest = Output(0);
|
||||
|
||||
CAFFE_ENFORCE(src.dim() >= 1);
|
||||
CAFFE_ENFORCE_EQ(mask.dim(), 1);
|
||||
@ -80,8 +79,8 @@ class BooleanMaskOp<CUDAContext> final : public Operator<CUDAContext> {
|
||||
indices_.Resize(numOfOutput);
|
||||
std::vector<int64_t> dims = src.sizes().vec();
|
||||
dims[0] = numOfOutput;
|
||||
dest->Resize(dims);
|
||||
auto* destData = (uint8_t*)dest->raw_mutable_data(src.meta());
|
||||
auto* dest = Output(0, dims, at::dtype(src.dtype()));
|
||||
auto* destData = (uint8_t*)dest->raw_mutable_data(src.dtype());
|
||||
const auto* srcData = (uint8_t*)src.raw_data();
|
||||
if (OutputSize() == 2) {
|
||||
|
||||
|
@ -8,11 +8,10 @@ template <>
|
||||
bool BooleanUnmaskOp<CPUContext>::RunOnDevice() {
|
||||
int maskSize = Input(0).numel();
|
||||
int numMasks = InputSize() / 2;
|
||||
auto& valueMeta = Input(1).dtype();
|
||||
auto& valueDtype = Input(1).dtype();
|
||||
|
||||
auto* valuesOut = Output(0);
|
||||
valuesOut->Resize(maskSize);
|
||||
auto* valuesOutPtr = (char*)valuesOut->raw_mutable_data(valueMeta);
|
||||
auto* valuesOut = Output(0, maskSize, at::dtype(valueDtype));
|
||||
auto* valuesOutPtr = (char*)valuesOut->raw_mutable_data(valueDtype);
|
||||
|
||||
std::vector<int> nextValueIndices(numMasks, 0);
|
||||
for (int maskOffset = 0; maskOffset < maskSize; ++maskOffset) {
|
||||
@ -30,9 +29,9 @@ bool BooleanUnmaskOp<CPUContext>::RunOnDevice() {
|
||||
if (maskPtr[maskOffset]) {
|
||||
auto& valueIndex = nextValueIndices[maskIndex];
|
||||
CAFFE_ENFORCE_LT(valueIndex, values.numel());
|
||||
auto* src = valuesPtr + (valueIndex++) * valueMeta.itemsize();
|
||||
auto* dst = valuesOutPtr + maskOffset * valueMeta.itemsize();
|
||||
std::copy(src, src + valueMeta.itemsize(), dst);
|
||||
auto* src = valuesPtr + (valueIndex++) * valueDtype.itemsize();
|
||||
auto* dst = valuesOutPtr + maskOffset * valueDtype.itemsize();
|
||||
std::copy(src, src + valueDtype.itemsize(), dst);
|
||||
maskFound = true;
|
||||
break;
|
||||
}
|
||||
|
@ -54,11 +54,10 @@ class BooleanUnmaskOp<CUDAContext> final : public Operator<CUDAContext> {
|
||||
bool RunOnDevice() override {
|
||||
int maskSize = Input(0).numel();
|
||||
int numMasks = InputSize() / 2;
|
||||
const auto& meta = Input(1).meta();
|
||||
const auto& dtype = Input(1).dtype();
|
||||
|
||||
auto* out = Output(0);
|
||||
out->Resize(maskSize);
|
||||
auto* dest = (char*)out->raw_mutable_data(meta);
|
||||
auto* out = Output(0, maskSize, at::dtype(dtype));
|
||||
auto* dest = (char*)out->raw_mutable_data(dtype);
|
||||
|
||||
ReinitializeTensor(&hostMasks_, {numMasks}, at::dtype<bool*>().device(CPU));
|
||||
auto* hostMasksData = hostMasks_.mutable_data<bool*>();
|
||||
@ -101,7 +100,7 @@ class BooleanUnmaskOp<CUDAContext> final : public Operator<CUDAContext> {
|
||||
context_.cuda_stream()>>>(
|
||||
numMasks,
|
||||
maskSize,
|
||||
meta.itemsize(),
|
||||
dtype.itemsize(),
|
||||
indicesData,
|
||||
values_.data<char*>(),
|
||||
valueSizesData,
|
||||
|
@ -177,12 +177,11 @@ bool SplitOp<Context>::RunOnDevice() {
|
||||
}
|
||||
size_t input_offset = 0;
|
||||
for (int i = 0; i < OutputSize(); ++i) {
|
||||
auto* output = Output(i);
|
||||
auto axis_dim = add_axis_ ? 1 : axis_data[i];
|
||||
if (!add_axis_) {
|
||||
output_dims[canonical_axis] = axis_data[i];
|
||||
}
|
||||
output->Resize(output_dims);
|
||||
auto* output = Output(i, output_dims, at::dtype(input.dtype()));
|
||||
math::CopyMatrix<Context>(
|
||||
input.itemsize(),
|
||||
before,
|
||||
@ -223,12 +222,11 @@ bool SplitByLengthsOp<Context>::RunOnDevice() {
|
||||
int after = input.size_from_dim(canonical_axis + 1);
|
||||
size_t input_offset = 0;
|
||||
for (int i = 0; i < OutputSize(); ++i) {
|
||||
auto* output = Output(i);
|
||||
const auto* axis_offset = axis_data + length_length / OutputSize() * i;
|
||||
auto axis_dim = std::accumulate(
|
||||
axis_offset, axis_offset + length_length / OutputSize(), 0);
|
||||
output_dims[canonical_axis] = axis_dim;
|
||||
output->Resize(output_dims);
|
||||
auto* output = Output(i, output_dims, at::dtype(input.dtype()));
|
||||
math::CopyMatrix<Context>(
|
||||
input.itemsize(),
|
||||
before,
|
||||
@ -246,8 +244,6 @@ bool SplitByLengthsOp<Context>::RunOnDevice() {
|
||||
|
||||
template <class Context>
|
||||
bool ConcatOp<Context>::RunOnDevice() {
|
||||
auto* output = Output(0);
|
||||
|
||||
// We can override default options(Context::GetDeviceType())
|
||||
// by explictly passing in device type we want
|
||||
Tensor* split = Output(
|
||||
@ -314,7 +310,7 @@ bool ConcatOp<Context>::RunOnDevice() {
|
||||
} else {
|
||||
output_dims[canonical_axis] = output_channels;
|
||||
}
|
||||
output->Resize(output_dims);
|
||||
auto* output = Output(0, output_dims, at::dtype(input_zero.dtype()));
|
||||
size_t output_offset = 0;
|
||||
for (int i = 0; i < InputSize(); ++i) {
|
||||
auto& input = Input(i);
|
||||
|
@ -23,9 +23,8 @@ bool ConditionalOp<CPUContext>::RunOnDevice() {
|
||||
CAFFE_ENFORCE(innerSize * dataF.dtype().itemsize() == innerSizeBytes);
|
||||
|
||||
// initialize output shape
|
||||
auto* dataOut = Output(0);
|
||||
const auto* condPtr = condition.template data<bool>();
|
||||
dataOut->ResizeLike(dataT);
|
||||
auto* dataOut = Output(0, dataT.sizes(), at::dtype(dataT.dtype()));
|
||||
auto* outPtr = (char*)dataOut->raw_mutable_data(dataT.dtype());
|
||||
|
||||
// perform conditional op along first dimension
|
||||
|
@ -13,14 +13,14 @@ class CopyOnDeviceLikeOp<CUDAContext, CUDAContext, CUDAContext>
|
||||
|
||||
bool RunOnDevice() override {
|
||||
auto& input = Input(0);
|
||||
auto* output = OperatorBase::Output<Tensor>(0, CUDA);
|
||||
auto* output = OperatorBase::OutputTensor(
|
||||
0, input.sizes(), at::dtype(input.dtype()).device(CUDA));
|
||||
CUDAContext context(GetGPUIDForPointer(Input(1).raw_data()));
|
||||
output->ResizeLike(input);
|
||||
context.template CopyItems<CUDAContext, CUDAContext>(
|
||||
input.meta(),
|
||||
input.dtype(),
|
||||
input.numel(),
|
||||
input.raw_data(),
|
||||
output->raw_mutable_data(input.meta()));
|
||||
output->raw_mutable_data(input.dtype()));
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
@ -14,9 +14,10 @@ class CopyOp : public Operator<Context> {
|
||||
|
||||
bool RunOnDevice() override {
|
||||
auto& input = this->template Input<Tensor>(0, SrcContext::GetDeviceType());
|
||||
auto* output =
|
||||
this->template Output<Tensor>(0, DstContext::GetDeviceType());
|
||||
output->ResizeLike(input);
|
||||
auto* output = this->OutputTensor(
|
||||
0,
|
||||
input.sizes(),
|
||||
at::dtype(input.dtype()).device(DstContext::GetDeviceType()));
|
||||
this->context_.template CopyItems<SrcContext, DstContext>(
|
||||
input.dtype(),
|
||||
input.numel(),
|
||||
|
@ -94,13 +94,16 @@ class ViterbiPathOp : public Operator<CPUContext> {
|
||||
auto block_size = predictions.numel() / predictions.size(0);
|
||||
auto block_bytesize =
|
||||
predictions.size_from_dim(1) * predictions.dtype().itemsize();
|
||||
Tensor backpointers(CPU);
|
||||
backpointers.ResizeLike(predictions);
|
||||
Tensor backpointers =
|
||||
caffe2::empty(predictions.sizes(), at::dtype<int32_t>().device(CPU));
|
||||
|
||||
Tensor trellis(std::vector<int64_t>{block_size}, CPU);
|
||||
Tensor dpMat(CPU);
|
||||
dpMat.ResizeLike(transitions);
|
||||
Tensor dpMax(std::vector<int64_t>{block_size}, CPU);
|
||||
Tensor trellis = caffe2::empty(
|
||||
std::vector<int64_t>{block_size},
|
||||
at::dtype(predictions.dtype()).device(CPU));
|
||||
Tensor dpMat =
|
||||
caffe2::empty(transitions.sizes(), at::dtype<float>().device(CPU));
|
||||
Tensor dpMax = caffe2::empty(
|
||||
std::vector<int64_t>{block_size}, at::dtype<float>().device(CPU));
|
||||
GatherRow(predictions, 0, block_size, block_bytesize, &trellis);
|
||||
for (auto i = 1; i < seqLen; i++) {
|
||||
AddColToMat(transitions, trellis, &dpMat);
|
||||
@ -120,8 +123,10 @@ class ViterbiPathOp : public Operator<CPUContext> {
|
||||
&context_);
|
||||
}
|
||||
|
||||
Tensor tMax(std::vector<int64_t>{1}, CPU);
|
||||
Tensor tArgMax(std::vector<int64_t>{1}, CPU);
|
||||
Tensor tMax =
|
||||
caffe2::empty(std::vector<int64_t>{1}, at::dtype<float>().device(CPU));
|
||||
Tensor tArgMax = caffe2::empty(
|
||||
std::vector<int64_t>{1}, at::dtype<int32_t>().device(CPU));
|
||||
ColwiseMaxAndArg(
|
||||
trellis.template data<float>(),
|
||||
1,
|
||||
@ -131,7 +136,9 @@ class ViterbiPathOp : public Operator<CPUContext> {
|
||||
|
||||
std::vector<int32_t> viterbiVec;
|
||||
viterbiVec.push_back(tArgMax.template data<int32_t>()[0]);
|
||||
Tensor bpEntry(std::vector<int64_t>{block_size}, CPU);
|
||||
Tensor bpEntry = caffe2::empty(
|
||||
std::vector<int64_t>{block_size},
|
||||
at::dtype(backpointers.dtype()).device(CPU));
|
||||
block_bytesize =
|
||||
backpointers.size_from_dim(1) * backpointers.dtype().itemsize();
|
||||
for (auto i = seqLen - 1; i > 0; i--) {
|
||||
@ -152,14 +159,14 @@ class SwapBestPathOp : public Operator<CPUContext> {
|
||||
: Operator(std::forward<Args>(args)...) {}
|
||||
bool RunOnDevice() override {
|
||||
auto& data = Input(0);
|
||||
auto& newBestIdicies = Input(1);
|
||||
auto& newBestIndicies = Input(1);
|
||||
|
||||
CAFFE_ENFORCE(
|
||||
data.dim() == 2 && newBestIdicies.dim() == 1,
|
||||
data.dim() == 2 && newBestIndicies.dim() == 1,
|
||||
"predictions should be a 2D matrix and bestPath should be 1D vector");
|
||||
|
||||
CAFFE_ENFORCE(
|
||||
data.size(0) == newBestIdicies.size(0),
|
||||
data.size(0) == newBestIndicies.size(0),
|
||||
"predictions and bestPath dimensions not matching");
|
||||
|
||||
auto* updatedData = Output(0, data.sizes(), at::dtype<float>());
|
||||
@ -167,10 +174,10 @@ class SwapBestPathOp : public Operator<CPUContext> {
|
||||
context_.CopyItemsSameDevice(
|
||||
data.dtype(), data.numel(), data.template data<float>(), outData);
|
||||
|
||||
Tensor bestScores(CPU);
|
||||
bestScores.ResizeLike(newBestIdicies);
|
||||
Tensor oldBestIndices(CPU);
|
||||
oldBestIndices.ResizeLike(newBestIdicies);
|
||||
Tensor bestScores =
|
||||
caffe2::empty(newBestIndicies.sizes(), at::dtype<float>().device(CPU));
|
||||
Tensor oldBestIndices = caffe2::empty(
|
||||
newBestIndicies.sizes(), at::dtype<int32_t>().device(CPU));
|
||||
|
||||
ColwiseMaxAndArg(
|
||||
data.template data<float>(),
|
||||
@ -182,7 +189,7 @@ class SwapBestPathOp : public Operator<CPUContext> {
|
||||
auto block_size = data.numel() / data.size(0);
|
||||
|
||||
const int32_t* oldBestIdx = oldBestIndices.template data<int32_t>();
|
||||
const int32_t* newIdx = newBestIdicies.template data<int32_t>();
|
||||
const int32_t* newIdx = newBestIndicies.template data<int32_t>();
|
||||
|
||||
for (auto i = 0; i < data.dim32(0); i++) {
|
||||
std::swap(
|
||||
|
@ -319,7 +319,11 @@ class PackRecordsOp : public Operator<CPUContext> {
|
||||
Output(0)->Resize(walker.size());
|
||||
|
||||
// Output(0)->raw_mutable_data(TypeMeta::Make<SharedTensorVectorPtr>()));
|
||||
auto* dst = Output(0)->template mutable_data<SharedTensorVectorPtr>();
|
||||
auto* dst = Output(
|
||||
0,
|
||||
{static_cast<int64_t>(walker.size())},
|
||||
at::dtype<SharedTensorVectorPtr>())
|
||||
->template mutable_data<SharedTensorVectorPtr>();
|
||||
|
||||
for (int batchId = 0; batchId < walker.size(); ++batchId) {
|
||||
dst[batchId] = std::make_shared<std::vector<TensorCPU>>();
|
||||
@ -395,8 +399,8 @@ class UnPackRecordsOp : public Operator<CPUContext> {
|
||||
// Resize to the final output size
|
||||
std::vector<void*> destinations(numTensors);
|
||||
for (int i = 0; i < numTensors; ++i) {
|
||||
Output(i)->Resize(outputDims[i]);
|
||||
destinations[i] = Output(i)->raw_mutable_data(*metas[i]);
|
||||
auto* output = Output(i, {outputDims[i]}, at::dtype(*metas[i]));
|
||||
destinations[i] = output->raw_mutable_data(*metas[i]);
|
||||
}
|
||||
|
||||
for (int i = 0; i < numRows; ++i) {
|
||||
@ -517,10 +521,9 @@ class ReadNextBatchOp : public Operator<CPUContext> {
|
||||
auto innerSize = in.size_from_dim(1);
|
||||
outDim = in.sizes().vec();
|
||||
outDim[0] = size;
|
||||
auto* out = Output(i);
|
||||
out->Resize(outDim);
|
||||
void* src =
|
||||
(char*)in.raw_data() + offset * innerSize * in.dtype().itemsize();
|
||||
auto* out = Output(i, {outDim}, at::dtype(in.dtype()));
|
||||
void* dst = out->raw_mutable_data(in.dtype()); // create the tensor
|
||||
if (out->numel() == 0) {
|
||||
continue;
|
||||
@ -725,8 +728,7 @@ class ReadRandomBatchOp : public Operator<CPUContext> {
|
||||
idx++;
|
||||
}
|
||||
idx = idxbegin; // reSet
|
||||
auto* out = Output(i);
|
||||
out->Resize(outDim);
|
||||
auto* out = Output(i, {outDim}, at::dtype(in.dtype()));
|
||||
if (out->numel() == 0) {
|
||||
continue;
|
||||
}
|
||||
@ -773,13 +775,13 @@ class AppendOp final : public Operator<Context> {
|
||||
bool RunOnDevice() override {
|
||||
auto& a = Input(0);
|
||||
auto& b = Input(1);
|
||||
auto* c = Output(0);
|
||||
auto* c = Output(0, a.sizes(), at::dtype(a.dtype()));
|
||||
CAFFE_ENFORCE(b.dim() >= 1);
|
||||
if (a.numel() == 0 && a.size(0) == 0) {
|
||||
c->CopyFrom(b);
|
||||
return true;
|
||||
}
|
||||
CAFFE_ENFORCE(&a == c, "First argument must be in-place.");
|
||||
CAFFE_ENFORCE(IsInputOutputAlias(0, 0), "First argument must be in-place.");
|
||||
CAFFE_ENFORCE(c->dim() == b.dim());
|
||||
CAFFE_ENFORCE(b.dim() == c->dim());
|
||||
CAFFE_ENFORCE(a.dtype() == b.dtype());
|
||||
@ -813,13 +815,14 @@ class AtomicAppendOp final : public Operator<Context> {
|
||||
for (int i = 0; i < numFields; ++i) {
|
||||
auto& a = Input(1 + i);
|
||||
auto& b = Input(1 + i + numFields);
|
||||
auto* c = Output(i);
|
||||
auto* c = Output(i, a.sizes(), at::dtype(a.dtype()));
|
||||
CAFFE_ENFORCE(b.dim() >= 1);
|
||||
if (a.numel() == 0) {
|
||||
continue;
|
||||
}
|
||||
CAFFE_ENFORCE(
|
||||
(void*)&a == (void*)c, "Appended-to arguments must be in-place.");
|
||||
IsInputOutputAlias(1 + i, i),
|
||||
"Appended-to arguments must be in-place.");
|
||||
CAFFE_ENFORCE(c->dim() == b.dim());
|
||||
CAFFE_ENFORCE(b.dim() == c->dim());
|
||||
CAFFE_ENFORCE(a.dtype() == b.dtype());
|
||||
@ -832,7 +835,8 @@ class AtomicAppendOp final : public Operator<Context> {
|
||||
for (int i = 0; i < numFields; ++i) {
|
||||
auto& a = Input(1 + i);
|
||||
auto& b = Input(1 + i + numFields);
|
||||
auto* c = Output(i);
|
||||
// Can we create Tensor with numel() == 0?
|
||||
auto* c = Output(i, a.sizes(), at::dtype(a.dtype()));
|
||||
if (a.numel() == 0 && a.size(0) == 0) {
|
||||
c->CopyFrom(b);
|
||||
continue;
|
||||
@ -892,7 +896,6 @@ class ConcatTensorVectorOp final : public Operator<Context> {
|
||||
const TensorVectorPtr& tensorVector =
|
||||
OperatorBase::Input<TensorVectorPtr>(TENSOR_VECTOR);
|
||||
|
||||
auto* tensor = Output(TENSOR);
|
||||
CAFFE_ENFORCE(!tensorVector->empty());
|
||||
|
||||
vector<int64_t> outputDims(tensorVector->at(0).sizes().vec());
|
||||
@ -906,7 +909,8 @@ class ConcatTensorVectorOp final : public Operator<Context> {
|
||||
outputDims[0] += tensorVector->at(i).sizes()[0];
|
||||
}
|
||||
|
||||
tensor->Resize(outputDims);
|
||||
auto* tensor =
|
||||
Output(TENSOR, outputDims, at::dtype(tensorVector->at(0).dtype()));
|
||||
int64_t offset = 0;
|
||||
auto* dst = (char*)tensor->raw_mutable_data(tensorVector->at(0).dtype());
|
||||
|
||||
@ -1021,6 +1025,8 @@ class TrimDatasetOp : public Operator<CPUContext> {
|
||||
// trim each column to the offset
|
||||
for (int col = 0; col < walker.fields().size(); ++col) {
|
||||
auto newOuterSize = walker.fields().at(col).offset();
|
||||
// TODO: Remove call to Output(col) since it
|
||||
// returns partially initialized Tensor
|
||||
Output(col)->ShrinkTo(newOuterSize);
|
||||
}
|
||||
return true;
|
||||
|
@ -33,9 +33,10 @@ class EnsureCPUOutputOp : public Operator<Context> {
|
||||
template <class InputContext>
|
||||
bool CopyWithContext() {
|
||||
// Output is always on CPU
|
||||
auto* output = this->template Output<Tensor>(0, CPU);
|
||||
auto& input = this->template Input<Tensor>(0, InputContext::GetDeviceType());
|
||||
output->ResizeLike(input);
|
||||
// TODO: is it possible to use OutputTensorCopyFrom?
|
||||
auto* output = this->OutputTensor(
|
||||
0, input.sizes(), at::dtype(input.dtype()).device(CPU));
|
||||
context_.CopyItemsToCPU(
|
||||
input.dtype(),
|
||||
input.numel(),
|
||||
|
@ -17,10 +17,12 @@ class FlattenOp : public Operator<Context> {
|
||||
|
||||
bool RunOnDevice() override {
|
||||
auto& input = Input(0);
|
||||
auto* output = Output(0);
|
||||
CAFFE_ENFORCE_GE(
|
||||
input.dim(), axis_, "The rank of the tensor must be >= axis.");
|
||||
output->Resize(input.size_to_dim(axis_), input.size_from_dim(axis_));
|
||||
auto* output = Output(
|
||||
0,
|
||||
{input.size_to_dim(axis_), input.size_from_dim(axis_)},
|
||||
at::dtype(input.dtype()));
|
||||
context_.CopyItemsSameDevice(
|
||||
input.dtype(),
|
||||
input.numel(),
|
||||
|
@ -66,9 +66,8 @@ class GatherRangesToDenseOp final : public Operator<Context> {
|
||||
vector<int64_t> outputDims{batchSize, 0};
|
||||
vector<char*> outputRawData;
|
||||
for (int i = 0; i < OutputSize(); ++i) {
|
||||
auto* output = Output(i);
|
||||
outputDims[1] = lengths_[i];
|
||||
output->Resize(outputDims);
|
||||
auto* output = Output(i, outputDims, at::dtype(data.dtype()));
|
||||
char* ptr = static_cast<char*>(output->raw_mutable_data(data.dtype()));
|
||||
memset(ptr, 0, output->nbytes());
|
||||
outputRawData.push_back(ptr);
|
||||
|
@ -6,7 +6,6 @@ template <>
|
||||
bool LengthsTileOp<CPUContext>::RunOnDevice() {
|
||||
auto& data = Input(DATA);
|
||||
auto& lengths = Input(LENGTHS);
|
||||
auto* output = Output(0);
|
||||
|
||||
CAFFE_ENFORCE_EQ(lengths.dim(), 1, "LENGTHS must be 1-D");
|
||||
CAFFE_ENFORCE_GE(data.dim(), 1, "DATA should be at least 1-D");
|
||||
@ -26,7 +25,7 @@ bool LengthsTileOp<CPUContext>::RunOnDevice() {
|
||||
|
||||
auto shape = data.sizes().vec();
|
||||
shape[0] = total_length;
|
||||
output->Resize(shape);
|
||||
auto* output = Output(0, shape, at::dtype(data.dtype()));
|
||||
|
||||
auto block_bytesize = data.size_from_dim(1) * data.dtype().itemsize();
|
||||
auto src = static_cast<const char*>(data.raw_data());
|
||||
|
@ -116,7 +116,6 @@ template <typename T, typename Data_T>
|
||||
bool UnpackSegmentsOp<CPUContext>::DoRunWithType2() {
|
||||
const auto& data = Input(DATA);
|
||||
const auto& lengths = Input(LENGTHS);
|
||||
auto* output = Output(0);
|
||||
|
||||
CAFFE_ENFORCE_GE(data.dim(), 2, "DATA should be at least 2-D");
|
||||
CAFFE_ENFORCE_EQ(lengths.dim(), 1, "LENGTH should be 1-D");
|
||||
@ -135,7 +134,7 @@ bool UnpackSegmentsOp<CPUContext>::DoRunWithType2() {
|
||||
shape[0], lengths.size(0), "LENGTH should match DATA in dimension 0");
|
||||
shape.erase(shape.begin());
|
||||
shape[0] = total_l;
|
||||
output->Resize(shape);
|
||||
auto* output = Output(0, shape, at::dtype(data.dtype()));
|
||||
// create output tensor
|
||||
auto* out = static_cast<char*>(output->raw_mutable_data(data.dtype()));
|
||||
if (!(data.size(0) && data.size(1))) {
|
||||
|
@ -179,11 +179,6 @@ bool PackSegmentsOp<CUDAContext>::DoRunWithType2() {
|
||||
int64_t num_seq = lengths.dim(0);
|
||||
const Data_T* data_ptr = data.data<Data_T>();
|
||||
const T* lengths_ptr = lengths.data<T>();
|
||||
auto* out = Output(0);
|
||||
Tensor* presence_mask = nullptr;
|
||||
if (return_presence_mask_) {
|
||||
presence_mask = Output(1);
|
||||
}
|
||||
|
||||
CAFFE_ENFORCE_GE(data.dim(), 1, "DATA should be at least 1-D");
|
||||
CAFFE_ENFORCE_EQ(lengths.dim(), 1, "LENGTH should be 1-D");
|
||||
@ -214,7 +209,7 @@ bool PackSegmentsOp<CUDAContext>::DoRunWithType2() {
|
||||
bool* presence_mask_data = nullptr;
|
||||
if (return_presence_mask_) {
|
||||
std::vector<int64_t> presence_shape{lengths.numel(), max_length};
|
||||
presence_mask->Resize(presence_shape);
|
||||
auto* presence_mask = Output(1, presence_shape, at::dtype<bool>());
|
||||
presence_mask_data = presence_mask->template mutable_data<bool>();
|
||||
}
|
||||
|
||||
@ -222,8 +217,8 @@ bool PackSegmentsOp<CUDAContext>::DoRunWithType2() {
|
||||
auto shape = data.sizes().vec(); // Shape of out is batch_size x max_len x ...
|
||||
shape[0] = max_length;
|
||||
shape.insert(shape.begin(), lengths.numel());
|
||||
out->Resize(shape);
|
||||
Data_T* out_ptr = static_cast<Data_T*>(out->raw_mutable_data(data.meta()));
|
||||
auto* out = Output(0, shape, at::dtype(data.dtype()));
|
||||
Data_T* out_ptr = static_cast<Data_T*>(out->raw_mutable_data(data.dtype()));
|
||||
|
||||
// Return empty out (with the proper shape) if first dim is 0.
|
||||
if (!data.dim(0)) {
|
||||
@ -265,7 +260,6 @@ bool UnpackSegmentsOp<CUDAContext>::DoRunWithType2() {
|
||||
int64_t num_seq = lengths.dim(0);
|
||||
const Data_T* data_ptr = data.data<Data_T>();
|
||||
const T* lengths_ptr = lengths.data<T>();
|
||||
auto* out = Output(0);
|
||||
|
||||
CAFFE_ENFORCE_GE(data.dim(), 1, "DATA should be at least 1-D");
|
||||
CAFFE_ENFORCE_EQ(lengths.dim(), 1, "LENGTH should be 1-D");
|
||||
@ -315,8 +309,8 @@ bool UnpackSegmentsOp<CUDAContext>::DoRunWithType2() {
|
||||
shape[0], lengths.dim(0), "LENGTH should match DATA in dimension 0");
|
||||
shape.erase(shape.begin());
|
||||
shape[0] = num_cell;
|
||||
out->Resize(shape);
|
||||
Data_T* out_ptr = static_cast<Data_T*>(out->raw_mutable_data(data.meta()));
|
||||
auto* out = Output(0, shape, at::dtype(data.dtype()));
|
||||
Data_T* out_ptr = static_cast<Data_T*>(out->raw_mutable_data(data.dtype()));
|
||||
|
||||
// Return empty out (with the proper shape) if any of the dimensions is 0.
|
||||
if (data.dim(0) == 0 || data.dim(1) == 0) {
|
||||
|
@ -60,8 +60,7 @@ class GatherByKeyOp : public Operator<CPUContext> {
|
||||
}
|
||||
CAFFE_ENFORCE_EQ(keysTensor.numel(), totalSize);
|
||||
|
||||
auto* outTensor = Output(0);
|
||||
outTensor->Resize(outShape);
|
||||
auto* outTensor = Output(0, outShape, at::dtype(meta));
|
||||
auto* outData = static_cast<char*>(outTensor->raw_mutable_data(meta));
|
||||
const auto blockSize = outTensor->size_from_dim(1);
|
||||
|
||||
@ -164,9 +163,8 @@ class PartitionOpBase : public Operator<CPUContext> {
|
||||
input.sizes().begin() + main_input.dim() - 1, input.sizes().end());
|
||||
for (int j = 0; j < partitions; ++j) {
|
||||
int out_idx = i + j * inputSize;
|
||||
auto output = Output(out_idx);
|
||||
shape[0] = counts_[j];
|
||||
output->Resize(shape);
|
||||
auto output = Output(out_idx, shape, at::dtype(input.dtype()));
|
||||
out_datas_[out_idx] = output->raw_mutable_data(input.dtype());
|
||||
}
|
||||
}
|
||||
@ -256,13 +254,12 @@ class LengthsPartitionOp : public PartitionOpBase {
|
||||
// Specialization when partitions == 1 which just becomes a copy.
|
||||
for (int i = 0; i < InputSize(); ++i) {
|
||||
auto& input = Input(i);
|
||||
auto& output = *Output(i);
|
||||
output.ResizeLike(input);
|
||||
auto* output = Output(i, input.sizes(), at::dtype(input.dtype()));
|
||||
context_.CopyItemsSameDevice(
|
||||
input.dtype(),
|
||||
input.numel(),
|
||||
input.raw_data(),
|
||||
output.raw_mutable_data(input.dtype()));
|
||||
output->raw_mutable_data(input.dtype()));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
@ -280,9 +277,8 @@ class LengthsPartitionOp : public PartitionOpBase {
|
||||
const int32_t* lengths_data = length_input.template data<int32_t>();
|
||||
out_length_.resize(partitions);
|
||||
for (int i = 0; i < partitions; ++i) {
|
||||
auto& output = *Output(i * InputSize());
|
||||
output.Resize(elements);
|
||||
out_length_[i] = output.template mutable_data<int32_t>();
|
||||
auto* output = Output(i * InputSize(), elements, at::dtype<int32_t>());
|
||||
out_length_[i] = output->template mutable_data<int32_t>();
|
||||
}
|
||||
|
||||
int total_length = 0;
|
||||
|
@ -23,7 +23,6 @@ class PrependDimOp : public Operator<Context> {
|
||||
|
||||
bool RunOnDevice() override {
|
||||
auto& input = Input(0);
|
||||
auto* output = Output(0);
|
||||
|
||||
CAFFE_ENFORCE(input.dim() > 0, "Input must be at least 1D.");
|
||||
CAFFE_ENFORCE(
|
||||
@ -37,9 +36,9 @@ class PrependDimOp : public Operator<Context> {
|
||||
for (int i = 1; i < input.sizes().size(); ++i) {
|
||||
actual_new_shape[i + 1] = input.size(i);
|
||||
}
|
||||
output->Resize(actual_new_shape);
|
||||
auto* output = Output(0, actual_new_shape, at::dtype(input.dtype()));
|
||||
|
||||
if (output != &input) {
|
||||
if (!IsInputOutputAlias(0, 0)) {
|
||||
// If we are not doing in-place computation, a copy is needed.
|
||||
context_.CopyItemsSameDevice(
|
||||
input.dtype(),
|
||||
@ -64,7 +63,6 @@ class MergeDimOp : public Operator<Context> {
|
||||
|
||||
bool RunOnDevice() override {
|
||||
auto& input = Input(0);
|
||||
auto* output = Output(0);
|
||||
|
||||
CAFFE_ENFORCE(input.dim() > 1, "Input must be at least 2D.");
|
||||
|
||||
@ -73,9 +71,9 @@ class MergeDimOp : public Operator<Context> {
|
||||
for (int i = 1; i < input.sizes().size() - 1; ++i) {
|
||||
actual_new_shape[i] = input.size(i + 1);
|
||||
}
|
||||
output->Resize(actual_new_shape);
|
||||
auto* output = Output(0, actual_new_shape, at::dtype(input.dtype()));
|
||||
|
||||
if (output != &input) {
|
||||
if (!IsInputOutputAlias(0, 0)) {
|
||||
// If we are not doing in-place computation, a copy is needed.
|
||||
context_.CopyItemsSameDevice(
|
||||
input.dtype(),
|
||||
|
@ -52,10 +52,9 @@ class RemoveDataBlocksOp final : public Operator<Context> {
|
||||
ind_vec.erase(std::unique(ind_vec.begin(), ind_vec.end()), ind_vec.end());
|
||||
indices_size = ind_vec.size();
|
||||
|
||||
auto* output = Output(0);
|
||||
auto shape = data.sizes().vec();
|
||||
shape[0] -= indices_size;
|
||||
output->Resize(shape);
|
||||
auto* output = Output(0, shape, at::dtype(data.dtype()));
|
||||
char* out_ptr = (char*)output->raw_mutable_data(data.dtype());
|
||||
|
||||
ind_vec.insert(ind_vec.begin(), -1);
|
||||
|
@ -23,6 +23,7 @@ class ReservoirSamplingOp final : public Operator<Context> {
|
||||
auto& mutex = OperatorBase::Input<std::unique_ptr<std::mutex>>(MUTEX);
|
||||
std::lock_guard<std::mutex> guard(*mutex);
|
||||
|
||||
// TODO: separate diff for this
|
||||
auto* output = Output(RESERVOIR);
|
||||
const auto& input = Input(DATA);
|
||||
|
||||
|
@ -30,7 +30,8 @@ class ReshapeOp : public Operator<Context> {
|
||||
|
||||
template <typename T>
|
||||
bool DoRunWithType() {
|
||||
DoRunWithTypeImpl<T>(Input(0), Output(0));
|
||||
DoRunWithTypeImpl<T>(
|
||||
Input(0), Output(0, Input(0).sizes(), Input(0).dtype()));
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -123,7 +124,7 @@ class ReshapeOp : public Operator<Context> {
|
||||
}
|
||||
|
||||
output->Resize(actual_new_shape);
|
||||
if (output != &input) {
|
||||
if (!IsInputOutputAlias(0, 0)) {
|
||||
// If we are not doing in-place computation, a copy is needed.
|
||||
context_.CopyItemsSameDevice(
|
||||
input.dtype(),
|
||||
|
@ -192,16 +192,15 @@ bool PadEmptySamplesOp<CPUContext>::RunOnDevice() {
|
||||
features.size(0) == sumLen, "FEATURE and LENGTH should be consistent");
|
||||
const auto block_size = features.size_from_dim(1);
|
||||
|
||||
auto* out_features = Output(1 + k);
|
||||
auto outDim = features.sizes().vec();
|
||||
outDim.at(0) += needPadding;
|
||||
out_features->Resize(outDim);
|
||||
auto* out_features = Output(1 + k, outDim, at::dtype(features.dtype()));
|
||||
auto dst =
|
||||
static_cast<char*>(out_features->raw_mutable_data(features.dtype()));
|
||||
auto src_base = static_cast<const char*>(features.raw_data());
|
||||
// copy data and add padding index as zero
|
||||
Tensor zero{CPU};
|
||||
zero.Resize(block_size);
|
||||
Tensor zero =
|
||||
caffe2::empty({block_size}, at::dtype(features.dtype()).device(CPU));
|
||||
auto zeroPtr = static_cast<char*>(zero.raw_mutable_data(features.dtype()));
|
||||
memset(zeroPtr, 0, zero.nbytes());
|
||||
int start_dest = 0;
|
||||
|
@ -110,8 +110,8 @@ class TextFileReaderReadOp : public Operator<CPUContext> {
|
||||
// it.
|
||||
std::vector<char*> datas(numFields);
|
||||
for (int i = 0; i < numFields; ++i) {
|
||||
Output(i)->Resize(batchSize_);
|
||||
datas[i] = (char*)Output(i)->raw_mutable_data(instance->fieldMetas[i]);
|
||||
auto* output = Output(i, batchSize_, at::dtype(instance->fieldMetas[i]));
|
||||
datas[i] = (char*)output->raw_mutable_data(instance->fieldMetas[i]);
|
||||
}
|
||||
|
||||
int rowsRead = 0;
|
||||
|
@ -74,13 +74,12 @@ class TileOp final : public Operator<Context> {
|
||||
}
|
||||
|
||||
const auto& X = Input(0);
|
||||
auto* Y = Output(0);
|
||||
const int axis = X.canonical_axis_index(axis_);
|
||||
|
||||
// reshape output to be input tiled along the axis
|
||||
std::vector<std::int64_t> Y_dims = X.sizes().vec();
|
||||
Y_dims[axis] *= tiles_;
|
||||
Y->Resize(Y_dims);
|
||||
auto* Y = Output(0, Y_dims, at::dtype<T>());
|
||||
|
||||
// size up to (and not including) axis
|
||||
const int outer_size = X.size_to_dim(axis);
|
||||
@ -179,14 +178,13 @@ class TileGradientOp final : public Operator<Context> {
|
||||
}
|
||||
|
||||
const auto& dY = Input(0);
|
||||
auto* dX = Output(0);
|
||||
const int axis = dY.canonical_axis_index(axis_);
|
||||
|
||||
// reshape output to be input "untiled" along the axis
|
||||
std::vector<std::int64_t> X_dims = dY.sizes().vec();
|
||||
CAFFE_ENFORCE_EQ(X_dims[axis] % tiles_, 0);
|
||||
X_dims[axis] /= tiles_;
|
||||
dX->Resize(X_dims);
|
||||
auto* dX = Output(0, X_dims, at::dtype<T>());
|
||||
|
||||
// size up to (and not including) axis
|
||||
const int outer_size = dX->size_to_dim(axis);
|
||||
|
@ -235,10 +235,9 @@ class FlattenToVecOp : public Operator<Context> {
|
||||
|
||||
bool RunOnDevice() override {
|
||||
auto& input = Input(0);
|
||||
auto* output = Output(0);
|
||||
CAFFE_ENFORCE_GE(
|
||||
input.dim(), 1, "The rank of the tensor must be >= 1.");
|
||||
output->Resize(input.numel());
|
||||
auto* output = Output(0, {input.numel()}, at::dtype(input.dtype()));
|
||||
|
||||
context_.CopyItemsSameDevice(
|
||||
input.dtype(),
|
||||
@ -259,9 +258,8 @@ class ResizeLikeOp : public Operator<Context> {
|
||||
bool RunOnDevice() override {
|
||||
auto& input0 = Input(0);
|
||||
auto& input1 = Input(1);
|
||||
auto* output = Output(0);
|
||||
CAFFE_ENFORCE_EQ(input0.numel(), input1.numel());
|
||||
output->ResizeLike(Input(1));
|
||||
auto* output = Output(0, input1.sizes(), at::dtype(input0.dtype()));
|
||||
context_.CopyItemsSameDevice(
|
||||
input0.dtype(),
|
||||
input0.numel(),
|
||||
@ -1050,8 +1048,6 @@ class GatherRangesOp : public Operator<Context> {
|
||||
bool DoRunWithType() {
|
||||
auto& data = Input(DATA);
|
||||
auto& ranges = Input(RANGES);
|
||||
auto* outputData = Output(0);
|
||||
auto* outputLengths = Output(1);
|
||||
|
||||
auto batchSize = ranges.size(0);
|
||||
CAFFE_ENFORCE(data.dim() == 1, "Data has to be 1-D");
|
||||
@ -1063,7 +1059,7 @@ class GatherRangesOp : public Operator<Context> {
|
||||
auto* rawData = static_cast<const char*>(data.raw_data());
|
||||
auto* rangesData = ranges.template data<Index>();
|
||||
|
||||
outputLengths->Resize(batchSize);
|
||||
auto* outputLengths = Output(1, {batchSize}, at::dtype<int32_t>());
|
||||
auto* outputLengthsPtr = outputLengths->template mutable_data<int32_t>();
|
||||
size_t start = 0;
|
||||
size_t blockSize = ranges.size_from_dim(1);
|
||||
@ -1074,7 +1070,8 @@ class GatherRangesOp : public Operator<Context> {
|
||||
}
|
||||
|
||||
size_t outputSize = accumulate(rangesData, 0, ranges.numel());
|
||||
outputData->Resize(outputSize);
|
||||
auto* outputData =
|
||||
Output(0, {static_cast<int64_t>(outputSize)}, at::dtype(data.dtype()));
|
||||
|
||||
auto outputRawData =
|
||||
static_cast<char*>(outputData->raw_mutable_data(data.dtype()));
|
||||
@ -1130,7 +1127,6 @@ class LengthsGatherOp : public Operator<Context> {
|
||||
auto& items = Input(ITEMS);
|
||||
auto& lengths = Input(LENGTHS);
|
||||
auto& indices = Input(INDICES);
|
||||
auto* output = Output(0);
|
||||
|
||||
CAFFE_ENFORCE_GE(items.dim(), 1, "ITEMS should be at least 1-D");
|
||||
CAFFE_ENFORCE_EQ(lengths.dim(), 1, "LENGTHS should be 1-D");
|
||||
@ -1147,7 +1143,7 @@ class LengthsGatherOp : public Operator<Context> {
|
||||
}
|
||||
auto shape = items.sizes().vec();
|
||||
shape[0] = total_length;
|
||||
output->Resize(shape);
|
||||
auto* output = Output(0, {shape}, at::dtype(items.dtype()));
|
||||
|
||||
offsets_.clear();
|
||||
int64_t running_offset = 0;
|
||||
|
@ -83,8 +83,7 @@ bool FullyConnectedDNNLowPOp<T>::RunOnDevice() {
|
||||
}
|
||||
|
||||
auto* Y_ref = fp32_op->Output(0);
|
||||
auto* Y = OutputTensorCPU_(0);
|
||||
Y->ResizeLike(*Y_ref);
|
||||
auto* Y = OutputTensorCPU_(0, Y_ref->sizes(), at::dtype(Y_ref->dtype()));
|
||||
fp32_op->context_.CopyItemsSameDevice(
|
||||
Y_ref->dtype(),
|
||||
Y_ref->size(),
|
||||
|
@ -84,7 +84,8 @@ std::vector<std::vector<TensorCPU>> split(
|
||||
CAFFE_ENFORCE_EQ(input.sizes().at(0), outputSize);
|
||||
|
||||
for (int i = 0; i < outputSize; ++i) {
|
||||
outputs[i].push_back(Tensor(outputDims, CPU));
|
||||
outputs[i].push_back(
|
||||
caffe2::empty(outputDims, at::dtype(input.dtype()).device(CPU)));
|
||||
context.CopyItemsToCPU(
|
||||
input.dtype(),
|
||||
innerSize,
|
||||
|
Reference in New Issue
Block a user