Adding optional Eigen code. Added a switch USE_SYSTEM_EIGEN in Env. Misc changes.

This commit is contained in:
Yangqing Jia
2015-10-18 16:55:24 -07:00
parent 648d1b101a
commit d734ddc196
606 changed files with 155125 additions and 421 deletions

2334
.Doxyfile Normal file

File diff suppressed because it is too large Load Diff

1
.gitignore vendored
View File

@ -1,3 +1,4 @@
.DS_Store
*.pyc
gen*/
doxygen/*

View File

@ -24,6 +24,12 @@ class Env(object):
# binary.
#USE_SYSTEM_PROTOBUF = False
#PROTOC_BINARY = os.path.join(GENDIR, 'third_party/google/protoc')
# Eigen constants: if set USE_SYSTEM_EIGEN, you need to make sure that Eigen
# is installed in your system. Otherwise, we will use the Eigen code included
# in the Caffe source.
USE_SYSTEM_EIGEN = False
# CUDA directory.
CUDA_DIR = '/usr/local/cuda'
# Caffe defined symbols

View File

@ -15,6 +15,7 @@ cc_headers(
"net.h",
"operator.h",
"registry.h",
"tensor.h",
"typeid.h",
"types.h",
"workspace.h"
@ -30,7 +31,6 @@ cc_library(
"flags.cc",
"init.cc",
"logging.cc",
"minidb.cc",
"net.cc",
"operator.cc",
"workspace.cc",

View File

@ -9,27 +9,42 @@
#include "caffe2/core/common.h"
#include "caffe2/core/context.h"
#include "caffe2/core/registry.h"
#include "caffe2/core/tensor.h"
#include "caffe2/core/typeid.h"
#include "caffe2/proto/caffe2.pb.h"
#include "caffe2/core/logging.h"
namespace caffe2 {
// Blob is a general container that hosts a pointer as well as checking its
// type, and takes charge of deleting it when the blob is deallocated. A blob
// could contain ANYTHING, although the most common case is to contain a Tensor.
/**
* @brief Blob is a general container that hosts a typed pointer.
*
* A Blob hosts a pointer as well as its type, and takes charge of deleting it
* properly when the blob is deallocated or re-allocated with a new type. A blob
* could contain ANYTHING, although the most common case is to contain a Tensor.
*/
class Blob {
public:
// Initialize an empty blob.
/**
* Initializes an empty Blob.
*/
Blob() : meta_(), pointer_(nullptr) {}
~Blob() { Reset(); }
// Checks if the content stored in the blob is of type T.
/**
* Checks if the content stored in the blob is of type T.
*/
template <class T>
bool IsType() const { return meta_.Match<T>(); }
// Returns the typename of the blob.
/**
* Returns a printable typename of the blob.
*/
inline const char* TypeName() const { return meta_.name(); }
// Gets the const reference of the stored object.
/**
* Gets the const reference of the stored object. The code checks if the
* stored object is of the desired type.
*/
template <class T>
const T& Get() const {
CAFFE_CHECK(IsType<T>()) << "wrong type for the Blob instance. Expected "
@ -37,9 +52,13 @@ class Blob {
<< TypeMeta::Name<T>();
return *static_cast<const T*>(pointer_);
}
// Gets a mutable pointer to the stored object. If the current object is not
// of the right type, a new object is created. Note that type T should have
// a default constructor. Otherwise, create the object yourself and use Reset.
/**
* Gets a mutable pointer to the stored object. If the current object is not
* of the right type, a new object is created and the old object is freed.
* Note that type T should have a default constructor. Otherwise, create the
* object yourself first, and and use Reset().
*/
template <class T>
T* GetMutable() {
if (!IsType<T>()) {
@ -48,13 +67,11 @@ class Blob {
return static_cast<T*>(pointer_);
}
inline void Reset() {
if (pointer_) {
destroy_(pointer_);
pointer_ = nullptr;
}
}
/**
* Sets the underlying object to the allocated one. The Blob then takes over
* the ownership of the passed in pointer. If there is already an object in
* the Blob, the old object is freed.
*/
template <class T>
T* Reset(T* allocated) {
if (pointer_) { destroy_(pointer_); }
@ -65,8 +82,21 @@ class Blob {
return allocated;
}
// Serializes the current blob, if possible. This serialization uses
// registration so we don't need to deal with multiple platform problems.
/**
* Resets the Blob to an empty one.
*/
inline void Reset() {
if (pointer_) {
destroy_(pointer_);
pointer_ = nullptr;
}
}
/**
* Serializes the current blob, if possible. Note that this serialization uses
* the registration mechanism and one has to implement specific serialization
* approaches for specific classes.
*/
string Serialize(const string& name) const;
private:
@ -82,175 +112,5 @@ class Blob {
DISABLE_COPY_AND_ASSIGN(Blob);
};
template <class Context>
class Tensor {
public:
Tensor() : size_(0), data_(nullptr) {}
// Creates a tensor. The actual data allocation is going to be carried out
// till the first time mutable_data() is called, so there is no overhead of
// creating multiple tensors just as placeholders (although I haven't got a
// clear idea where such cases would happen).
explicit Tensor(const vector<int>& dims) { Reshape(dims); }
// Creates a tensor from a source tensor that is possibly from a different
// device context. A device context object (either Context or SrcContext) is
// provided for copying the underlying data.
template <class SrcContext, class ContextForCopy>
Tensor(const Tensor<SrcContext>& src, ContextForCopy* context)
: meta_(src.meta()) {
Reshape(src.dims());
context->template Memcpy<SrcContext, Context>(
nbytes(), src.raw_data(), raw_mutable_data());
}
// A fallback choice, where we will use a default context - do not use it if
// you can explicitly provide a context for copy.
template <class SrcContext>
Tensor(const Tensor<SrcContext>& src)
: meta_(src.meta()) {
Reshape(src.dims());
SrcContext tmp_context;
tmp_context.template Memcpy<SrcContext, Context>(
nbytes(), src.raw_data(), raw_mutable_data());
}
// Creates a tensor, and fills its contents with the given values. We need to
// have a context passed in as the copy function is device dependent.
template <typename T>
Tensor(const vector<int>& dims, const vector<T>& values, Context* context)
: meta_(TypeMeta::Make<T>()) {
Reshape(dims);
CAFFE_CHECK_EQ(values.size(), size_);
context->template Copy<T, CPUContext, Context>(
values.size(), values.data(), mutable_data<T>());
}
template <typename T,
typename = typename std::enable_if<std::is_scalar<T>::value>::type>
Tensor(const T& value, Context* context) {
Reshape(vector<int>{});
context->template Copy<T, CPUContext, Context>(
1, &value, mutable_data<T>());
}
virtual ~Tensor() {}
void Reshape(const vector<int>& dims) {
dims_ = dims;
// Calculate the size.
int new_size = 1;
for (int d : dims_) {
CAFFE_CHECK_GT(d, 0);
new_size *= d;
}
// If the size changes, we will free the data. the next mutable_data() call
// will create the data storage.
if (data_.get() && size_ != new_size) {
data_.reset();
}
size_ = new_size;
}
template <class OtherContext>
inline void ReshapeLike(const Tensor<OtherContext>& src_tensor) {
Reshape(src_tensor.dims());
}
// A utility function to print the debug string for the tensor. Note that this
// is very slow since it involves quite some string operations, so do not use
// it in your performance-critical code.
string DebugString() const {
std::stringstream ss;
ss << "A Tensor of item size " << itemsize() << " and type "
<< meta_.name() << " and dimension (";
for (int d : dims_) {
ss << d << ",";
}
ss << ").";
return ss.str();
}
void ShareData(const Tensor& src) {
// To share data, the sizes must be equal.
// The reason we do not force the ShareData to have an explicit reshape is
// because we want to allow tensors to have different shape but still
// maintain the same underlying data storage, as long as the contents are
// of the same size.
meta_ = src.meta();
CAFFE_CHECK_EQ(src.size_, size_)
<< "Size mismatch - did you call reshape before sharing the data?";
// It is possible that the source tensor hasn't called mutable_data() yet,
// in which case ShareData() does make much sense since we don't really know
// what to share yet.
CAFFE_CHECK(src.data_.get()) << "Source tensor has no content yet.";
// Finally, do sharing.
data_ = src.data_;
}
inline const void* raw_data() const {
CAFFE_CHECK_NOTNULL(data_.get());
return data_.get();
}
template <typename T>
inline const T* data() const {
CAFFE_CHECK_NOTNULL(data_.get());
CAFFE_CHECK(IsType<T>());
return static_cast<T*>(data_.get());
}
inline void* raw_mutable_data(const TypeMeta& meta) {
if (!data_.get() || meta_ != meta) {
meta_ = meta;
CAFFE_CHECK_GT(size_, 0);
data_.reset(static_cast<void*>(Context::New(size_ * meta_.itemsize())),
Context::Delete);
return data_.get();
} else {
return data_.get();
}
}
// If you know that the meta information of the tensor is already set, you
// can directly call without passing in a meta object.
inline void* raw_mutable_data() {
CAFFE_CHECK_NE(meta_.id(), 0)
<< "Calling raw_mutable_data() without meta, but the current meta is "
"of unknown type.";
return raw_mutable_data(meta_);
}
template <typename T>
inline T* mutable_data() {
return static_cast<T*>(
raw_mutable_data(TypeMeta::Make<T>()));
}
inline int ndim() const { return dims_.size(); }
inline int size() const { return size_; }
inline int itemsize() const { return meta_.itemsize(); }
inline int nbytes() const { return size_ * meta_.itemsize(); }
inline const vector<int>& dims() const { return dims_; }
template <typename T>
inline bool IsType() const { return meta_.Match<T>(); }
inline const TypeMeta& meta() const { return meta_; }
inline int dim(const int i) const {
CAFFE_CHECK_LT(i, dims_.size()) << "Exceeding ndim limit " << dims_.size();
CAFFE_CHECK_GE(i, 0) << "Cannot have negative index";
return dims_[i];
}
protected:
vector<int> dims_;
int size_;
TypeMeta meta_;
std::shared_ptr<void> data_;
DISABLE_COPY_AND_ASSIGN(Tensor);
};
} // namespace caffe2
#endif // CAFFE2_CORE_BLOB_H_

View File

@ -6,15 +6,31 @@
namespace caffe2 {
// BlobSerializerBase is a class that serializes a blob to a string. This class
// exists purely for the purpose of registering type-specific serialization
// code.
/**
* BlobSerializerBase is an abstract class that serializes a blob to a string.
*
* This class exists purely for the purpose of registering type-specific
* serialization code. If you need to serialize a specific type, you should
* write your own Serializer class, and then register it using
* REGISTER_BLOB_SERIALIZER. For a detailed example, see TensorSerializer for
* details.
*/
class BlobSerializerBase {
public:
/**
* @brief The virtual function that returns a serialized string for the input
* blob.
* @param blob
* the input blob to be serialized.
* @param name
* the blob name to be used in the serialization implementation. It is up
* to the implementation whether this name field is going to be used or
* not.
*/
virtual string Serialize(const Blob& blob, const string& name) = 0;
};
// THe Blob serialization registry and serializer creator functions.
// The Blob serialization registry and serializer creator functions.
DECLARE_TYPED_REGISTRY(BlobSerializerRegistry, CaffeTypeId,
BlobSerializerBase);
#define REGISTER_BLOB_SERIALIZER(name, id, ...) \
@ -24,13 +40,21 @@ inline BlobSerializerBase* CreateSerializer(CaffeTypeId id) {
return BlobSerializerRegistry()->Create(id);
}
// TensorSerializer is the serializer for Tensors: it puts the tensor object
// into a TensorProto protocol buffer.
/**
* @brief TensorSerializer is the serializer for Tensors.
*
* TensorSerializer takes in a blob that contains a Tensor, and serializes it
* into a TensorProto protocol buffer.
*/
template <class Context>
class TensorSerializer : public BlobSerializerBase {
public:
TensorSerializer() : device_context_() {}
~TensorSerializer() {}
/**
* Serializes a Blob. Note that this blob has to contain Tensor<Context>,
* otherwise this function produces a fatal error.
*/
string Serialize(const Blob& blob, const string& name);
private:

View File

@ -1,3 +1,6 @@
// Note(Yangqing): This is a very drafty class and I have not updated it for a
// while. Only use it if you consider it necessary.
// Client is a very thin wrapper over a Caffe2 interface, allowing us to do
// a very primitive caffe network call without the need of revealing all
// the header files inside Caffe2. Also, what we are going to deal with is

View File

@ -8,8 +8,6 @@
namespace caffe2 {
using std::string;
using std::unique_ptr;
// Note(Yangqing): NVCC does not play well with unordered_map on some platforms,
// forcing us to use std::map instead of unordered_map. This may affect speed
// in some cases, but in most of the computation code we do not access map very
@ -18,6 +16,12 @@ using std::unique_ptr;
template <typename Key, typename Value>
using CaffeMap = std::map<Key, Value>;
// using CaffeMap = std::unordered_map;
// Using statements for common classes that we refer to in caffe2 very often.
// Note that we only place it inside caffe2 so the global namespace is not
// polluted.
using std::string;
using std::unique_ptr;
using std::vector;
// Just in order to mark things as not implemented. Do not use in final code.
@ -34,6 +38,14 @@ private: \
classname& operator=(const classname&)
/**
* Gets the gradient name for a blob.
*
* This is a legacy function that I placed here in the initial refactoring. In
* retrospect, the gradient name probably should not be a first-class citizen
* especially in a file as common as common.h. As a result it is very likely
* that we will remove it or move it to a more proper location.
*/
inline string GetGradientName(const string& name) {
return name + ".grad";
}

View File

@ -1,17 +1,21 @@
#ifndef CAFFE2_CORE_COMMON_CUDNN_H_
#define CAFFE2_CORE_COMMON_CUDNN_H_
#include <cudnn.h>
#include "caffe2/core/common_gpu.h"
#include "caffe2/core/context.h"
#include "caffe2/core/context_gpu.h"
#include "caffe2/core/types.h"
#include "caffe2/proto/caffe2.pb.h"
#include "cudnn.h" // NOLINT
#include "caffe2/core/logging.h"
namespace caffe2 {
namespace internal {
/**
* A helper function to obtain cudnn error strings.
*/
inline const char* cudnnGetErrorString(cudnnStatus_t status) {
switch (status) {
case CUDNN_STATUS_SUCCESS:
@ -40,6 +44,8 @@ inline const char* cudnnGetErrorString(cudnnStatus_t status) {
}
} // namespace internal
// A macro that wraps around a cudnn statement so we can check if the cudnn
// execution finishes or not.
#define CUDNN_CHECK(condition) \
do { \
cudnnStatus_t status = condition; \
@ -49,16 +55,27 @@ inline const char* cudnnGetErrorString(cudnnStatus_t status) {
} while (0)
/**
* cudnnTypeWrapper is a wrapper class that allows us to refer to the cudnn type
* in a template function. The class is specialized explicitly for different
* data types below.
*/
template <typename T> class cudnnTypeWrapper;
template<> class cudnnTypeWrapper<float> {
public:
static const cudnnDataType_t type = CUDNN_DATA_FLOAT;
};
template<> class cudnnTypeWrapper<double> {
public:
static const cudnnDataType_t type = CUDNN_DATA_DOUBLE;
};
/**
* A wrapper function to convert the Caffe storage order to cudnn storage order
* enum values.
*/
inline cudnnTensorFormat_t GetCudnnTensorFormat(const StorageOrder& order) {
switch (order) {
case StorageOrder::NHWC:
@ -72,8 +89,11 @@ inline cudnnTensorFormat_t GetCudnnTensorFormat(const StorageOrder& order) {
return CUDNN_TENSOR_NCHW;
}
// cudnnDescriptorMeta is the placeholder that wraps around a
// cudnnTensorDescriptor_t, allowing us to do descriptor change as-needed.
/**
* cudnnDescriptorMeta is the placeholder that wraps around a
* cudnnTensorDescriptor_t, allowing us to do descriptor change as-needed during
* runtime.
*/
class cudnnDescriptorMeta {
public:
cudnnDescriptorMeta() {
@ -117,9 +137,25 @@ class cudnnDescriptorMeta {
cudnnDescriptorMeta& operator=(const cudnnDescriptorMeta&);
};
/**
* CuDNNWrapper is a class that wraps the cudnn handles associated with a
* specific CUDAContext.
*
* In caffe2, each unique CUDAContext has its own cuda stream. Since a cudnn
* handle needs to be associated with a cuda stream, one may need to create a
* cudnn wrapper for each CUDAContext.
*
* Sample usage: if you are implementing a cuda operator that uses cudnn, you
* can have a private member like
* CudnnWrapper wrapper_;
* and in your constructor, initialize it with wrapper_(device_context_).
*/
class CuDNNWrapper {
public:
// The default cuda context constructor.
/**
* Creates a cudnn wrapper associated with a CUDAContext object. Note that
* the CUDAContext object should outlive the CuDNNWrapper.
*/
explicit CuDNNWrapper(CUDAContext* context)
: cuda_context_(context), cudnn_handle_(nullptr) {}
@ -129,6 +165,9 @@ class CuDNNWrapper {
}
}
/**
* Returns the cudnn handle.
*/
cudnnHandle_t& cudnn_handle() {
if (!cudnn_handle_) {
CUDNN_CHECK(cudnnCreate(&cudnn_handle_));
@ -138,10 +177,19 @@ class CuDNNWrapper {
return cudnn_handle_;
}
/**
* Set the number of tensor descriptors stored in this wrapper.
*/
void cudnnSetNumTensorDescriptors(int n) {
cudnn_tensor_descriptors_.resize(n);
}
/**
* Gets the index-th cudnnTensorDescriptor, with the given tensor format
* and the dimension. If the format or the dimension is different from the
* last call, the underlying descriptor will be re-generated and the changed
* bool flag will be set.
*/
template <typename T>
inline cudnnTensorDescriptor_t cudnnGetTensor4dDesc(
const int index, const cudnnTensorFormat_t cudnn_format,

View File

@ -14,18 +14,42 @@
namespace caffe2 {
// Check if the current running session has a cuda gpu present. Note that this
// is different from having caffe2 built with cuda - it is possible that
// caffe2 is built with cuda but there is no cuda hardware available.
/**
* Check if the current running session has a cuda gpu present.
*
* Note that this is different from having caffe2 built with cuda. Building
* Caffe2 with cuda only guarantees that this function exists. If there are no
* cuda gpus present in the machine, or there are hardware configuration
* problems like an insufficient driver, this function will still return false,
* meaning that there is no usable GPU present.
*/
bool HasCudaGPU();
// Sets and gets the default GPU id. If the function is not called, we will use
// GPU 0 ast he default gpu id. If there is an operator that says it runs on the
// GPU but did not specify which GPU, this default gpuid is going to be used.
/**
* Sets the default GPU id for Caffe2.
*
* If an operator is set to run on Cuda GPU but no gpu id is given, we will use
* the default gpu id to run the operator. Before this function is explicitly
* called, GPU 0 will be the default GPU id.
*/
void SetDefaultGPUID(const int deviceid);
/**
* Gets the default GPU id for Caffe2.
*/
int GetDefaultGPUID();
/**
* Runs a device query function and prints out the results to CAFFE_LOG_INFO.
*/
void DeviceQuery(const int deviceid);
// Return a peer access pattern by returning a matrix (in the format of a
// nested vector) of boolean values specifying whether peer access is possible.
/**
* Return a peer access pattern by returning a matrix (in the format of a
* nested vector) of boolean values specifying whether peer access is possible.
*
* This function returns false if anything wrong happens during the query of
* the GPU access pattern.
*/
bool GetCudaPeerAccessPattern(vector<vector<bool> >* pattern);
namespace internal {
@ -63,10 +87,13 @@ const char* curandGetErrorString(curandStatus_t error);
i < (n); \
i += blockDim.x * gridDim.x)
// The number of threads Caffe uses for cuda. This is kind of legacy:
// hard-coding the number of threads might not be an optimal case, and might
// even fail for specific hardware platforms.
// TODO(Yangqing): Yuck. Figure out a better way?
const int CAFFE_CUDA_NUM_THREADS = 1024;
// CUDA: number of blocks for threads.
// Compute the number of blocks needed to run N threads.
inline int CAFFE_GET_BLOCKS(const int N) {
return (N + CAFFE_CUDA_NUM_THREADS - 1) / CAFFE_CUDA_NUM_THREADS;
}

View File

@ -9,6 +9,38 @@
namespace caffe2 {
/**
* The CPU Context, representing the bare minimum of what a Context class in
* Caffe2 should implement.
*
* See opeartor.h, especially Operator<Context>, for how Context are used in
* actual operator implementations that are associated with specific devices.
* In general, the Context class is passed in as a template argument, and
* the operator can use the functions defined in the context to execute whatever
* computation it has.
*
* A Context defines all the necessities to run an operator on a specific
* device. Specific Context classes have the freedom to choose what functions it
* implements, but there are a few functions that you should consider
* implementing if you want to write your own context class:
* - void SwitchToDevice(): any necessary code to switch to the device before
* running anything.
* - bool FinishDeviceComputation(): any wrapping-up work after all the
* computation of the operator is done. If there are errors during the
* execution, return false. For example, in a CUDAContext, this function
* carries out a stream synchronization and spots potential errors for
* the cuda kernel calls.
* - static void* New(size_t nbytes): allocates memory.
* - static void Delete(void* data): deletes memory.
* - template <class SrcContext, class DstContext> void Memcpy(...): does cross
* context memory copy.
* - template <typename T, class SrcContext, class DstContext> void Copy(...):
* usually a simple wrapper around the above Memcpy function.
*
* We intentionally did not create a base class for the various possible Context
* classes there might be, since they are intended to be specified during
* compile time rather than via polymorphism.
*/
class CPUContext {
public:
CPUContext() : random_generator_(0) {}
@ -17,6 +49,7 @@ class CPUContext {
option.has_random_seed() ? option.random_seed() : time(NULL)) {
CAFFE_CHECK_EQ(option.device_type(), CPU);
}
virtual ~CPUContext() {}
inline void SwitchToDevice() {}
inline bool FinishDeviceComputation() { return true; }

View File

@ -8,6 +8,18 @@
namespace caffe2 {
/**
* A Cuda memory pool that can potentially provide a better memory management
* while maintaining transparency on the user side.
*
* In Caffe2, the user can control whether to use the memory pool or not. If one
* chooses to, BEFORE any cuda memory allocation are carried out, one should
* call InitializeMemoryPool() to set it up with the desired device ids and the
* proportion of the cuda memory to reserve for the memory pool. One is then
* responsible for clearing up by calling FinalizeMemoryPool() at some point.
*
* This relies on NVidia's open-source cumem library.
*/
class CudaMemoryPool {
public:
// Initializes the memory pool on the device ids, and pre-preserves the given

View File

@ -1,9 +1,151 @@
#include "caffe2/core/db.h"
#include "caffe2/core/logging.h"
namespace caffe2 {
namespace db {
DEFINE_REGISTRY(Caffe2DBRegistry, DB, const string&, Mode);
// Below, we provide a bare minimum database "minidb" as a reference
// implementation as well as a portable choice to store data.
// Note that the MiniDB classes are not exposed via a header file - they should
// be created directly via the db interface. See MiniDB for details.
class MiniDBCursor : public Cursor {
public:
explicit MiniDBCursor(FILE* f, std::mutex* mutex)
: file_(f), lock_(*mutex), valid_(true) {
// We call Next() to read in the first entry.
Next();
}
~MiniDBCursor() {}
void SeekToFirst() override {
fseek(file_, 0, SEEK_SET);
CAFFE_CHECK(!feof(file_)) << "Hmm, empty file?";
// Read the first item.
valid_ = true;
Next();
}
void Next() override {
// First, read in the key and value length.
if (fread(&key_len_, sizeof(int), 1, file_) == 0) {
// Reaching EOF.
CAFFE_LOG_INFO << "EOF reached, setting valid to false";
valid_ = false;
return;
}
CAFFE_CHECK_EQ(fread(&value_len_, sizeof(int), 1, file_), 1);
CAFFE_CHECK_GT(key_len_, 0);
CAFFE_CHECK_GT(value_len_, 0);
// Resize if the key and value len is larger than the current one.
if (key_len_ > key_.size()) {
key_.resize(key_len_);
}
if (value_len_ > value_.size()) {
value_.resize(value_len_);
}
// Actually read in the contents.
CAFFE_CHECK_EQ(
fread(key_.data(), sizeof(char), key_len_, file_), key_len_);
CAFFE_CHECK_EQ(
fread(value_.data(), sizeof(char), value_len_, file_), value_len_);
// Note(Yangqing): as we read the file, the cursor naturally moves to the
// beginning of the next entry.
}
string key() override {
CAFFE_CHECK(valid_) << "Cursor is at invalid location!";
return string(key_.data(), key_len_);
}
string value() override {
CAFFE_CHECK(valid_) << "Cursor is at invalid location!";
return string(value_.data(), value_len_);
}
bool Valid() override { return valid_; }
private:
FILE* file_;
std::lock_guard<std::mutex> lock_;
bool valid_;
int key_len_;
vector<char> key_;
int value_len_;
vector<char> value_;
};
class MiniDBTransaction : public Transaction {
public:
explicit MiniDBTransaction(FILE* f, std::mutex* mutex)
: file_(f), lock_(*mutex) {}
~MiniDBTransaction() { Commit(); }
void Put(const string& key, const string& value) override {
int key_len = key.size();
int value_len = value.size();
CAFFE_CHECK_EQ(fwrite(&key_len, sizeof(int), 1, file_), 1);
CAFFE_CHECK_EQ(fwrite(&value_len, sizeof(int), 1, file_), 1);
CAFFE_CHECK_EQ(
fwrite(key.c_str(), sizeof(char), key_len, file_), key_len);
CAFFE_CHECK_EQ(
fwrite(value.c_str(), sizeof(char), value_len, file_), value_len);
}
void Commit() override {
CAFFE_CHECK_EQ(fflush(file_), 0);
}
private:
FILE* file_;
std::lock_guard<std::mutex> lock_;
DISABLE_COPY_AND_ASSIGN(MiniDBTransaction);
};
class MiniDB : public DB {
public:
MiniDB(const string& source, Mode mode) : DB(source, mode), file_(nullptr) {
switch (mode) {
case NEW:
file_ = fopen(source.c_str(), "wb");
break;
case WRITE:
file_ = fopen(source.c_str(), "ab");
fseek(file_, 0, SEEK_END);
break;
case READ:
file_ = fopen(source.c_str(), "rb");
break;
}
CAFFE_CHECK(file_) << "Cannot open file: " << source;
CAFFE_LOG_INFO << "Opened MiniDB " << source;
}
~MiniDB() { Close(); }
void Close() override { fclose(file_); }
Cursor* NewCursor() override {
CAFFE_CHECK_EQ(this->mode_, READ);
return new MiniDBCursor(file_, &file_access_mutex_);
}
Transaction* NewTransaction() override {
CAFFE_CHECK(this->mode_ == NEW || this->mode_ == WRITE);
return new MiniDBTransaction(file_, &file_access_mutex_);
}
private:
FILE* file_;
// access mutex makes sure we don't have multiple cursors/transactions
// reading the same file.
std::mutex file_access_mutex_;
};
REGISTER_CAFFE2_DB(MiniDB, MiniDB);
REGISTER_CAFFE2_DB(minidb, MiniDB);
} // namespacd db
} // namespace caffe2

View File

@ -6,40 +6,83 @@
namespace caffe2 {
namespace db {
/**
* The mode of the database, whether we are doing a read, write, or creating
* a new database.
*/
enum Mode { READ, WRITE, NEW };
/**
* An abstract class for the cursor of the database while reading.
*/
class Cursor {
public:
Cursor() { }
virtual ~Cursor() { }
/**
* Seek to the first key in the database.
*/
virtual void SeekToFirst() = 0;
/**
* Go to the next location in the database.
*/
virtual void Next() = 0;
/**
* Returns the current key.
*/
virtual string key() = 0;
/**
* Returns the current value.
*/
virtual string value() = 0;
/**
* Returns whether the current location is valid - for example, if we have
* reached the end of the database, return false.
*/
virtual bool Valid() = 0;
DISABLE_COPY_AND_ASSIGN(Cursor);
};
/**
* An abstract class for the current database transaction while writing.
*/
class Transaction {
public:
Transaction() { }
virtual ~Transaction() { }
/**
* Puts the key value pair to the database.
*/
virtual void Put(const string& key, const string& value) = 0;
/**
* Commits the current writes.
*/
virtual void Commit() = 0;
DISABLE_COPY_AND_ASSIGN(Transaction);
};
/**
* An abstract class for accessing a database of key-value pairs.
*/
class DB {
public:
DB(const string& source, Mode mode) : mode_(mode) {
// This constructor does nothing. The actual opening should be done in the
// derived constructors.
}
DB(const string& source, Mode mode) : mode_(mode) {}
virtual ~DB() { }
/**
* Closes the database.
*/
virtual void Close() = 0;
/**
* Returns a cursor to read the database. The caller takes the ownership of
* the pointer.
*/
virtual Cursor* NewCursor() = 0;
/**
* Returns a transaction to write data to the database. The caller takes the
* ownership of the pointer.
*/
virtual Transaction* NewTransaction() = 0;
protected:
@ -48,10 +91,18 @@ class DB {
DISABLE_COPY_AND_ASSIGN(DB);
};
// Database classes are registered by their names so we can do optional
// dependencies.
DECLARE_REGISTRY(Caffe2DBRegistry, DB, const string&, Mode);
#define REGISTER_CAFFE2_DB(name, ...) \
REGISTER_CLASS(Caffe2DBRegistry, name, __VA_ARGS__)
/**
* Returns a database object of the given database type, source and mode. The
* caller takes the ownership of the pointer. If the database type is not
* supported, a nullptr is returned. The caller is responsible for examining the
* validity of the pointer.
*/
inline DB* CreateDB(const string& db_type, const string& source, Mode mode) {
return Caffe2DBRegistry()->Create(db_type, source, mode);
}

View File

@ -1,143 +0,0 @@
#include <cstdio>
#include <mutex>
#include "caffe2/core/db.h"
#include "caffe2/core/logging.h"
namespace caffe2 {
namespace db {
class MiniDBCursor : public Cursor {
public:
explicit MiniDBCursor(FILE* f, std::mutex* mutex)
: file_(f), lock_(*mutex), valid_(true) {
// We call Next() to read in the first entry.
Next();
}
~MiniDBCursor() {}
void SeekToFirst() override {
fseek(file_, 0, SEEK_SET);
CAFFE_CHECK(!feof(file_)) << "Hmm, empty file?";
// Read the first item.
valid_ = true;
Next();
}
void Next() override {
// First, read in the key and value length.
if (fread(&key_len_, sizeof(int), 1, file_) == 0) {
// Reaching EOF.
CAFFE_LOG_INFO << "EOF reached, setting valid to false";
valid_ = false;
return;
}
CAFFE_CHECK_EQ(fread(&value_len_, sizeof(int), 1, file_), 1);
CAFFE_CHECK_GT(key_len_, 0);
CAFFE_CHECK_GT(value_len_, 0);
// Resize if the key and value len is larger than the current one.
if (key_len_ > key_.size()) {
key_.resize(key_len_);
}
if (value_len_ > value_.size()) {
value_.resize(value_len_);
}
// Actually read in the contents.
CAFFE_CHECK_EQ(fread(key_.data(), sizeof(char), key_len_, file_), key_len_);
CAFFE_CHECK_EQ(fread(value_.data(), sizeof(char), value_len_, file_), value_len_);
// Note(Yangqing): as we read the file, the cursor naturally moves to the
// beginning of the next entry.
}
string key() override {
CAFFE_CHECK(valid_) << "Cursor is at invalid location!";
return string(key_.data(), key_len_);
}
string value() override {
CAFFE_CHECK(valid_) << "Cursor is at invalid location!";
return string(value_.data(), value_len_);
}
bool Valid() override { return valid_; }
private:
FILE* file_;
std::lock_guard<std::mutex> lock_;
bool valid_;
int key_len_;
vector<char> key_;
int value_len_;
vector<char> value_;
};
class MiniDBTransaction : public Transaction {
public:
explicit MiniDBTransaction(FILE* f, std::mutex* mutex)
: file_(f), lock_(*mutex) {}
~MiniDBTransaction() { Commit(); }
void Put(const string& key, const string& value) override {
int key_len = key.size();
int value_len = value.size();
CAFFE_CHECK_EQ(fwrite(&key_len, sizeof(int), 1, file_), 1);
CAFFE_CHECK_EQ(fwrite(&value_len, sizeof(int), 1, file_), 1);
CAFFE_CHECK_EQ(fwrite(key.c_str(), sizeof(char), key_len, file_), key_len);
CAFFE_CHECK_EQ(fwrite(value.c_str(), sizeof(char), value_len, file_), value_len);
}
void Commit() override {
CAFFE_CHECK_EQ(fflush(file_), 0);
}
private:
FILE* file_;
std::lock_guard<std::mutex> lock_;
DISABLE_COPY_AND_ASSIGN(MiniDBTransaction);
};
class MiniDB : public DB {
public:
MiniDB(const string& source, Mode mode) : DB(source, mode), file_(nullptr) {
switch (mode) {
case NEW:
file_ = fopen(source.c_str(), "wb");
break;
case WRITE:
file_ = fopen(source.c_str(), "ab");
fseek(file_, 0, SEEK_END);
break;
case READ:
file_ = fopen(source.c_str(), "rb");
break;
}
CAFFE_CHECK(file_) << "Cannot open file: " << source;
CAFFE_LOG_INFO << "Opened MiniDB " << source;
}
~MiniDB() { Close(); }
void Close() override { fclose(file_); }
Cursor* NewCursor() override {
CAFFE_CHECK_EQ(this->mode_, READ);
return new MiniDBCursor(file_, &file_access_mutex_);
}
Transaction* NewTransaction() override {
CAFFE_CHECK(this->mode_ == NEW || this->mode_ == WRITE);
return new MiniDBTransaction(file_, &file_access_mutex_);
}
private:
FILE* file_;
// access mutex makes sure we don't have multiple cursors/transactions
// reading the same file.
std::mutex file_access_mutex_;
};
REGISTER_CAFFE2_DB(MiniDB, MiniDB);
REGISTER_CAFFE2_DB(minidb, MiniDB);
} // namespace db
} // namespace caffe2

View File

@ -18,7 +18,6 @@ template <class SrcType, class ObjectType, class... Args>
class Registry {
public:
typedef ObjectType* (*Creator)(Args ...);
typedef CaffeMap<SrcType, Creator> CreatorRegistry;
Registry() : registry_() {}
@ -38,6 +37,11 @@ class Registry {
registry_[key] = creator;
}
void Register(const SrcType& key, Creator creator, const string& help_msg) {
Register(key, creator);
help_message_[key] = help_msg;
}
inline bool Has(const SrcType& key) { return (registry_.count(key) != 0); }
ObjectType* Create(const SrcType& key, Args ... args) {
@ -53,14 +57,22 @@ class Registry {
return registry_[key](args...);
}
/**
* Returns the keys currently registered as a vector.
*/
vector<SrcType> Keys() {
vector<SrcType> keys;
for (const auto& it : registry_) {
keys.push_back(it.first);
}
return keys;
}
// This function should only used in test code to inspect registered names.
// You should only call this function after google glog is initialized -
// do NOT call it in static initializations.
void TEST_PrintRegisteredNames() {
std::vector<SrcType> keys;
for (const auto& it : registry_) {
keys.push_back(it.first);
}
vector<SrcType> keys = Keys();
std::sort(keys.begin(), keys.end());
for (const SrcType& key : keys) {
std::cout << "Registry key: " << key << std::endl;
@ -70,7 +82,8 @@ class Registry {
}
private:
CreatorRegistry registry_;
CaffeMap<SrcType, Creator> registry_;
CaffeMap<SrcType, string> help_message_;
DISABLE_COPY_AND_ASSIGN(Registry);
};
@ -80,8 +93,9 @@ class Registerer {
public:
Registerer(const SrcType& key,
Registry<SrcType, ObjectType, Args...>* registry,
typename Registry<SrcType, ObjectType, Args...>::Creator creator) {
registry->Register(key, creator);
typename Registry<SrcType, ObjectType, Args...>::Creator creator,
const string& help_msg="") {
registry->Register(key, creator, help_msg);
}
template <class DerivedType>

305
caffe2/core/tensor.h Normal file
View File

@ -0,0 +1,305 @@
#ifndef CAFFE2_CORE_TENSOR_H_
#define CAFFE2_CORE_TENSOR_H_
#include <cstddef>
#include <sstream>
#include <typeinfo>
#include <type_traits>
#include <vector>
#include "caffe2/core/common.h"
#include "caffe2/core/context.h"
#include "caffe2/core/typeid.h"
#include "caffe2/proto/caffe2.pb.h"
#include "caffe2/core/logging.h"
namespace caffe2 {
/**
* @brief Tensor is the basic class in Caffe2 that stores a contiguous memory
* with its shape information.
*
* The Tensor class is essentially a wrapper around a device-specific memory
* (the device is specified by the Context template argument), and deals with
* the allocation and de-allocation of such memory. We make a simplified
* assumption that the memory is always contiguous.
*/
template <class Context>
class Tensor {
public:
/**
* Initializes an empty tensor.
*/
Tensor() : size_(0), data_(nullptr) {}
/**
* @brief Creates a tensor of the given dimension.
*
* Note that the actual data allocation is not going to be carried out until
* the first time mutable_data() is called.
*/
explicit Tensor(const vector<int>& dims) { Reshape(dims); }
/**
* @brief Creates a tensor from a source tensor, copying over the content.
*
* Note that the source tensor can be from a different device context. The
* second argument provides a device context object (either Context or
* SrcContext) that will be responsible for copying the underlying data.
* If you do not wish to pass in a Context object, an equivalent constructor
* function exists that will create an implicit context object for copy, but
* be noted that this will cause a potential performance hit.
*/
template <class SrcContext, class ContextForCopy>
Tensor(const Tensor<SrcContext>& src, ContextForCopy* context)
: meta_(src.meta()) {
Reshape(src.dims());
context->template Memcpy<SrcContext, Context>(
nbytes(), src.raw_data(), raw_mutable_data());
}
/**
* @brief Creates a tensor from a source tensor, copying over the content.
*
* Note that this may have a potential performance hit, since a temporary
* context object will be created for the memory copy. Prefer explicitly
* providing a context for copy if you can.
*/
template <class SrcContext>
Tensor(const Tensor<SrcContext>& src)
: meta_(src.meta()) {
Reshape(src.dims());
SrcContext tmp_context;
tmp_context.template Memcpy<SrcContext, Context>(
nbytes(), src.raw_data(), raw_mutable_data());
}
/**
* @brief Creates a tensor, and fills its contents with the given values.
*/
template <typename T>
Tensor(const vector<int>& dims, const vector<T>& values, Context* context)
: meta_(TypeMeta::Make<T>()) {
Reshape(dims);
CAFFE_CHECK_EQ(values.size(), size_);
context->template Copy<T, CPUContext, Context>(
values.size(), values.data(), mutable_data<T>());
}
/**
* @brief Creates a scalar tensor, and fills its content with the given value.
*/
template <typename T,
typename = typename std::enable_if<std::is_scalar<T>::value>::type>
Tensor(const T& value, Context* context) {
Reshape(vector<int>{});
context->template Copy<T, CPUContext, Context>(
1, &value, mutable_data<T>());
}
virtual ~Tensor() {}
/**
* @brief Reshapes a tensor.
*
* Reshape takes in a vector of ints specifying the dimensions of the tensor.
* You can pass in an empty vector to specify that it is a scalar (i.e.
* containing one single item).
*
* The underlying storage may be deleted after calling Reshape: if the new
* shape leads to a different number of items in the tensor, the old memory
* is deleted and new memory will be allocated next time you call
* mutable_data(). However, if the shape is different but the total number of
* items is the same, the underlying storage is kept.
*/
void Reshape(const vector<int>& dims) {
dims_ = dims;
// Calculate the size.
int new_size = 1;
for (int d : dims_) {
CAFFE_CHECK_GT(d, 0);
new_size *= d;
}
// If the size changes, we will free the data. the next mutable_data() call
// will create the data storage.
if (data_.get() && size_ != new_size) {
data_.reset();
}
size_ = new_size;
}
/**
* Reshape the tensor like the source tensor. Note that this is just a
* sugar wrapper that essentially calls Reshape(src_tensor.dims()).
*/
template <class OtherContext>
inline void ReshapeLike(const Tensor<OtherContext>& src_tensor) {
Reshape(src_tensor.dims());
}
/**
* A utility function to print the debug string for the tensor. Note that this
* is very slow since it involves quite some string operations, so do not use
* it in your performance-critical code.
*/
string DebugString() const {
std::stringstream ss;
ss << "A Tensor of item size " << itemsize() << " and type "
<< meta_.name() << " and dimension (";
for (int d : dims_) {
ss << d << ",";
}
ss << ").";
return ss.str();
}
/**
* @brief Shares the data with another tensor.
*
* To share data between two tensors, the sizes of the two tensors must be
* equal already. The reason we do not implicitly do a Reshape to make the two
* tensors have the same shape is that, we want to allow tensors of different
* shapes but the same number of items to still be able to share data. This
* allows one to e.g. have a n-dimensional Tensor and a flattened version
* sharing the same underlying storage.
*
* The source tensor should already have its data allocated.
*/
void ShareData(const Tensor& src) {
meta_ = src.meta();
CAFFE_CHECK_EQ(src.size_, size_)
<< "Size mismatch - did you call reshape before sharing the data?";
// It is possible that the source tensor hasn't called mutable_data() yet,
// in which case ShareData() does make much sense since we don't really know
// what to share yet.
CAFFE_CHECK(src.data_.get()) << "Source tensor has no content yet.";
// Finally, do sharing.
data_ = src.data_;
}
/**
* Returns a const raw void* pointer of the underlying storage. mutable_data()
* or raw_mutable_data() must have been called prior to this function call.
*/
inline const void* raw_data() const {
CAFFE_CHECK_NOTNULL(data_.get());
return data_.get();
}
/**
* Returns a typed pointer of the underlying storage. mutable_data() or
* raw_mutable_data() must have been called prior to this function call, and
* the data type must be of the correct type. If you want to get a void*
* pointer instead, use raw_data().
*/
template <typename T>
inline const T* data() const {
CAFFE_CHECK_NOTNULL(data_.get());
CAFFE_CHECK(IsType<T>());
return static_cast<T*>(data_.get());
}
/**
* Returns a mutable raw pointer of the underlying storage. Since we will need
* to know the type of the data for allocation, a TypeMeta object is passed in
* to specify the necessary information. This is conceptually equivalent of
* calling mutable_data<T>() where the TypeMeta parameter meta is derived from
* the type T. This function differs from mutable_data<T>() in the sense that
* the type T can be specified during runtime via the TypeMeta object.
*
* If the existing data does not match the desired type, it will be deleted
* and a new storage will be created.
*/
inline void* raw_mutable_data(const TypeMeta& meta) {
if (!data_.get() || meta_ != meta) {
meta_ = meta;
CAFFE_CHECK_GT(size_, 0);
data_.reset(static_cast<void*>(Context::New(size_ * meta_.itemsize())),
Context::Delete);
return data_.get();
} else {
return data_.get();
}
}
/**
* Returns a mutable raw pointer of the underlying storage. This can only be
* used when you know for sure that the underlying storage of the tensor is
* already created via an earlier raw_mutable_data(meta) call or a
* mutable_data<T>() call.
*
* If the existing data does not match the desired type, it will be deleted
* and a new storage will be created.
*/
inline void* raw_mutable_data() {
CAFFE_CHECK_NE(meta_.id(), 0)
<< "Calling raw_mutable_data() without meta, but the current meta is "
"of unknown type.";
return raw_mutable_data(meta_);
}
/**
* Returns a typed pointer of the underlying storage.
*
* If the existing data does not match the desired type, it will be deleted
* and a new storage will be created.
*/
template <typename T>
inline T* mutable_data() {
return static_cast<T*>(
raw_mutable_data(TypeMeta::Make<T>()));
}
/**
* Returns the number of dimensions of the data.
*/
inline int ndim() const { return dims_.size(); }
/**
* Returns the size (i.e. the number of items) of the tensor.
*/
inline int size() const { return size_; }
/**
* Return the number of bytes each item takes in the tensor.
*/
inline int itemsize() const { return meta_.itemsize(); }
/**
* Returns the total number of bytes of the storage.
*
* This is equivalent to calling size() * itemsize().
*/
inline int nbytes() const { return size_ * meta_.itemsize(); }
/**
* Returns the dimensions of the tensor as a vector.
*/
inline const vector<int>& dims() const { return dims_; }
/**
* Checks if the tensor content is of the given data type.
*/
template <typename T>
inline bool IsType() const { return meta_.Match<T>(); }
/**
* Returns the TypeMeta object associated with the current data type.
*/
inline const TypeMeta& meta() const { return meta_; }
/**
* Returns the i-th dimension of the tensor. Note that the passed in index
* must be between 0 (inclusive) and the number of dimensions, otherwise
* this function will produce a fatal message.
*/
inline int dim(const int i) const {
CAFFE_CHECK_LT(i, dims_.size()) << "Exceeding ndim limit " << dims_.size();
CAFFE_CHECK_GE(i, 0) << "Cannot have negative index";
return dims_[i];
}
protected:
vector<int> dims_;
int size_;
TypeMeta meta_;
std::shared_ptr<void> data_;
DISABLE_COPY_AND_ASSIGN(Tensor);
};
} // namespace caffe2
#endif // CAFFE2_CORE_TENSOR_H_

View File

@ -10,17 +10,26 @@ namespace caffe2 {
typedef intptr_t CaffeTypeId;
// TypeMeta is a thin class that allows us to store the type of a container such
// as a blob, or the data type of a tensor, with a unique run-time id. It also
// stores some additional data such as the item size and the name of the type
// for run-time inspection.
/**
* TypeMeta is a thin class that allows us to store the type of a container such
* as a blob, or the data type of a tensor, with a unique run-time id. It also
* stores some additional data such as the item size and the name of the type
* for run-time inspection.
*/
class TypeMeta {
public:
// Create a dummy TypeMeta object. To create a TypeMeta object for a specific
// type, use TypeMeta::Make<T>().
/** Create a dummy TypeMeta object. To create a TypeMeta object for a specific
* type, use TypeMeta::Make<T>().
*/
TypeMeta() : id_(0), itemsize_(0), name_("Unknown type") {}
/**
* Copy constructor.
*/
TypeMeta(const TypeMeta& src)
: id_(src.id_), itemsize_(src.itemsize_), name_(src.name_) {}
/**
* Assignment operator.
*/
TypeMeta& operator=(const TypeMeta& src) {
if (this == &src) return *this;
id_ = src.id_;
@ -29,8 +38,17 @@ class TypeMeta {
return *this;
}
/**
* Returns the type id.
*/
inline const CaffeTypeId& id() const { return id_; }
/**
* Returns the size of the item.
*/
inline const size_t& itemsize() const { return itemsize_; }
/**
* Returns a printable name for the type.
*/
inline const char* const& name() const { return name_; }
bool operator==(const TypeMeta& other) const { return (id_ == other.id_); }
bool operator!=(const TypeMeta& other) const { return (id_ != other.id_); }
@ -38,16 +56,33 @@ class TypeMeta {
template <typename T>
inline bool Match() const { return (id_ == Id<T>()); }
// Static functions that can be called by passing a specific type.
// Below are static functions that can be called by passing a specific type.
/**
* Returns the unique id for the given type T. The id is unique for the type T
* in the sense that for any two different types, their id are different; for
* the same type T, the id remains the same over different calls of the
* function. However, this is not guaranteed over different runs, as the id
* is generated during run-time. Do NOT serialize the id for storage.
*/
template <typename T>
static CaffeTypeId Id() {
static bool type_id_bit[1];
return reinterpret_cast<CaffeTypeId>(type_id_bit);
}
/**
* Returns the item size of the type. This is equivalent to sizeof(T).
*/
template <typename T>
static size_t ItemSize() { return sizeof(T); }
/**
* Returns the printable name of the type.
*/
template <typename T>
static const char* Name() { return typeid(T).name(); }
/**
* Returns a TypeMeta object that corresponds to the typename T.
*/
template <typename T>
static TypeMeta Make() {
return TypeMeta(Id<T>(), ItemSize<T>(), Name<T>());

View File

@ -32,7 +32,12 @@ const Blob* Workspace::GetBlob(const string& name) const {
}
}
bool Workspace::CreateNet(const NetDef& net_def) {
Blob* Workspace::GetBlob(const string& name) {
return const_cast<Blob*>(
static_cast<const Workspace*>(this)->GetBlob(name));
}
NetBase* Workspace::CreateNet(const NetDef& net_def) {
CAFFE_CHECK(net_def.has_name()) << "Net definition should have a name.";
if (net_map_.count(net_def.name()) > 0) {
CAFFE_LOG_WARNING << "Overwriting existing network of the same name.";
@ -49,13 +54,14 @@ bool Workspace::CreateNet(const NetDef& net_def) {
if (net_map_[net_def.name()].get() == nullptr) {
CAFFE_LOG_ERROR << "Error when creating the network.";
net_map_.erase(net_def.name());
return false;
return nullptr;
}
if (!net_map_[net_def.name()]->Verify()) {
CAFFE_LOG_ERROR << "Error when setting up network " << net_def.name();
return false;
net_map_.erase(net_def.name());
return nullptr;
}
return true;
return net_map_[net_def.name()].get();
}
void Workspace::DeleteNet(const string& name) {

View File

@ -15,21 +15,31 @@ namespace caffe2 {
class NetBase;
// Workspace is a class that holds all the blobs in this run and also runs
// the operators.
/**
* Workspace is a class that holds all the related objects created during
* runtime: (1) all blobs, and (2) all instantiated networks. It is the owner of
* all these objects and deals with the scaffolding logistics.
*/
class Workspace {
public:
typedef CaffeMap<string, unique_ptr<Blob> > BlobMap;
typedef CaffeMap<string, unique_ptr<NetBase> > NetMap;
// Initializes an empty workspace.
/**
* Initializes an empty workspace.
*/
Workspace() : blob_map_(new BlobMap()), root_folder_(".") {}
/**
* Initializes an empty workspace with the given root folder.
*/
explicit Workspace(const string& root_folder)
: blob_map_(new BlobMap()), net_map_(), root_folder_(root_folder) {}
~Workspace() {}
// Return a list of blob names. This may be a bit slow since it will involve
// creation of multiple temp variables - if possible, use HasBlob() or
// GetBlob() below with given names.
/**
* Return a list of blob names. This may be a bit slow since it will involve
* creation of multiple temp variables. For best performance, simply use
* HasBlob() and GetBlob().
*/
vector<string> Blobs() {
vector<string> names;
for (auto& entry : *blob_map_) {
@ -37,23 +47,56 @@ class Workspace {
}
return names;
}
// Return the root folder of the workspace.
/**
* Return the root folder of the workspace.
*/
const string& RootFolder() { return root_folder_; }
/**
* Checks if a blob with the given name is present in the current workspace.
*/
inline bool HasBlob(const string& name) const {
return blob_map_->count(name);
}
/**
* Creates a blob of the given name. The pointer to the blob is returned, but
* the workspace keeps ownership of the pointer. If a blob of the given name
* already exists, the creation is skipped and the existing blob is returned.
*/
Blob* CreateBlob(const string& name);
/**
* Gets the blob with the given name as a const pointer. If the blob does not
* exist, a nullptr is returned.
*/
const Blob* GetBlob(const string& name) const;
inline Blob* GetBlob(const string& name) {
return const_cast<Blob*>(
static_cast<const Workspace*>(this)->GetBlob(name));
}
/**
* Gets the blob with the given name as a mutable pointer. If the blob does
* not exist, a nullptr is returned.
*/
Blob* GetBlob(const string& name);
// CreateNet creates a network in the current workspace. It can then
// be referred to by RunNet().
bool CreateNet(const NetDef& net_def);
/**
* Creates a network with the given NetDef, and returns the pointer to the
* network. If there is anything wrong during the creation of the network, a
* nullptr is returned. The Workspace keeps ownership of the pointer.
*/
NetBase* CreateNet(const NetDef& net_def);
/**
* Deletes the instantiated network with the given name.
*/
void DeleteNet(const string& net_name);
/**
* Finds and runs the instantiated network with the given name. If the network
* does not exist or there are errors running the network, the function
* returns false.
*/
bool RunNet(const string& net_name);
/**
* Returns a list of names of the currently instantiated networks.
*/
vector<string> Nets() {
vector<string> names;
for (auto& entry : net_map_) {
@ -62,7 +105,9 @@ class Workspace {
return names;
}
// RunPlan runs a plan that has multiple nets and execution steps.
/**
* Runs a plan that has multiple nets and execution steps.
*/
bool RunPlan(const PlanDef& plan_def);
// RunOperatorOnce and RunNetOnce runs an operator or net once. The difference

View File

@ -8,7 +8,7 @@
namespace caffe2 {
template <typename T, class Context>
template <class Context>
class FallbackBroadcastOp final : public Operator<Context> {
public:
static_assert(!std::is_same<Context, CPUContext>::value,

View File

@ -52,9 +52,9 @@ namespace caffe2 {
namespace {
#if CAFFE2_HAS_CUDA_MPI_BROADCAST
REGISTER_CUDA_OPERATOR(Broadcast, BroadcastOp<float, CUDAContext>);
REGISTER_CUDA_OPERATOR(Broadcast, BroadcastOp<CUDAContext>);
#else
REGISTER_CUDA_OPERATOR(Broadcast, FallbackBroadcastOp<float, CUDAContext>);
REGISTER_CUDA_OPERATOR(Broadcast, FallbackBroadcastOp<CUDAContext>);
#endif
#if CAFFE2_HAS_CUDA_MPI_ALLREDUCE
REGISTER_CUDA_OPERATOR(Allreduce, AllreduceOp<float, CUDAContext>);

View File

@ -1,6 +1,7 @@
#ifndef CAFFE2_OPERATORS_LOAD_SAVE_OP_H_
#define CAFFE2_OPERATORS_LOAD_SAVE_OP_H_
#include <cstdio>
#include <map>
#include "caffe2/core/context.h"
@ -122,11 +123,25 @@ class SaveOp final : public OperatorBase {
template <typename ... Ts>
string FormatString(const string& pattern, Ts... values) {
// Note(Yangqing): We believe that 1024 is enough, but who are we to assert
// that?
// As a result, if things go wrong, we'll just throw the towel and quit loud.
// Yeah, I know that there is snprintf, but it is not present in *some*
// platforms unfortunately.
char buffer[1024];
int written = sprintf(buffer, pattern.c_str(), values...);
if (written < 0 || written + 1 > 1024) {
CAFFE_LOG_FATAL << "FormatString fails: total bytes written " << written;
}
return string(buffer);
/*
* The following is the snprintf version that is safe; enable it one day?
unsigned int required =
std::snprintf(nullptr, 0, pattern.c_str(), values...) + 1;
char bytes[required];
std::snprintf(bytes, required, pattern.c_str(), values...);
return string(bytes);
*/
}
// SnapshotOp is a wrapper over a SaveFloatTensorOp that basically allows

View File

@ -13,6 +13,7 @@
#endif // PYCAFFE2_CPU_ONLY
#include "caffe2/core/init.h"
#include "caffe2/core/net.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/workspace.h"
#include "caffe2/proto/caffe2.pb.h"
@ -147,6 +148,30 @@ PyObject* GlobalInit(PyObject* self, PyObject* args) {
Py_RETURN_TRUE;
}
PyObject* RegisteredOperators(PyObject* self, PyObject* args) {
std::set<string> all_keys;
// CPU operators
for (const auto& name : caffe2::CPUOperatorRegistry()->Keys()) {
all_keys.insert(name);
}
// CUDA operators
for (const auto& name : caffe2::CUDAOperatorRegistry()->Keys()) {
all_keys.insert(name);
}
// CUDNN operators
for (const auto& name : caffe2::CUDNNOperatorRegistry()->Keys()) {
all_keys.insert(name);
}
// Now, add it to the list
PyObject* list = PyList_New(all_keys.size());
int idx = 0;
for (const string& name : all_keys) {
CAFFE_CHECK_EQ(PyList_SetItem(list, idx, StdStringToPyString(name)), 0);
++idx;
}
return list;
}
PyObject* SwitchWorkspace(PyObject* self, PyObject* args) {
PyObject* name = nullptr;
PyObject* create_if_missing = nullptr;
@ -219,7 +244,8 @@ PyObject* Blobs(PyObject* self, PyObject* args) {
std::vector<caffe2::string> blob_strings = gWorkspace->Blobs();
PyObject* list = PyList_New(blob_strings.size());
for (int i = 0; i < blob_strings.size(); ++i) {
CAFFE_CHECK_EQ(PyList_SetItem(list, i, StdStringToPyString(blob_strings[i])), 0);
CAFFE_CHECK_EQ(
PyList_SetItem(list, i, StdStringToPyString(blob_strings[i])), 0);
}
return list;
}
@ -518,6 +544,7 @@ static PyMethodDef gPycaffe2Methods[] = {
// Note(Yangqing): For any function that we are going to override in the
// python file, we prepend "cc_" here.
_PYNAME(GlobalInit),
_PYNAME(RegisteredOperators),
_PYNAME(SwitchWorkspace),
_PYNAME(CurrentWorkspace),
_PYNAME(Workspaces),

View File

@ -15,6 +15,9 @@ class CNNModelHelper(object):
raise ValueError("Cannot understand the CNN storage order %s."
% self.order)
def Proto(self):
return self.net.Proto()
def Conv(self, blob_in, blob_out, dim_in, dim_out, kernel,
weight_init, bias_init, **kwargs):
"""Convolution. We intentionally do not provide odd kernel/stride/pad
@ -88,8 +91,11 @@ class CNNModelHelper(object):
order=self.order, **kwargs)[0]
def AddGradientOperators(self):
return self.net.AddGradientOperators()
self.net.AddGradientOperators()
def __getattr__(self, operator_type):
def __getattr__(self, op_type):
"""Catch-all for all other operators, mostly those without params."""
return self.net.__getattr__(operator_type)
if not core.IsOperator(op_type):
raise RuntimeError(
'Method ' + op_type + ' is not a registered operator.')
return self.net.__getattr__(op_type)

View File

@ -1,6 +1,11 @@
from caffe2.proto import caffe2_pb2
from collections import Counter, defaultdict
from pycaffe2 import utils
from pycaffe2 import utils, workspace
_REGISTERED_OPERATORS = set(workspace.RegisteredOperators())
def IsOperator(op_type):
return (op_type in _REGISTERED_OPERATORS)
def GetGradientName(name):
"""The function that returns the gradient name for a blob."""
@ -41,6 +46,9 @@ class BlobReference(object):
is equivalent to doing
net.Relu([b], ...)
"""
if not IsOperator(op_type):
raise RuntimeError(
'Method ' + op_type + ' is not a registered operator.')
def _CreateAndAddToNet(inputs=[], *args, **kwargs):
"""Internal function that routes the operator generation to the network's
__getattr__ function.
@ -52,6 +60,7 @@ class BlobReference(object):
return self._from_net.__getattr__(op_type)(inputs, *args, **kwargs)
return _CreateAndAddToNet
def CreateOperator(operator_type):
"""A function wrapper that allows one to create operators based on the
operator type. The type should be a string corresponding to an operator
@ -254,11 +263,10 @@ class Net(object):
device_option.cuda_gpu_id = gpu_id
self._net.device_option.CopyFrom(device_option)
def __getattr__(self, operator_type):
if operator_type in self.__class__.operator_registry_:
# Not finished. Operator registry allows one to define custon functions,
# but so far that functionality is not complete.
return self.__class__.operator_registry_
def __getattr__(self, op_type):
if not IsOperator(op_type):
raise RuntimeError(
'Method ' + op_type + ' is not a registered operator.')
def _CreateAndAddToSelf(inputs, outputs=None, **kwargs):
if outputs is None:
# If we do not specify an output, we will assume that this operator
@ -268,7 +276,7 @@ class Net(object):
# In this case, we will auto-fill the given number of outputs with
# auto-generated names.
outputs = [self.NextName() for i in range(outputs)]
op = CreateOperator(operator_type)(inputs, outputs, **kwargs)
op = CreateOperator(op_type)(inputs, outputs, **kwargs)
self._net.op.extend([op])
if len(op.output) == 0:
return

View File

@ -2,6 +2,6 @@ cc_thirdparty_target(
name = "cudnn",
srcs = ["BREW"],
commands=[],
cc_obj_files = ["-lcudnn"],
cc_obj_files = ["-lcudnn_static"],
)

View File

@ -1,3 +1,7 @@
if Env.USE_SYSTEM_EIGEN:
# If we are using system eigen, this is just a dummy placeholder that does
# nothing.
cc_thirdparty_target(
name = "eigen",
srcs = ["BREW"],
@ -5,3 +9,16 @@ cc_thirdparty_target(
# Eigen is a header-only library so there is no cc_obj_files.
cc_obj_files = [],
)
else:
# We need to copy over the code included in Caffe.
cc_thirdparty_target(
name = "eigen",
srcs = ["BREW"],
commands=[
"mkdir -p $DSTDIR/include/eigen3",
"cp -r Eigen $DSTDIR/include/eigen3/",
"cp -r unsupported $DSTDIR/include/eigen3/",
],
# Eigen is a header-only library so there is no cc_obj_files.
cc_obj_files = [],
)

19
third_party/eigen3/Eigen/CMakeLists.txt vendored Normal file
View File

@ -0,0 +1,19 @@
include(RegexUtils)
test_escape_string_as_regex()
file(GLOB Eigen_directory_files "*")
escape_string_as_regex(ESCAPED_CMAKE_CURRENT_SOURCE_DIR "${CMAKE_CURRENT_SOURCE_DIR}")
foreach(f ${Eigen_directory_files})
if(NOT f MATCHES "\\.txt" AND NOT f MATCHES "${ESCAPED_CMAKE_CURRENT_SOURCE_DIR}/[.].+" AND NOT f MATCHES "${ESCAPED_CMAKE_CURRENT_SOURCE_DIR}/src")
list(APPEND Eigen_directory_files_to_install ${f})
endif()
endforeach(f ${Eigen_directory_files})
install(FILES
${Eigen_directory_files_to_install}
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen COMPONENT Devel
)
add_subdirectory(src)

33
third_party/eigen3/Eigen/Cholesky vendored Normal file
View File

@ -0,0 +1,33 @@
#ifndef EIGEN_CHOLESKY_MODULE_H
#define EIGEN_CHOLESKY_MODULE_H
#include "Core"
#include "src/Core/util/DisableStupidWarnings.h"
/** \defgroup Cholesky_Module Cholesky module
*
*
*
* This module provides two variants of the Cholesky decomposition for selfadjoint (hermitian) matrices.
* Those decompositions are also accessible via the following methods:
* - MatrixBase::llt()
* - MatrixBase::ldlt()
* - SelfAdjointView::llt()
* - SelfAdjointView::ldlt()
*
* \code
* #include <Eigen/Cholesky>
* \endcode
*/
#include "src/Cholesky/LLT.h"
#include "src/Cholesky/LDLT.h"
#ifdef EIGEN_USE_LAPACKE
#include "src/Cholesky/LLT_MKL.h"
#endif
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_CHOLESKY_MODULE_H
/* vim: set filetype=cpp et sw=2 ts=2 ai: */

41
third_party/eigen3/Eigen/CholmodSupport vendored Normal file
View File

@ -0,0 +1,41 @@
#ifndef EIGEN_CHOLMODSUPPORT_MODULE_H
#define EIGEN_CHOLMODSUPPORT_MODULE_H
#include "SparseCore"
#include "src/Core/util/DisableStupidWarnings.h"
extern "C" {
#include <cholmod.h>
}
/** \ingroup Support_modules
* \defgroup CholmodSupport_Module CholmodSupport module
*
* This module provides an interface to the Cholmod library which is part of the <a href="http://www.cise.ufl.edu/research/sparse/SuiteSparse/">suitesparse</a> package.
* It provides the two following main factorization classes:
* - class CholmodSupernodalLLT: a supernodal LLT Cholesky factorization.
* - class CholmodDecomposiiton: a general L(D)LT Cholesky factorization with automatic or explicit runtime selection of the underlying factorization method (supernodal or simplicial).
*
* For the sake of completeness, this module also propose the two following classes:
* - class CholmodSimplicialLLT
* - class CholmodSimplicialLDLT
* Note that these classes does not bring any particular advantage compared to the built-in
* SimplicialLLT and SimplicialLDLT factorization classes.
*
* \code
* #include <Eigen/CholmodSupport>
* \endcode
*
* In order to use this module, the cholmod headers must be accessible from the include paths, and your binary must be linked to the cholmod library and its dependencies.
* The dependencies depend on how cholmod has been compiled.
* For a cmake based project, you can use our FindCholmod.cmake module to help you in this task.
*
*/
#include "src/CholmodSupport/CholmodSupport.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_CHOLMODSUPPORT_MODULE_H

443
third_party/eigen3/Eigen/Core vendored Normal file
View File

@ -0,0 +1,443 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2007-2011 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CORE_H
#define EIGEN_CORE_H
// first thing Eigen does: stop the compiler from committing suicide
#include "src/Core/util/DisableStupidWarnings.h"
// Handle NVCC/CUDA
#ifdef __CUDACC__
// Do not try asserts on CUDA!
#ifndef EIGEN_NO_DEBUG
#define EIGEN_NO_DEBUG
#endif
#ifdef EIGEN_INTERNAL_DEBUGGING
#undef EIGEN_INTERNAL_DEBUGGING
#endif
// Do not try to vectorize on CUDA!
#ifndef EIGEN_DONT_VECTORIZE
#define EIGEN_DONT_VECTORIZE
#endif
#ifdef EIGEN_EXCEPTIONS
#undef EIGEN_EXCEPTIONS
#endif
// All functions callable from CUDA code must be qualified with __device__
#define EIGEN_DEVICE_FUNC __host__ __device__
#else
#define EIGEN_DEVICE_FUNC
#endif
#if defined(__CUDA_ARCH__)
#define EIGEN_USING_STD_MATH(FUNC) using ::FUNC;
#else
#define EIGEN_USING_STD_MATH(FUNC) using std::FUNC;
#endif
#if (defined(_CPPUNWIND) || defined(__EXCEPTIONS)) && !defined(__CUDA_ARCH__) && !defined(EIGEN_EXCEPTIONS)
#define EIGEN_EXCEPTIONS
#endif
#ifdef EIGEN_EXCEPTIONS
#include <new>
#endif
// then include this file where all our macros are defined. It's really important to do it first because
// it's where we do all the alignment settings (platform detection and honoring the user's will if he
// defined e.g. EIGEN_DONT_ALIGN) so it needs to be done before we do anything with vectorization.
#include "src/Core/util/Macros.h"
// Disable the ipa-cp-clone optimization flag with MinGW 6.x or newer (enabled by default with -O3)
// See http://eigen.tuxfamily.org/bz/show_bug.cgi?id=556 for details.
#if EIGEN_COMP_MINGW && EIGEN_GNUC_AT_LEAST(4,6)
#pragma GCC optimize ("-fno-ipa-cp-clone")
#endif
#include <complex>
// this include file manages BLAS and MKL related macros
// and inclusion of their respective header files
#include "src/Core/util/MKL_support.h"
// if alignment is disabled, then disable vectorization. Note: EIGEN_MAX_ALIGN_BYTES is the proper check, it takes into
// account both the user's will (EIGEN_MAX_ALIGN_BYTES,EIGEN_DONT_ALIGN) and our own platform checks
#if EIGEN_MAX_ALIGN_BYTES==0
#ifndef EIGEN_DONT_VECTORIZE
#define EIGEN_DONT_VECTORIZE
#endif
#endif
#if EIGEN_COMP_MSVC
#include <malloc.h> // for _aligned_malloc -- need it regardless of whether vectorization is enabled
#if (EIGEN_COMP_MSVC >= 1500) // 2008 or later
// Remember that usage of defined() in a #define is undefined by the standard.
// a user reported that in 64-bit mode, MSVC doesn't care to define _M_IX86_FP.
#if (defined(_M_IX86_FP) && (_M_IX86_FP >= 2)) || EIGEN_ARCH_x86_64
#define EIGEN_SSE2_ON_MSVC_2008_OR_LATER
#endif
#endif
#else
// Remember that usage of defined() in a #define is undefined by the standard
#if (defined __SSE2__) && ( (!EIGEN_COMP_GNUC) || EIGEN_COMP_ICC || EIGEN_GNUC_AT_LEAST(4,2) )
#define EIGEN_SSE2_ON_NON_MSVC_BUT_NOT_OLD_GCC
#endif
#endif
#ifndef EIGEN_DONT_VECTORIZE
#if defined (EIGEN_SSE2_ON_NON_MSVC_BUT_NOT_OLD_GCC) || defined(EIGEN_SSE2_ON_MSVC_2008_OR_LATER)
// Defines symbols for compile-time detection of which instructions are
// used.
// EIGEN_VECTORIZE_YY is defined if and only if the instruction set YY is used
#define EIGEN_VECTORIZE
#define EIGEN_VECTORIZE_SSE
#define EIGEN_VECTORIZE_SSE2
// Detect sse3/ssse3/sse4:
// gcc and icc defines __SSE3__, ...
// there is no way to know about this on msvc. You can define EIGEN_VECTORIZE_SSE* if you
// want to force the use of those instructions with msvc.
#ifdef __SSE3__
#define EIGEN_VECTORIZE_SSE3
#endif
#ifdef __SSSE3__
#define EIGEN_VECTORIZE_SSSE3
#endif
#ifdef __SSE4_1__
#define EIGEN_VECTORIZE_SSE4_1
#endif
#ifdef __SSE4_2__
#define EIGEN_VECTORIZE_SSE4_2
#endif
#ifdef __AVX__
#define EIGEN_VECTORIZE_AVX
#define EIGEN_VECTORIZE_SSE3
#define EIGEN_VECTORIZE_SSSE3
#define EIGEN_VECTORIZE_SSE4_1
#define EIGEN_VECTORIZE_SSE4_2
#endif
#ifdef __AVX2__
#define EIGEN_VECTORIZE_AVX2
#endif
#ifdef __FMA__
#define EIGEN_VECTORIZE_FMA
#endif
// include files
// This extern "C" works around a MINGW-w64 compilation issue
// https://sourceforge.net/tracker/index.php?func=detail&aid=3018394&group_id=202880&atid=983354
// In essence, intrin.h is included by windows.h and also declares intrinsics (just as emmintrin.h etc. below do).
// However, intrin.h uses an extern "C" declaration, and g++ thus complains of duplicate declarations
// with conflicting linkage. The linkage for intrinsics doesn't matter, but at that stage the compiler doesn't know;
// so, to avoid compile errors when windows.h is included after Eigen/Core, ensure intrinsics are extern "C" here too.
// notice that since these are C headers, the extern "C" is theoretically needed anyways.
extern "C" {
// In theory we should only include immintrin.h and not the other *mmintrin.h header files directly.
// Doing so triggers some issues with ICC. However old gcc versions seems to not have this file, thus:
#if EIGEN_COMP_ICC >= 1110
#include <immintrin.h>
#else
#include <emmintrin.h>
#include <xmmintrin.h>
#ifdef EIGEN_VECTORIZE_SSE3
#include <pmmintrin.h>
#endif
#ifdef EIGEN_VECTORIZE_SSSE3
#include <tmmintrin.h>
#endif
#ifdef EIGEN_VECTORIZE_SSE4_1
#include <smmintrin.h>
#endif
#ifdef EIGEN_VECTORIZE_SSE4_2
#include <nmmintrin.h>
#endif
#ifdef EIGEN_VECTORIZE_AVX
#include <immintrin.h>
#endif
#endif
} // end extern "C"
#elif defined __VSX__
#define EIGEN_VECTORIZE
#define EIGEN_VECTORIZE_VSX
#include <altivec.h>
// We need to #undef all these ugly tokens defined in <altivec.h>
// => use __vector instead of vector
#undef bool
#undef vector
#undef pixel
#elif defined __ALTIVEC__
#define EIGEN_VECTORIZE
#define EIGEN_VECTORIZE_ALTIVEC
#include <altivec.h>
// We need to #undef all these ugly tokens defined in <altivec.h>
// => use __vector instead of vector
#undef bool
#undef vector
#undef pixel
#elif (defined __ARM_NEON) || (defined __ARM_NEON__)
#define EIGEN_VECTORIZE
#define EIGEN_VECTORIZE_NEON
#include <arm_neon.h>
#endif
#endif
#if defined __CUDACC__
#define EIGEN_VECTORIZE_CUDA
#include <vector_types.h>
#endif
#if (defined _OPENMP) && (!defined EIGEN_DONT_PARALLELIZE)
#define EIGEN_HAS_OPENMP
#endif
#ifdef EIGEN_HAS_OPENMP
#include <omp.h>
#endif
// MSVC for windows mobile does not have the errno.h file
#if !(EIGEN_COMP_MSVC && EIGEN_OS_WINCE) && !EIGEN_COMP_ARM
#define EIGEN_HAS_ERRNO
#endif
#ifdef EIGEN_HAS_ERRNO
#include <cerrno>
#endif
#include <cstddef>
#include <cstdlib>
#include <cmath>
#include <cassert>
#include <functional>
#include <iosfwd>
#include <cstring>
#include <string>
#include <limits>
#include <climits> // for CHAR_BIT
// for min/max:
#include <algorithm>
// for outputting debug info
#ifdef EIGEN_DEBUG_ASSIGN
#include <iostream>
#endif
// required for __cpuid, needs to be included after cmath
#if EIGEN_COMP_MSVC && EIGEN_ARCH_i386_OR_x86_64 && !EIGEN_OS_WINCE
#include <intrin.h>
#endif
/** \brief Namespace containing all symbols from the %Eigen library. */
namespace Eigen {
inline static const char *SimdInstructionSetsInUse(void) {
#if defined(EIGEN_VECTORIZE_AVX)
return "AVX SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2";
#elif defined(EIGEN_VECTORIZE_SSE4_2)
return "SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2";
#elif defined(EIGEN_VECTORIZE_SSE4_1)
return "SSE, SSE2, SSE3, SSSE3, SSE4.1";
#elif defined(EIGEN_VECTORIZE_SSSE3)
return "SSE, SSE2, SSE3, SSSE3";
#elif defined(EIGEN_VECTORIZE_SSE3)
return "SSE, SSE2, SSE3";
#elif defined(EIGEN_VECTORIZE_SSE2)
return "SSE, SSE2";
#elif defined(EIGEN_VECTORIZE_ALTIVEC)
return "AltiVec";
#elif defined(EIGEN_VECTORIZE_VSX)
return "VSX";
#elif defined(EIGEN_VECTORIZE_NEON)
return "ARM NEON";
#else
return "None";
#endif
}
} // end namespace Eigen
#if defined EIGEN2_SUPPORT_STAGE40_FULL_EIGEN3_STRICTNESS || defined EIGEN2_SUPPORT_STAGE30_FULL_EIGEN3_API || defined EIGEN2_SUPPORT_STAGE20_RESOLVE_API_CONFLICTS || defined EIGEN2_SUPPORT_STAGE10_FULL_EIGEN2_API || defined EIGEN2_SUPPORT
// This will generate an error message:
#error Eigen2-support is only available up to version 3.2. Please go to "http://eigen.tuxfamily.org/index.php?title=Eigen2" for further information
#endif
// we use size_t frequently and we'll never remember to prepend it with std:: everytime just to
// ensure QNX/QCC support
using std::size_t;
// gcc 4.6.0 wants std:: for ptrdiff_t
using std::ptrdiff_t;
/** \defgroup Core_Module Core module
* This is the main module of Eigen providing dense matrix and vector support
* (both fixed and dynamic size) with all the features corresponding to a BLAS library
* and much more...
*
* \code
* #include <Eigen/Core>
* \endcode
*/
#include "src/Core/util/Constants.h"
#include "src/Core/util/Meta.h"
#include "src/Core/util/ForwardDeclarations.h"
#include "src/Core/util/StaticAssert.h"
#include "src/Core/util/XprHelper.h"
#include "src/Core/util/Memory.h"
#include "src/Core/NumTraits.h"
#include "src/Core/MathFunctions.h"
#include "src/Core/GenericPacketMath.h"
#if defined EIGEN_VECTORIZE_AVX
// Use AVX for floats and doubles, SSE for integers
#include "src/Core/arch/SSE/PacketMath.h"
#include "src/Core/arch/SSE/Complex.h"
#include "src/Core/arch/SSE/MathFunctions.h"
#include "src/Core/arch/AVX/PacketMath.h"
#include "src/Core/arch/AVX/MathFunctions.h"
#include "src/Core/arch/AVX/Complex.h"
#include "src/Core/arch/AVX/TypeCasting.h"
#elif defined EIGEN_VECTORIZE_SSE
#include "src/Core/arch/SSE/PacketMath.h"
#include "src/Core/arch/SSE/MathFunctions.h"
#include "src/Core/arch/SSE/Complex.h"
#include "src/Core/arch/SSE/TypeCasting.h"
#elif defined(EIGEN_VECTORIZE_ALTIVEC) || defined(EIGEN_VECTORIZE_VSX)
#include "src/Core/arch/AltiVec/PacketMath.h"
#include "src/Core/arch/AltiVec/MathFunctions.h"
#include "src/Core/arch/AltiVec/Complex.h"
#elif defined EIGEN_VECTORIZE_NEON
#include "src/Core/arch/NEON/PacketMath.h"
#include "src/Core/arch/NEON/MathFunctions.h"
#include "src/Core/arch/NEON/Complex.h"
#endif
#if defined EIGEN_VECTORIZE_CUDA
#include "src/Core/arch/CUDA/PacketMath.h"
#include "src/Core/arch/CUDA/MathFunctions.h"
#endif
#include "src/Core/arch/Default/Settings.h"
#include "src/Core/functors/BinaryFunctors.h"
#include "src/Core/functors/UnaryFunctors.h"
#include "src/Core/functors/NullaryFunctors.h"
#include "src/Core/functors/StlFunctors.h"
#include "src/Core/functors/AssignmentFunctors.h"
#include "src/Core/DenseCoeffsBase.h"
#include "src/Core/DenseBase.h"
#include "src/Core/MatrixBase.h"
#include "src/Core/EigenBase.h"
#include "src/Core/Product.h"
#include "src/Core/CoreEvaluators.h"
#include "src/Core/AssignEvaluator.h"
#ifndef EIGEN_PARSED_BY_DOXYGEN // work around Doxygen bug triggered by Assign.h r814874
// at least confirmed with Doxygen 1.5.5 and 1.5.6
#include "src/Core/Assign.h"
#endif
#include "src/Core/ArrayBase.h"
#include "src/Core/util/BlasUtil.h"
#include "src/Core/DenseStorage.h"
#include "src/Core/NestByValue.h"
// #include "src/Core/ForceAlignedAccess.h"
#include "src/Core/ReturnByValue.h"
#include "src/Core/NoAlias.h"
#include "src/Core/PlainObjectBase.h"
#include "src/Core/Matrix.h"
#include "src/Core/Array.h"
#include "src/Core/CwiseBinaryOp.h"
#include "src/Core/CwiseUnaryOp.h"
#include "src/Core/CwiseNullaryOp.h"
#include "src/Core/CwiseUnaryView.h"
#include "src/Core/SelfCwiseBinaryOp.h"
#include "src/Core/Dot.h"
#include "src/Core/StableNorm.h"
#include "src/Core/Stride.h"
#include "src/Core/MapBase.h"
#include "src/Core/Map.h"
#include "src/Core/Ref.h"
#include "src/Core/Block.h"
#include "src/Core/VectorBlock.h"
#include "src/Core/Transpose.h"
#include "src/Core/DiagonalMatrix.h"
#include "src/Core/Diagonal.h"
#include "src/Core/DiagonalProduct.h"
#include "src/Core/PermutationMatrix.h"
#include "src/Core/Transpositions.h"
#include "src/Core/Redux.h"
#include "src/Core/Visitor.h"
#include "src/Core/Fuzzy.h"
#include "src/Core/IO.h"
#include "src/Core/Swap.h"
#include "src/Core/CommaInitializer.h"
#include "src/Core/GeneralProduct.h"
#include "src/Core/Solve.h"
#include "src/Core/Inverse.h"
#include "src/Core/TriangularMatrix.h"
#include "src/Core/SelfAdjointView.h"
#include "src/Core/products/GeneralBlockPanelKernel.h"
#include "src/Core/products/Parallelizer.h"
#include "src/Core/ProductEvaluators.h"
#include "src/Core/products/GeneralMatrixVector.h"
#include "src/Core/products/GeneralMatrixMatrix.h"
#include "src/Core/SolveTriangular.h"
#include "src/Core/products/GeneralMatrixMatrixTriangular.h"
#include "src/Core/products/SelfadjointMatrixVector.h"
#include "src/Core/products/SelfadjointMatrixMatrix.h"
#include "src/Core/products/SelfadjointProduct.h"
#include "src/Core/products/SelfadjointRank2Update.h"
#include "src/Core/products/TriangularMatrixVector.h"
#include "src/Core/products/TriangularMatrixMatrix.h"
#include "src/Core/products/TriangularSolverMatrix.h"
#include "src/Core/products/TriangularSolverVector.h"
#include "src/Core/BandMatrix.h"
#include "src/Core/CoreIterators.h"
#include "src/Core/BooleanRedux.h"
#include "src/Core/Select.h"
#include "src/Core/VectorwiseOp.h"
#include "src/Core/Random.h"
#include "src/Core/Replicate.h"
#include "src/Core/Reverse.h"
#include "src/Core/ArrayWrapper.h"
#ifdef EIGEN_USE_BLAS
#include "src/Core/products/GeneralMatrixMatrix_MKL.h"
#include "src/Core/products/GeneralMatrixVector_MKL.h"
#include "src/Core/products/GeneralMatrixMatrixTriangular_MKL.h"
#include "src/Core/products/SelfadjointMatrixMatrix_MKL.h"
#include "src/Core/products/SelfadjointMatrixVector_MKL.h"
#include "src/Core/products/TriangularMatrixMatrix_MKL.h"
#include "src/Core/products/TriangularMatrixVector_MKL.h"
#include "src/Core/products/TriangularSolverMatrix_MKL.h"
#endif // EIGEN_USE_BLAS
#ifdef EIGEN_USE_MKL_VML
#include "src/Core/Assign_MKL.h"
#endif
#include "src/Core/GlobalFunctions.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_CORE_H

7
third_party/eigen3/Eigen/Dense vendored Normal file
View File

@ -0,0 +1,7 @@
#include "Core"
#include "LU"
#include "Cholesky"
#include "QR"
#include "SVD"
#include "Geometry"
#include "Eigenvalues"

2
third_party/eigen3/Eigen/Eigen vendored Normal file
View File

@ -0,0 +1,2 @@
#include "Dense"
#include "Sparse"

48
third_party/eigen3/Eigen/Eigenvalues vendored Normal file
View File

@ -0,0 +1,48 @@
#ifndef EIGEN_EIGENVALUES_MODULE_H
#define EIGEN_EIGENVALUES_MODULE_H
#include "Core"
#include "src/Core/util/DisableStupidWarnings.h"
#include "Cholesky"
#include "Jacobi"
#include "Householder"
#include "LU"
#include "Geometry"
/** \defgroup Eigenvalues_Module Eigenvalues module
*
*
*
* This module mainly provides various eigenvalue solvers.
* This module also provides some MatrixBase methods, including:
* - MatrixBase::eigenvalues(),
* - MatrixBase::operatorNorm()
*
* \code
* #include <Eigen/Eigenvalues>
* \endcode
*/
#include "src/Eigenvalues/Tridiagonalization.h"
#include "src/Eigenvalues/RealSchur.h"
#include "src/Eigenvalues/EigenSolver.h"
#include "src/Eigenvalues/SelfAdjointEigenSolver.h"
#include "src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h"
#include "src/Eigenvalues/HessenbergDecomposition.h"
#include "src/Eigenvalues/ComplexSchur.h"
#include "src/Eigenvalues/ComplexEigenSolver.h"
#include "src/Eigenvalues/RealQZ.h"
#include "src/Eigenvalues/GeneralizedEigenSolver.h"
#include "src/Eigenvalues/MatrixBaseEigenvalues.h"
#ifdef EIGEN_USE_LAPACKE
#include "src/Eigenvalues/RealSchur_MKL.h"
#include "src/Eigenvalues/ComplexSchur_MKL.h"
#include "src/Eigenvalues/SelfAdjointEigenSolver_MKL.h"
#endif
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_EIGENVALUES_MODULE_H
/* vim: set filetype=cpp et sw=2 ts=2 ai: */

55
third_party/eigen3/Eigen/Geometry vendored Normal file
View File

@ -0,0 +1,55 @@
#ifndef EIGEN_GEOMETRY_MODULE_H
#define EIGEN_GEOMETRY_MODULE_H
#include "Core"
#include "src/Core/util/DisableStupidWarnings.h"
#include "SVD"
#include "LU"
#include <limits>
/** \defgroup Geometry_Module Geometry module
*
*
*
* This module provides support for:
* - fixed-size homogeneous transformations
* - translation, scaling, 2D and 3D rotations
* - quaternions
* - \ref MatrixBase::cross() "cross product"
* - \ref MatrixBase::unitOrthogonal() "orthognal vector generation"
* - some linear components: parametrized-lines and hyperplanes
*
* \code
* #include <Eigen/Geometry>
* \endcode
*/
#include "src/Geometry/OrthoMethods.h"
#include "src/Geometry/EulerAngles.h"
#include "src/Geometry/Homogeneous.h"
#include "src/Geometry/RotationBase.h"
#include "src/Geometry/Rotation2D.h"
#include "src/Geometry/Quaternion.h"
#include "src/Geometry/AngleAxis.h"
#include "src/Geometry/Transform.h"
#include "src/Geometry/Translation.h"
#include "src/Geometry/Scaling.h"
#include "src/Geometry/Hyperplane.h"
#include "src/Geometry/ParametrizedLine.h"
#include "src/Geometry/AlignedBox.h"
#include "src/Geometry/Umeyama.h"
// Use the SSE optimized version whenever possible. At the moment the
// SSE version doesn't compile when AVX is enabled
#if defined EIGEN_VECTORIZE_SSE && !defined EIGEN_VECTORIZE_AVX
#include "src/Geometry/arch/Geometry_SSE.h"
#endif
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_GEOMETRY_MODULE_H
/* vim: set filetype=cpp et sw=2 ts=2 ai: */

23
third_party/eigen3/Eigen/Householder vendored Normal file
View File

@ -0,0 +1,23 @@
#ifndef EIGEN_HOUSEHOLDER_MODULE_H
#define EIGEN_HOUSEHOLDER_MODULE_H
#include "Core"
#include "src/Core/util/DisableStupidWarnings.h"
/** \defgroup Householder_Module Householder module
* This module provides Householder transformations.
*
* \code
* #include <Eigen/Householder>
* \endcode
*/
#include "src/Householder/Householder.h"
#include "src/Householder/HouseholderSequence.h"
#include "src/Householder/BlockHouseholder.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_HOUSEHOLDER_MODULE_H
/* vim: set filetype=cpp et sw=2 ts=2 ai: */

View File

@ -0,0 +1,40 @@
#ifndef EIGEN_ITERATIVELINEARSOLVERS_MODULE_H
#define EIGEN_ITERATIVELINEARSOLVERS_MODULE_H
#include "SparseCore"
#include "OrderingMethods"
#include "src/Core/util/DisableStupidWarnings.h"
/**
* \defgroup IterativeLinearSolvers_Module IterativeLinearSolvers module
*
* This module currently provides iterative methods to solve problems of the form \c A \c x = \c b, where \c A is a squared matrix, usually very large and sparse.
* Those solvers are accessible via the following classes:
* - ConjugateGradient for selfadjoint (hermitian) matrices,
* - LeastSquaresConjugateGradient for rectangular least-square problems,
* - BiCGSTAB for general square matrices.
*
* These iterative solvers are associated with some preconditioners:
* - IdentityPreconditioner - not really useful
* - DiagonalPreconditioner - also called Jacobi preconditioner, work very well on diagonal dominant matrices.
* - IncompleteLUT - incomplete LU factorization with dual thresholding
*
* Such problems can also be solved using the direct sparse decomposition modules: SparseCholesky, CholmodSupport, UmfPackSupport, SuperLUSupport.
*
\code
#include <Eigen/IterativeLinearSolvers>
\endcode
*/
#include "src/IterativeLinearSolvers/SolveWithGuess.h"
#include "src/IterativeLinearSolvers/IterativeSolverBase.h"
#include "src/IterativeLinearSolvers/BasicPreconditioners.h"
#include "src/IterativeLinearSolvers/ConjugateGradient.h"
#include "src/IterativeLinearSolvers/LeastSquareConjugateGradient.h"
#include "src/IterativeLinearSolvers/BiCGSTAB.h"
#include "src/IterativeLinearSolvers/IncompleteLUT.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_ITERATIVELINEARSOLVERS_MODULE_H

26
third_party/eigen3/Eigen/Jacobi vendored Normal file
View File

@ -0,0 +1,26 @@
#ifndef EIGEN_JACOBI_MODULE_H
#define EIGEN_JACOBI_MODULE_H
#include "Core"
#include "src/Core/util/DisableStupidWarnings.h"
/** \defgroup Jacobi_Module Jacobi module
* This module provides Jacobi and Givens rotations.
*
* \code
* #include <Eigen/Jacobi>
* \endcode
*
* In addition to listed classes, it defines the two following MatrixBase methods to apply a Jacobi or Givens rotation:
* - MatrixBase::applyOnTheLeft()
* - MatrixBase::applyOnTheRight().
*/
#include "src/Jacobi/Jacobi.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_JACOBI_MODULE_H
/* vim: set filetype=cpp et sw=2 ts=2 ai: */

38
third_party/eigen3/Eigen/LU vendored Normal file
View File

@ -0,0 +1,38 @@
#ifndef EIGEN_LU_MODULE_H
#define EIGEN_LU_MODULE_H
#include "Core"
#include "src/Core/util/DisableStupidWarnings.h"
/** \defgroup LU_Module LU module
* This module includes %LU decomposition and related notions such as matrix inversion and determinant.
* This module defines the following MatrixBase methods:
* - MatrixBase::inverse()
* - MatrixBase::determinant()
*
* \code
* #include <Eigen/LU>
* \endcode
*/
#include "src/misc/Kernel.h"
#include "src/misc/Image.h"
#include "src/LU/FullPivLU.h"
#include "src/LU/PartialPivLU.h"
#ifdef EIGEN_USE_LAPACKE
#include "src/LU/PartialPivLU_MKL.h"
#endif
#include "src/LU/Determinant.h"
#include "src/LU/InverseImpl.h"
// Use the SSE optimized version whenever possible. At the moment the
// SSE version doesn't compile when AVX is enabled
#if defined EIGEN_VECTORIZE_SSE && !defined EIGEN_VECTORIZE_AVX
#include "src/LU/arch/Inverse_SSE.h"
#endif
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_LU_MODULE_H
/* vim: set filetype=cpp et sw=2 ts=2 ai: */

28
third_party/eigen3/Eigen/MetisSupport vendored Normal file
View File

@ -0,0 +1,28 @@
#ifndef EIGEN_METISSUPPORT_MODULE_H
#define EIGEN_METISSUPPORT_MODULE_H
#include "SparseCore"
#include "src/Core/util/DisableStupidWarnings.h"
extern "C" {
#include <metis.h>
}
/** \ingroup Support_modules
* \defgroup MetisSupport_Module MetisSupport module
*
* \code
* #include <Eigen/MetisSupport>
* \endcode
* This module defines an interface to the METIS reordering package (http://glaros.dtc.umn.edu/gkhome/views/metis).
* It can be used just as any other built-in method as explained in \link OrderingMethods_Module here. \endlink
*/
#include "src/MetisSupport/MetisSupport.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_METISSUPPORT_MODULE_H

View File

@ -0,0 +1,66 @@
#ifndef EIGEN_ORDERINGMETHODS_MODULE_H
#define EIGEN_ORDERINGMETHODS_MODULE_H
#include "SparseCore"
#include "src/Core/util/DisableStupidWarnings.h"
/**
* \defgroup OrderingMethods_Module OrderingMethods module
*
* This module is currently for internal use only
*
* It defines various built-in and external ordering methods for sparse matrices.
* They are typically used to reduce the number of elements during
* the sparse matrix decomposition (LLT, LU, QR).
* Precisely, in a preprocessing step, a permutation matrix P is computed using
* those ordering methods and applied to the columns of the matrix.
* Using for instance the sparse Cholesky decomposition, it is expected that
* the nonzeros elements in LLT(A*P) will be much smaller than that in LLT(A).
*
*
* Usage :
* \code
* #include <Eigen/OrderingMethods>
* \endcode
*
* A simple usage is as a template parameter in the sparse decomposition classes :
*
* \code
* SparseLU<MatrixType, COLAMDOrdering<int> > solver;
* \endcode
*
* \code
* SparseQR<MatrixType, COLAMDOrdering<int> > solver;
* \endcode
*
* It is possible as well to call directly a particular ordering method for your own purpose,
* \code
* AMDOrdering<int> ordering;
* PermutationMatrix<Dynamic, Dynamic, int> perm;
* SparseMatrix<double> A;
* //Fill the matrix ...
*
* ordering(A, perm); // Call AMD
* \endcode
*
* \note Some of these methods (like AMD or METIS), need the sparsity pattern
* of the input matrix to be symmetric. When the matrix is structurally unsymmetric,
* Eigen computes internally the pattern of \f$A^T*A\f$ before calling the method.
* If your matrix is already symmetric (at leat in structure), you can avoid that
* by calling the method with a SelfAdjointView type.
*
* \code
* // Call the ordering on the pattern of the lower triangular matrix A
* ordering(A.selfadjointView<Lower>(), perm);
* \endcode
*/
#ifndef EIGEN_MPL2_ONLY
#include "src/OrderingMethods/Amd.h"
#endif
#include "src/OrderingMethods/Ordering.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_ORDERINGMETHODS_MODULE_H

42
third_party/eigen3/Eigen/PaStiXSupport vendored Normal file
View File

@ -0,0 +1,42 @@
#ifndef EIGEN_PASTIXSUPPORT_MODULE_H
#define EIGEN_PASTIXSUPPORT_MODULE_H
#include "SparseCore"
#include "src/Core/util/DisableStupidWarnings.h"
#include <complex.h>
extern "C" {
#include <pastix_nompi.h>
#include <pastix.h>
}
#ifdef complex
#undef complex
#endif
/** \ingroup Support_modules
* \defgroup PaStiXSupport_Module PaStiXSupport module
*
* This module provides an interface to the <a href="http://pastix.gforge.inria.fr/">PaSTiX</a> library.
* PaSTiX is a general \b supernodal, \b parallel and \b opensource sparse solver.
* It provides the two following main factorization classes:
* - class PastixLLT : a supernodal, parallel LLt Cholesky factorization.
* - class PastixLDLT: a supernodal, parallel LDLt Cholesky factorization.
* - class PastixLU : a supernodal, parallel LU factorization (optimized for a symmetric pattern).
*
* \code
* #include <Eigen/PaStiXSupport>
* \endcode
*
* In order to use this module, the PaSTiX headers must be accessible from the include paths, and your binary must be linked to the PaSTiX library and its dependencies.
* The dependencies depend on how PaSTiX has been compiled.
* For a cmake based project, you can use our FindPaSTiX.cmake module to help you in this task.
*
*/
#include "src/PaStiXSupport/PaStiXSupport.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_PASTIXSUPPORT_MODULE_H

30
third_party/eigen3/Eigen/PardisoSupport vendored Normal file
View File

@ -0,0 +1,30 @@
#ifndef EIGEN_PARDISOSUPPORT_MODULE_H
#define EIGEN_PARDISOSUPPORT_MODULE_H
#include "SparseCore"
#include "src/Core/util/DisableStupidWarnings.h"
#include <mkl_pardiso.h>
#include <unsupported/Eigen/SparseExtra>
/** \ingroup Support_modules
* \defgroup PardisoSupport_Module PardisoSupport module
*
* This module brings support for the Intel(R) MKL PARDISO direct sparse solvers.
*
* \code
* #include <Eigen/PardisoSupport>
* \endcode
*
* In order to use this module, the MKL headers must be accessible from the include paths, and your binary must be linked to the MKL library and its dependencies.
* See this \ref TopicUsingIntelMKL "page" for more information on MKL-Eigen integration.
*
*/
#include "src/PardisoSupport/PardisoSupport.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_PARDISOSUPPORT_MODULE_H

38
third_party/eigen3/Eigen/QR vendored Normal file
View File

@ -0,0 +1,38 @@
#ifndef EIGEN_QR_MODULE_H
#define EIGEN_QR_MODULE_H
#include "Core"
#include "src/Core/util/DisableStupidWarnings.h"
#include "Cholesky"
#include "Jacobi"
#include "Householder"
/** \defgroup QR_Module QR module
*
*
*
* This module provides various QR decompositions
* This module also provides some MatrixBase methods, including:
* - MatrixBase::householderQr()
* - MatrixBase::colPivHouseholderQr()
* - MatrixBase::fullPivHouseholderQr()
*
* \code
* #include <Eigen/QR>
* \endcode
*/
#include "src/QR/HouseholderQR.h"
#include "src/QR/FullPivHouseholderQR.h"
#include "src/QR/ColPivHouseholderQR.h"
#ifdef EIGEN_USE_LAPACKE
#include "src/QR/HouseholderQR_MKL.h"
#include "src/QR/ColPivHouseholderQR_MKL.h"
#endif
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_QR_MODULE_H
/* vim: set filetype=cpp et sw=2 ts=2 ai: */

View File

@ -0,0 +1,34 @@
#ifndef EIGEN_QTMALLOC_MODULE_H
#define EIGEN_QTMALLOC_MODULE_H
#include "Core"
#if (!EIGEN_MALLOC_ALREADY_ALIGNED)
#include "src/Core/util/DisableStupidWarnings.h"
void *qMalloc(size_t size)
{
return Eigen::internal::aligned_malloc(size);
}
void qFree(void *ptr)
{
Eigen::internal::aligned_free(ptr);
}
void *qRealloc(void *ptr, size_t size)
{
void* newPtr = Eigen::internal::aligned_malloc(size);
memcpy(newPtr, ptr, size);
Eigen::internal::aligned_free(ptr);
return newPtr;
}
#include "src/Core/util/ReenableStupidWarnings.h"
#endif
#endif // EIGEN_QTMALLOC_MODULE_H
/* vim: set filetype=cpp et sw=2 ts=2 ai: */

27
third_party/eigen3/Eigen/SPQRSupport vendored Normal file
View File

@ -0,0 +1,27 @@
#ifndef EIGEN_SPQRSUPPORT_MODULE_H
#define EIGEN_SPQRSUPPORT_MODULE_H
#include "SparseCore"
#include "src/Core/util/DisableStupidWarnings.h"
#include "SuiteSparseQR.hpp"
/** \ingroup Support_modules
* \defgroup SPQRSupport_Module SuiteSparseQR module
*
* This module provides an interface to the SPQR library, which is part of the <a href="http://www.cise.ufl.edu/research/sparse/SuiteSparse/">suitesparse</a> package.
*
* \code
* #include <Eigen/SPQRSupport>
* \endcode
*
* In order to use this module, the SPQR headers must be accessible from the include paths, and your binary must be linked to the SPQR library and its dependencies (Cholmod, AMD, COLAMD,...).
* For a cmake based project, you can use our FindSPQR.cmake and FindCholmod.Cmake modules
*
*/
#include "src/CholmodSupport/CholmodSupport.h"
#include "src/SPQRSupport/SuiteSparseQRSupport.h"
#endif

38
third_party/eigen3/Eigen/SVD vendored Normal file
View File

@ -0,0 +1,38 @@
#ifndef EIGEN_SVD_MODULE_H
#define EIGEN_SVD_MODULE_H
#include "QR"
#include "Householder"
#include "Jacobi"
#include "src/Core/util/DisableStupidWarnings.h"
/** \defgroup SVD_Module SVD module
*
*
*
* This module provides SVD decomposition for matrices (both real and complex).
* Two decomposition algorithms are provided:
* - JacobiSVD implementing two-sided Jacobi iterations is numerically very accurate, fast for small matrices, but very slow for larger ones.
* - BDCSVD implementing a recursive divide & conquer strategy on top of an upper-bidiagonalization which remains fast for large problems.
* These decompositions are accessible via the respective classes and following MatrixBase methods:
* - MatrixBase::jacobiSvd()
* - MatrixBase::bdcSvd()
*
* \code
* #include <Eigen/SVD>
* \endcode
*/
#include "src/SVD/UpperBidiagonalization.h"
#include "src/SVD/SVDBase.h"
#include "src/SVD/JacobiSVD.h"
#include "src/SVD/BDCSVD.h"
#if defined(EIGEN_USE_LAPACKE) && !defined(EIGEN_USE_LAPACKE_STRICT)
#include "src/SVD/JacobiSVD_MKL.h"
#endif
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_SVD_MODULE_H
/* vim: set filetype=cpp et sw=2 ts=2 ai: */

27
third_party/eigen3/Eigen/Sparse vendored Normal file
View File

@ -0,0 +1,27 @@
#ifndef EIGEN_SPARSE_MODULE_H
#define EIGEN_SPARSE_MODULE_H
/** \defgroup Sparse_Module Sparse meta-module
*
* Meta-module including all related modules:
* - \ref SparseCore_Module
* - \ref OrderingMethods_Module
* - \ref SparseCholesky_Module
* - \ref SparseLU_Module
* - \ref SparseQR_Module
* - \ref IterativeLinearSolvers_Module
*
\code
#include <Eigen/Sparse>
\endcode
*/
#include "SparseCore"
#include "OrderingMethods"
#include "SparseCholesky"
#include "SparseLU"
#include "SparseQR"
#include "IterativeLinearSolvers"
#endif // EIGEN_SPARSE_MODULE_H

45
third_party/eigen3/Eigen/SparseCholesky vendored Normal file
View File

@ -0,0 +1,45 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2013 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSECHOLESKY_MODULE_H
#define EIGEN_SPARSECHOLESKY_MODULE_H
#include "SparseCore"
#include "OrderingMethods"
#include "src/Core/util/DisableStupidWarnings.h"
/**
* \defgroup SparseCholesky_Module SparseCholesky module
*
* This module currently provides two variants of the direct sparse Cholesky decomposition for selfadjoint (hermitian) matrices.
* Those decompositions are accessible via the following classes:
* - SimplicialLLt,
* - SimplicialLDLt
*
* Such problems can also be solved using the ConjugateGradient solver from the IterativeLinearSolvers module.
*
* \code
* #include <Eigen/SparseCholesky>
* \endcode
*/
#ifdef EIGEN_MPL2_ONLY
#error The SparseCholesky module has nothing to offer in MPL2 only mode
#endif
#include "src/SparseCholesky/SimplicialCholesky.h"
#ifndef EIGEN_MPL2_ONLY
#include "src/SparseCholesky/SimplicialCholesky_impl.h"
#endif
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_SPARSECHOLESKY_MODULE_H

62
third_party/eigen3/Eigen/SparseCore vendored Normal file
View File

@ -0,0 +1,62 @@
#ifndef EIGEN_SPARSECORE_MODULE_H
#define EIGEN_SPARSECORE_MODULE_H
#include "Core"
#include "src/Core/util/DisableStupidWarnings.h"
#include <vector>
#include <map>
#include <cstdlib>
#include <cstring>
#include <algorithm>
/**
* \defgroup SparseCore_Module SparseCore module
*
* This module provides a sparse matrix representation, and basic associatd matrix manipulations
* and operations.
*
* See the \ref TutorialSparse "Sparse tutorial"
*
* \code
* #include <Eigen/SparseCore>
* \endcode
*
* This module depends on: Core.
*/
#include "src/SparseCore/SparseUtil.h"
#include "src/SparseCore/SparseMatrixBase.h"
#include "src/SparseCore/SparseAssign.h"
#include "src/SparseCore/CompressedStorage.h"
#include "src/SparseCore/AmbiVector.h"
#include "src/SparseCore/SparseCompressedBase.h"
#include "src/SparseCore/SparseMatrix.h"
#include "src/SparseCore/SparseMap.h"
#include "src/SparseCore/MappedSparseMatrix.h"
#include "src/SparseCore/SparseVector.h"
#include "src/SparseCore/SparseRef.h"
#include "src/SparseCore/SparseCwiseUnaryOp.h"
#include "src/SparseCore/SparseCwiseBinaryOp.h"
#include "src/SparseCore/SparseTranspose.h"
#include "src/SparseCore/SparseBlock.h"
#include "src/SparseCore/SparseDot.h"
#include "src/SparseCore/SparseRedux.h"
#include "src/SparseCore/SparseView.h"
#include "src/SparseCore/SparseDiagonalProduct.h"
#include "src/SparseCore/ConservativeSparseSparseProduct.h"
#include "src/SparseCore/SparseSparseProductWithPruning.h"
#include "src/SparseCore/SparseProduct.h"
#include "src/SparseCore/SparseDenseProduct.h"
#include "src/SparseCore/SparseSelfAdjointView.h"
#include "src/SparseCore/SparseTriangularView.h"
#include "src/SparseCore/TriangularSolver.h"
#include "src/SparseCore/SparsePermutation.h"
#include "src/SparseCore/SparseFuzzy.h"
#include "src/SparseCore/SparseSolverBase.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_SPARSECORE_MODULE_H

46
third_party/eigen3/Eigen/SparseLU vendored Normal file
View File

@ -0,0 +1,46 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSELU_MODULE_H
#define EIGEN_SPARSELU_MODULE_H
#include "SparseCore"
/**
* \defgroup SparseLU_Module SparseLU module
* This module defines a supernodal factorization of general sparse matrices.
* The code is fully optimized for supernode-panel updates with specialized kernels.
* Please, see the documentation of the SparseLU class for more details.
*/
// Ordering interface
#include "OrderingMethods"
#include "src/SparseLU/SparseLU_gemm_kernel.h"
#include "src/SparseLU/SparseLU_Structs.h"
#include "src/SparseLU/SparseLU_SupernodalMatrix.h"
#include "src/SparseLU/SparseLUImpl.h"
#include "src/SparseCore/SparseColEtree.h"
#include "src/SparseLU/SparseLU_Memory.h"
#include "src/SparseLU/SparseLU_heap_relax_snode.h"
#include "src/SparseLU/SparseLU_relax_snode.h"
#include "src/SparseLU/SparseLU_pivotL.h"
#include "src/SparseLU/SparseLU_panel_dfs.h"
#include "src/SparseLU/SparseLU_kernel_bmod.h"
#include "src/SparseLU/SparseLU_panel_bmod.h"
#include "src/SparseLU/SparseLU_column_dfs.h"
#include "src/SparseLU/SparseLU_column_bmod.h"
#include "src/SparseLU/SparseLU_copy_to_ucol.h"
#include "src/SparseLU/SparseLU_pruneL.h"
#include "src/SparseLU/SparseLU_Utils.h"
#include "src/SparseLU/SparseLU.h"
#endif // EIGEN_SPARSELU_MODULE_H

30
third_party/eigen3/Eigen/SparseQR vendored Normal file
View File

@ -0,0 +1,30 @@
#ifndef EIGEN_SPARSEQR_MODULE_H
#define EIGEN_SPARSEQR_MODULE_H
#include "SparseCore"
#include "OrderingMethods"
#include "src/Core/util/DisableStupidWarnings.h"
/** \defgroup SparseQR_Module SparseQR module
* \brief Provides QR decomposition for sparse matrices
*
* This module provides a simplicial version of the left-looking Sparse QR decomposition.
* The columns of the input matrix should be reordered to limit the fill-in during the
* decomposition. Built-in methods (COLAMD, AMD) or external methods (METIS) can be used to this end.
* See the \link OrderingMethods_Module OrderingMethods\endlink module for the list
* of built-in and external ordering methods.
*
* \code
* #include <Eigen/SparseQR>
* \endcode
*
*
*/
#include "OrderingMethods"
#include "src/SparseCore/SparseColEtree.h"
#include "src/SparseQR/SparseQR.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif

27
third_party/eigen3/Eigen/StdDeque vendored Normal file
View File

@ -0,0 +1,27 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Hauke Heibel <hauke.heibel@googlemail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_STDDEQUE_MODULE_H
#define EIGEN_STDDEQUE_MODULE_H
#include "Core"
#include <deque>
#if EIGEN_COMP_MSVC && EIGEN_OS_WIN64 /* MSVC auto aligns in 64 bit builds */
#define EIGEN_DEFINE_STL_DEQUE_SPECIALIZATION(...)
#else
#include "src/StlSupport/StdDeque.h"
#endif
#endif // EIGEN_STDDEQUE_MODULE_H

26
third_party/eigen3/Eigen/StdList vendored Normal file
View File

@ -0,0 +1,26 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Hauke Heibel <hauke.heibel@googlemail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_STDLIST_MODULE_H
#define EIGEN_STDLIST_MODULE_H
#include "Core"
#include <list>
#if EIGEN_COMP_MSVC && EIGEN_OS_WIN64 /* MSVC auto aligns in 64 bit builds */
#define EIGEN_DEFINE_STL_LIST_SPECIALIZATION(...)
#else
#include "src/StlSupport/StdList.h"
#endif
#endif // EIGEN_STDLIST_MODULE_H

27
third_party/eigen3/Eigen/StdVector vendored Normal file
View File

@ -0,0 +1,27 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Hauke Heibel <hauke.heibel@googlemail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_STDVECTOR_MODULE_H
#define EIGEN_STDVECTOR_MODULE_H
#include "Core"
#include <vector>
#if EIGEN_COMP_MSVC && EIGEN_OS_WIN64 /* MSVC auto aligns in 64 bit builds */
#define EIGEN_DEFINE_STL_VECTOR_SPECIALIZATION(...)
#else
#include "src/StlSupport/StdVector.h"
#endif
#endif // EIGEN_STDVECTOR_MODULE_H

55
third_party/eigen3/Eigen/SuperLUSupport vendored Normal file
View File

@ -0,0 +1,55 @@
#ifndef EIGEN_SUPERLUSUPPORT_MODULE_H
#define EIGEN_SUPERLUSUPPORT_MODULE_H
#include "SparseCore"
#include "src/Core/util/DisableStupidWarnings.h"
#ifdef EMPTY
#define EIGEN_EMPTY_WAS_ALREADY_DEFINED
#endif
typedef int int_t;
#include <slu_Cnames.h>
#include <supermatrix.h>
#include <slu_util.h>
// slu_util.h defines a preprocessor token named EMPTY which is really polluting,
// so we remove it in favor of a SUPERLU_EMPTY token.
// If EMPTY was already defined then we don't undef it.
#if defined(EIGEN_EMPTY_WAS_ALREADY_DEFINED)
# undef EIGEN_EMPTY_WAS_ALREADY_DEFINED
#elif defined(EMPTY)
# undef EMPTY
#endif
#define SUPERLU_EMPTY (-1)
namespace Eigen { struct SluMatrix; }
/** \ingroup Support_modules
* \defgroup SuperLUSupport_Module SuperLUSupport module
*
* This module provides an interface to the <a href="http://crd-legacy.lbl.gov/~xiaoye/SuperLU/">SuperLU</a> library.
* It provides the following factorization class:
* - class SuperLU: a supernodal sequential LU factorization.
* - class SuperILU: a supernodal sequential incomplete LU factorization (to be used as a preconditioner for iterative methods).
*
* \warning When including this module, you have to use SUPERLU_EMPTY instead of EMPTY which is no longer defined because it is too polluting.
*
* \code
* #include <Eigen/SuperLUSupport>
* \endcode
*
* In order to use this module, the superlu headers must be accessible from the include paths, and your binary must be linked to the superlu library and its dependencies.
* The dependencies depend on how superlu has been compiled.
* For a cmake based project, you can use our FindSuperLU.cmake module to help you in this task.
*
*/
#include "src/SuperLUSupport/SuperLUSupport.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_SUPERLUSUPPORT_MODULE_H

33
third_party/eigen3/Eigen/UmfPackSupport vendored Normal file
View File

@ -0,0 +1,33 @@
#ifndef EIGEN_UMFPACKSUPPORT_MODULE_H
#define EIGEN_UMFPACKSUPPORT_MODULE_H
#include "SparseCore"
#include "src/Core/util/DisableStupidWarnings.h"
extern "C" {
#include <umfpack.h>
}
/** \ingroup Support_modules
* \defgroup UmfPackSupport_Module UmfPackSupport module
*
* This module provides an interface to the UmfPack library which is part of the <a href="http://www.cise.ufl.edu/research/sparse/SuiteSparse/">suitesparse</a> package.
* It provides the following factorization class:
* - class UmfPackLU: a multifrontal sequential LU factorization.
*
* \code
* #include <Eigen/UmfPackSupport>
* \endcode
*
* In order to use this module, the umfpack headers must be accessible from the include paths, and your binary must be linked to the umfpack library and its dependencies.
* The dependencies depend on how umfpack has been compiled.
* For a cmake based project, you can use our FindUmfPack.cmake module to help you in this task.
*
*/
#include "src/UmfPackSupport/UmfPackSupport.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_UMFPACKSUPPORT_MODULE_H

View File

@ -0,0 +1,7 @@
file(GLOB Eigen_src_subdirectories "*")
escape_string_as_regex(ESCAPED_CMAKE_CURRENT_SOURCE_DIR "${CMAKE_CURRENT_SOURCE_DIR}")
foreach(f ${Eigen_src_subdirectories})
if(NOT f MATCHES "\\.txt" AND NOT f MATCHES "${ESCAPED_CMAKE_CURRENT_SOURCE_DIR}/[.].+" )
add_subdirectory(${f})
endif()
endforeach()

View File

@ -0,0 +1,6 @@
FILE(GLOB Eigen_Cholesky_SRCS "*.h")
INSTALL(FILES
${Eigen_Cholesky_SRCS}
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Cholesky COMPONENT Devel
)

View File

@ -0,0 +1,598 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Keir Mierle <mierle@gmail.com>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2011 Timothy E. Holy <tim.holy@gmail.com >
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_LDLT_H
#define EIGEN_LDLT_H
namespace Eigen {
namespace internal {
template<typename MatrixType, int UpLo> struct LDLT_Traits;
// PositiveSemiDef means positive semi-definite and non-zero; same for NegativeSemiDef
enum SignMatrix { PositiveSemiDef, NegativeSemiDef, ZeroSign, Indefinite };
}
/** \ingroup Cholesky_Module
*
* \class LDLT
*
* \brief Robust Cholesky decomposition of a matrix with pivoting
*
* \param MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition
* \param UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper.
* The other triangular part won't be read.
*
* Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite
* matrix \f$ A \f$ such that \f$ A = P^TLDL^*P \f$, where P is a permutation matrix, L
* is lower triangular with a unit diagonal and D is a diagonal matrix.
*
* The decomposition uses pivoting to ensure stability, so that L will have
* zeros in the bottom right rank(A) - n submatrix. Avoiding the square root
* on D also stabilizes the computation.
*
* Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky
* decomposition to determine whether a system of equations has a solution.
*
* \sa MatrixBase::ldlt(), SelfAdjointView::ldlt(), class LLT
*/
template<typename _MatrixType, int _UpLo> class LDLT
{
public:
typedef _MatrixType MatrixType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options & ~RowMajorBit, // these are the options for the TmpMatrixType, we need a ColMajor matrix here!
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
UpLo = _UpLo
};
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
typedef typename MatrixType::StorageIndex StorageIndex;
typedef Matrix<Scalar, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> TmpMatrixType;
typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;
typedef internal::LDLT_Traits<MatrixType,UpLo> Traits;
/** \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via LDLT::compute(const MatrixType&).
*/
LDLT()
: m_matrix(),
m_transpositions(),
m_sign(internal::ZeroSign),
m_isInitialized(false)
{}
/** \brief Default Constructor with memory preallocation
*
* Like the default constructor but with preallocation of the internal data
* according to the specified problem \a size.
* \sa LDLT()
*/
explicit LDLT(Index size)
: m_matrix(size, size),
m_transpositions(size),
m_temporary(size),
m_sign(internal::ZeroSign),
m_isInitialized(false)
{}
/** \brief Constructor with decomposition
*
* This calculates the decomposition for the input \a matrix.
* \sa LDLT(Index size)
*/
explicit LDLT(const MatrixType& matrix)
: m_matrix(matrix.rows(), matrix.cols()),
m_transpositions(matrix.rows()),
m_temporary(matrix.rows()),
m_sign(internal::ZeroSign),
m_isInitialized(false)
{
compute(matrix);
}
/** Clear any existing decomposition
* \sa rankUpdate(w,sigma)
*/
void setZero()
{
m_isInitialized = false;
}
/** \returns a view of the upper triangular matrix U */
inline typename Traits::MatrixU matrixU() const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
return Traits::getU(m_matrix);
}
/** \returns a view of the lower triangular matrix L */
inline typename Traits::MatrixL matrixL() const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
return Traits::getL(m_matrix);
}
/** \returns the permutation matrix P as a transposition sequence.
*/
inline const TranspositionType& transpositionsP() const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
return m_transpositions;
}
/** \returns the coefficients of the diagonal matrix D */
inline Diagonal<const MatrixType> vectorD() const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
return m_matrix.diagonal();
}
/** \returns true if the matrix is positive (semidefinite) */
inline bool isPositive() const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
return m_sign == internal::PositiveSemiDef || m_sign == internal::ZeroSign;
}
/** \returns true if the matrix is negative (semidefinite) */
inline bool isNegative(void) const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
return m_sign == internal::NegativeSemiDef || m_sign == internal::ZeroSign;
}
/** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A.
*
* This function also supports in-place solves using the syntax <tt>x = decompositionObject.solve(x)</tt> .
*
* \note_about_checking_solutions
*
* More precisely, this method solves \f$ A x = b \f$ using the decomposition \f$ A = P^T L D L^* P \f$
* by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$,
* \f$ L^* y_4 = y_3 \f$ and \f$ P x = y_4 \f$ in succession. If the matrix \f$ A \f$ is singular, then
* \f$ D \f$ will also be singular (all the other matrices are invertible). In that case, the
* least-square solution of \f$ D y_3 = y_2 \f$ is computed. This does not mean that this function
* computes the least-square solution of \f$ A x = b \f$ is \f$ A \f$ is singular.
*
* \sa MatrixBase::ldlt(), SelfAdjointView::ldlt()
*/
template<typename Rhs>
inline const Solve<LDLT, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
eigen_assert(m_matrix.rows()==b.rows()
&& "LDLT::solve(): invalid number of rows of the right hand side matrix b");
return Solve<LDLT, Rhs>(*this, b.derived());
}
template<typename Derived>
bool solveInPlace(MatrixBase<Derived> &bAndX) const;
LDLT& compute(const MatrixType& matrix);
template <typename Derived>
LDLT& rankUpdate(const MatrixBase<Derived>& w, const RealScalar& alpha=1);
/** \returns the internal LDLT decomposition matrix
*
* TODO: document the storage layout
*/
inline const MatrixType& matrixLDLT() const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
return m_matrix;
}
MatrixType reconstructedMatrix() const;
inline Index rows() const { return m_matrix.rows(); }
inline Index cols() const { return m_matrix.cols(); }
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was succesful,
* \c NumericalIssue if the matrix.appears to be negative.
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
return Success;
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename RhsType, typename DstType>
EIGEN_DEVICE_FUNC
void _solve_impl(const RhsType &rhs, DstType &dst) const;
#endif
protected:
static void check_template_parameters()
{
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
}
/** \internal
* Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U.
* The strict upper part is used during the decomposition, the strict lower
* part correspond to the coefficients of L (its diagonal is equal to 1 and
* is not stored), and the diagonal entries correspond to D.
*/
MatrixType m_matrix;
TranspositionType m_transpositions;
TmpMatrixType m_temporary;
internal::SignMatrix m_sign;
bool m_isInitialized;
};
namespace internal {
template<int UpLo> struct ldlt_inplace;
template<> struct ldlt_inplace<Lower>
{
template<typename MatrixType, typename TranspositionType, typename Workspace>
static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign)
{
using std::abs;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename TranspositionType::StorageIndex IndexType;
eigen_assert(mat.rows()==mat.cols());
const Index size = mat.rows();
if (size <= 1)
{
transpositions.setIdentity();
if (numext::real(mat.coeff(0,0)) > 0) sign = PositiveSemiDef;
else if (numext::real(mat.coeff(0,0)) < 0) sign = NegativeSemiDef;
else sign = ZeroSign;
return true;
}
for (Index k = 0; k < size; ++k)
{
// Find largest diagonal element
Index index_of_biggest_in_corner;
mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner);
index_of_biggest_in_corner += k;
transpositions.coeffRef(k) = IndexType(index_of_biggest_in_corner);
if(k != index_of_biggest_in_corner)
{
// apply the transposition while taking care to consider only
// the lower triangular part
Index s = size-index_of_biggest_in_corner-1; // trailing size after the biggest element
mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k));
mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s));
std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner));
for(Index i=k+1;i<index_of_biggest_in_corner;++i)
{
Scalar tmp = mat.coeffRef(i,k);
mat.coeffRef(i,k) = numext::conj(mat.coeffRef(index_of_biggest_in_corner,i));
mat.coeffRef(index_of_biggest_in_corner,i) = numext::conj(tmp);
}
if(NumTraits<Scalar>::IsComplex)
mat.coeffRef(index_of_biggest_in_corner,k) = numext::conj(mat.coeff(index_of_biggest_in_corner,k));
}
// partition the matrix:
// A00 | - | -
// lu = A10 | A11 | -
// A20 | A21 | A22
Index rs = size - k - 1;
Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);
if(k>0)
{
temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint();
mat.coeffRef(k,k) -= (A10 * temp.head(k)).value();
if(rs>0)
A21.noalias() -= A20 * temp.head(k);
}
// In some previous versions of Eigen (e.g., 3.2.1), the scaling was omitted if the pivot
// was smaller than the cutoff value. However, since LDLT is not rank-revealing
// we should only make sure that we do not introduce INF or NaN values.
// Remark that LAPACK also uses 0 as the cutoff value.
RealScalar realAkk = numext::real(mat.coeffRef(k,k));
if((rs>0) && (abs(realAkk) > RealScalar(0)))
A21 /= realAkk;
if (sign == PositiveSemiDef) {
if (realAkk < 0) sign = Indefinite;
} else if (sign == NegativeSemiDef) {
if (realAkk > 0) sign = Indefinite;
} else if (sign == ZeroSign) {
if (realAkk > 0) sign = PositiveSemiDef;
else if (realAkk < 0) sign = NegativeSemiDef;
}
}
return true;
}
// Reference for the algorithm: Davis and Hager, "Multiple Rank
// Modifications of a Sparse Cholesky Factorization" (Algorithm 1)
// Trivial rearrangements of their computations (Timothy E. Holy)
// allow their algorithm to work for rank-1 updates even if the
// original matrix is not of full rank.
// Here only rank-1 updates are implemented, to reduce the
// requirement for intermediate storage and improve accuracy
template<typename MatrixType, typename WDerived>
static bool updateInPlace(MatrixType& mat, MatrixBase<WDerived>& w, const typename MatrixType::RealScalar& sigma=1)
{
using numext::isfinite;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
const Index size = mat.rows();
eigen_assert(mat.cols() == size && w.size()==size);
RealScalar alpha = 1;
// Apply the update
for (Index j = 0; j < size; j++)
{
// Check for termination due to an original decomposition of low-rank
if (!(isfinite)(alpha))
break;
// Update the diagonal terms
RealScalar dj = numext::real(mat.coeff(j,j));
Scalar wj = w.coeff(j);
RealScalar swj2 = sigma*numext::abs2(wj);
RealScalar gamma = dj*alpha + swj2;
mat.coeffRef(j,j) += swj2/alpha;
alpha += swj2/dj;
// Update the terms of L
Index rs = size-j-1;
w.tail(rs) -= wj * mat.col(j).tail(rs);
if(gamma != 0)
mat.col(j).tail(rs) += (sigma*numext::conj(wj)/gamma)*w.tail(rs);
}
return true;
}
template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType>
static bool update(MatrixType& mat, const TranspositionType& transpositions, Workspace& tmp, const WType& w, const typename MatrixType::RealScalar& sigma=1)
{
// Apply the permutation to the input w
tmp = transpositions * w;
return ldlt_inplace<Lower>::updateInPlace(mat,tmp,sigma);
}
};
template<> struct ldlt_inplace<Upper>
{
template<typename MatrixType, typename TranspositionType, typename Workspace>
static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign)
{
Transpose<MatrixType> matt(mat);
return ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign);
}
template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType>
static EIGEN_STRONG_INLINE bool update(MatrixType& mat, TranspositionType& transpositions, Workspace& tmp, WType& w, const typename MatrixType::RealScalar& sigma=1)
{
Transpose<MatrixType> matt(mat);
return ldlt_inplace<Lower>::update(matt, transpositions, tmp, w.conjugate(), sigma);
}
};
template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower>
{
typedef const TriangularView<const MatrixType, UnitLower> MatrixL;
typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitUpper> MatrixU;
static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); }
static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); }
};
template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper>
{
typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitLower> MatrixL;
typedef const TriangularView<const MatrixType, UnitUpper> MatrixU;
static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); }
static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); }
};
} // end namespace internal
/** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix
*/
template<typename MatrixType, int _UpLo>
LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const MatrixType& a)
{
check_template_parameters();
eigen_assert(a.rows()==a.cols());
const Index size = a.rows();
m_matrix = a;
m_transpositions.resize(size);
m_isInitialized = false;
m_temporary.resize(size);
m_sign = internal::ZeroSign;
internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, m_sign);
m_isInitialized = true;
return *this;
}
/** Update the LDLT decomposition: given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T.
* \param w a vector to be incorporated into the decomposition.
* \param sigma a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1.
* \sa setZero()
*/
template<typename MatrixType, int _UpLo>
template<typename Derived>
LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Derived>& w, const typename LDLT<MatrixType,_UpLo>::RealScalar& sigma)
{
typedef typename TranspositionType::StorageIndex IndexType;
const Index size = w.rows();
if (m_isInitialized)
{
eigen_assert(m_matrix.rows()==size);
}
else
{
m_matrix.resize(size,size);
m_matrix.setZero();
m_transpositions.resize(size);
for (Index i = 0; i < size; i++)
m_transpositions.coeffRef(i) = IndexType(i);
m_temporary.resize(size);
m_sign = sigma>=0 ? internal::PositiveSemiDef : internal::NegativeSemiDef;
m_isInitialized = true;
}
internal::ldlt_inplace<UpLo>::update(m_matrix, m_transpositions, m_temporary, w, sigma);
return *this;
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename _MatrixType, int _UpLo>
template<typename RhsType, typename DstType>
void LDLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const
{
eigen_assert(rhs.rows() == rows());
// dst = P b
dst = m_transpositions * rhs;
// dst = L^-1 (P b)
matrixL().solveInPlace(dst);
// dst = D^-1 (L^-1 P b)
// more precisely, use pseudo-inverse of D (see bug 241)
using std::abs;
const typename Diagonal<const MatrixType>::RealReturnType vecD(vectorD());
// In some previous versions, tolerance was set to the max of 1/highest and the maximal diagonal entry * epsilon
// as motivated by LAPACK's xGELSS:
// RealScalar tolerance = numext::maxi(vecD.array().abs().maxCoeff() * NumTraits<RealScalar>::epsilon(),RealScalar(1) / NumTraits<RealScalar>::highest());
// However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest
// diagonal element is not well justified and leads to numerical issues in some cases.
// Moreover, Lapack's xSYTRS routines use 0 for the tolerance.
RealScalar tolerance = RealScalar(1) / NumTraits<RealScalar>::highest();
for (Index i = 0; i < vecD.size(); ++i)
{
if(abs(vecD(i)) > tolerance)
dst.row(i) /= vecD(i);
else
dst.row(i).setZero();
}
// dst = L^-T (D^-1 L^-1 P b)
matrixU().solveInPlace(dst);
// dst = P^-1 (L^-T D^-1 L^-1 P b) = A^-1 b
dst = m_transpositions.transpose() * dst;
}
#endif
/** \internal use x = ldlt_object.solve(x);
*
* This is the \em in-place version of solve().
*
* \param bAndX represents both the right-hand side matrix b and result x.
*
* \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
*
* This version avoids a copy when the right hand side matrix b is not
* needed anymore.
*
* \sa LDLT::solve(), MatrixBase::ldlt()
*/
template<typename MatrixType,int _UpLo>
template<typename Derived>
bool LDLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
eigen_assert(m_matrix.rows() == bAndX.rows());
bAndX = this->solve(bAndX);
return true;
}
/** \returns the matrix represented by the decomposition,
* i.e., it returns the product: P^T L D L^* P.
* This function is provided for debug purpose. */
template<typename MatrixType, int _UpLo>
MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const
{
eigen_assert(m_isInitialized && "LDLT is not initialized.");
const Index size = m_matrix.rows();
MatrixType res(size,size);
// P
res.setIdentity();
res = transpositionsP() * res;
// L^* P
res = matrixU() * res;
// D(L^*P)
res = vectorD().real().asDiagonal() * res;
// L(DL^*P)
res = matrixL() * res;
// P^T (LDL^*P)
res = transpositionsP().transpose() * res;
return res;
}
#ifndef __CUDACC__
/** \cholesky_module
* \returns the Cholesky decomposition with full pivoting without square root of \c *this
* \sa MatrixBase::ldlt()
*/
template<typename MatrixType, unsigned int UpLo>
inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo>
SelfAdjointView<MatrixType, UpLo>::ldlt() const
{
return LDLT<PlainObject,UpLo>(m_matrix);
}
/** \cholesky_module
* \returns the Cholesky decomposition with full pivoting without square root of \c *this
* \sa SelfAdjointView::ldlt()
*/
template<typename Derived>
inline const LDLT<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::ldlt() const
{
return LDLT<PlainObject>(derived());
}
#endif // __CUDACC__
} // end namespace Eigen
#endif // EIGEN_LDLT_H

View File

@ -0,0 +1,489 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_LLT_H
#define EIGEN_LLT_H
namespace Eigen {
namespace internal{
template<typename MatrixType, int UpLo> struct LLT_Traits;
}
/** \ingroup Cholesky_Module
*
* \class LLT
*
* \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features
*
* \param MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition
* \param UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper.
* The other triangular part won't be read.
*
* This class performs a LL^T Cholesky decomposition of a symmetric, positive definite
* matrix A such that A = LL^* = U^*U, where L is lower triangular.
*
* While the Cholesky decomposition is particularly useful to solve selfadjoint problems like D^*D x = b,
* for that purpose, we recommend the Cholesky decomposition without square root which is more stable
* and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other
* situations like generalised eigen problems with hermitian matrices.
*
* Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices,
* use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations
* has a solution.
*
* Example: \include LLT_example.cpp
* Output: \verbinclude LLT_example.out
*
* \sa MatrixBase::llt(), SelfAdjointView::llt(), class LDLT
*/
/* HEY THIS DOX IS DISABLED BECAUSE THERE's A BUG EITHER HERE OR IN LDLT ABOUT THAT (OR BOTH)
* Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
* the strict lower part does not have to store correct values.
*/
template<typename _MatrixType, int _UpLo> class LLT
{
public:
typedef _MatrixType MatrixType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
typedef typename MatrixType::StorageIndex StorageIndex;
enum {
PacketSize = internal::packet_traits<Scalar>::size,
AlignmentMask = int(PacketSize)-1,
UpLo = _UpLo
};
typedef internal::LLT_Traits<MatrixType,UpLo> Traits;
/**
* \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via LLT::compute(const MatrixType&).
*/
LLT() : m_matrix(), m_isInitialized(false) {}
/** \brief Default Constructor with memory preallocation
*
* Like the default constructor but with preallocation of the internal data
* according to the specified problem \a size.
* \sa LLT()
*/
explicit LLT(Index size) : m_matrix(size, size),
m_isInitialized(false) {}
explicit LLT(const MatrixType& matrix)
: m_matrix(matrix.rows(), matrix.cols()),
m_isInitialized(false)
{
compute(matrix);
}
/** \returns a view of the upper triangular matrix U */
inline typename Traits::MatrixU matrixU() const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
return Traits::getU(m_matrix);
}
/** \returns a view of the lower triangular matrix L */
inline typename Traits::MatrixL matrixL() const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
return Traits::getL(m_matrix);
}
/** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
*
* Since this LLT class assumes anyway that the matrix A is invertible, the solution
* theoretically exists and is unique regardless of b.
*
* Example: \include LLT_solve.cpp
* Output: \verbinclude LLT_solve.out
*
* \sa solveInPlace(), MatrixBase::llt(), SelfAdjointView::llt()
*/
template<typename Rhs>
inline const Solve<LLT, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
eigen_assert(m_matrix.rows()==b.rows()
&& "LLT::solve(): invalid number of rows of the right hand side matrix b");
return Solve<LLT, Rhs>(*this, b.derived());
}
template<typename Derived>
void solveInPlace(MatrixBase<Derived> &bAndX) const;
LLT& compute(const MatrixType& matrix);
/** \returns the LLT decomposition matrix
*
* TODO: document the storage layout
*/
inline const MatrixType& matrixLLT() const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
return m_matrix;
}
MatrixType reconstructedMatrix() const;
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was succesful,
* \c NumericalIssue if the matrix.appears to be negative.
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
return m_info;
}
inline Index rows() const { return m_matrix.rows(); }
inline Index cols() const { return m_matrix.cols(); }
template<typename VectorType>
LLT rankUpdate(const VectorType& vec, const RealScalar& sigma = 1);
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename RhsType, typename DstType>
EIGEN_DEVICE_FUNC
void _solve_impl(const RhsType &rhs, DstType &dst) const;
#endif
protected:
static void check_template_parameters()
{
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
}
/** \internal
* Used to compute and store L
* The strict upper part is not used and even not initialized.
*/
MatrixType m_matrix;
bool m_isInitialized;
ComputationInfo m_info;
};
namespace internal {
template<typename Scalar, int UpLo> struct llt_inplace;
template<typename MatrixType, typename VectorType>
static Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma)
{
using std::sqrt;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::ColXpr ColXpr;
typedef typename internal::remove_all<ColXpr>::type ColXprCleaned;
typedef typename ColXprCleaned::SegmentReturnType ColXprSegment;
typedef Matrix<Scalar,Dynamic,1> TempVectorType;
typedef typename TempVectorType::SegmentReturnType TempVecSegment;
Index n = mat.cols();
eigen_assert(mat.rows()==n && vec.size()==n);
TempVectorType temp;
if(sigma>0)
{
// This version is based on Givens rotations.
// It is faster than the other one below, but only works for updates,
// i.e., for sigma > 0
temp = sqrt(sigma) * vec;
for(Index i=0; i<n; ++i)
{
JacobiRotation<Scalar> g;
g.makeGivens(mat(i,i), -temp(i), &mat(i,i));
Index rs = n-i-1;
if(rs>0)
{
ColXprSegment x(mat.col(i).tail(rs));
TempVecSegment y(temp.tail(rs));
apply_rotation_in_the_plane(x, y, g);
}
}
}
else
{
temp = vec;
RealScalar beta = 1;
for(Index j=0; j<n; ++j)
{
RealScalar Ljj = numext::real(mat.coeff(j,j));
RealScalar dj = numext::abs2(Ljj);
Scalar wj = temp.coeff(j);
RealScalar swj2 = sigma*numext::abs2(wj);
RealScalar gamma = dj*beta + swj2;
RealScalar x = dj + swj2/beta;
if (x<=RealScalar(0))
return j;
RealScalar nLjj = sqrt(x);
mat.coeffRef(j,j) = nLjj;
beta += swj2/dj;
// Update the terms of L
Index rs = n-j-1;
if(rs)
{
temp.tail(rs) -= (wj/Ljj) * mat.col(j).tail(rs);
if(gamma != 0)
mat.col(j).tail(rs) = (nLjj/Ljj) * mat.col(j).tail(rs) + (nLjj * sigma*numext::conj(wj)/gamma)*temp.tail(rs);
}
}
}
return -1;
}
template<typename Scalar> struct llt_inplace<Scalar, Lower>
{
typedef typename NumTraits<Scalar>::Real RealScalar;
template<typename MatrixType>
static Index unblocked(MatrixType& mat)
{
using std::sqrt;
eigen_assert(mat.rows()==mat.cols());
const Index size = mat.rows();
for(Index k = 0; k < size; ++k)
{
Index rs = size-k-1; // remaining size
Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);
RealScalar x = numext::real(mat.coeff(k,k));
if (k>0) x -= A10.squaredNorm();
if (x<=RealScalar(0))
return k;
mat.coeffRef(k,k) = x = sqrt(x);
if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint();
if (rs>0) A21 *= RealScalar(1)/x;
}
return -1;
}
template<typename MatrixType>
static Index blocked(MatrixType& m)
{
eigen_assert(m.rows()==m.cols());
Index size = m.rows();
if(size<32)
return unblocked(m);
Index blockSize = size/8;
blockSize = (blockSize/16)*16;
blockSize = (std::min)((std::max)(blockSize,Index(8)), Index(128));
for (Index k=0; k<size; k+=blockSize)
{
// partition the matrix:
// A00 | - | -
// lu = A10 | A11 | -
// A20 | A21 | A22
Index bs = (std::min)(blockSize, size-k);
Index rs = size - k - bs;
Block<MatrixType,Dynamic,Dynamic> A11(m,k, k, bs,bs);
Block<MatrixType,Dynamic,Dynamic> A21(m,k+bs,k, rs,bs);
Block<MatrixType,Dynamic,Dynamic> A22(m,k+bs,k+bs,rs,rs);
Index ret;
if((ret=unblocked(A11))>=0) return k+ret;
if(rs>0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21);
if(rs>0) A22.template selfadjointView<Lower>().rankUpdate(A21,-1); // bottleneck
}
return -1;
}
template<typename MatrixType, typename VectorType>
static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma)
{
return Eigen::internal::llt_rank_update_lower(mat, vec, sigma);
}
};
template<typename Scalar> struct llt_inplace<Scalar, Upper>
{
typedef typename NumTraits<Scalar>::Real RealScalar;
template<typename MatrixType>
static EIGEN_STRONG_INLINE Index unblocked(MatrixType& mat)
{
Transpose<MatrixType> matt(mat);
return llt_inplace<Scalar, Lower>::unblocked(matt);
}
template<typename MatrixType>
static EIGEN_STRONG_INLINE Index blocked(MatrixType& mat)
{
Transpose<MatrixType> matt(mat);
return llt_inplace<Scalar, Lower>::blocked(matt);
}
template<typename MatrixType, typename VectorType>
static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma)
{
Transpose<MatrixType> matt(mat);
return llt_inplace<Scalar, Lower>::rankUpdate(matt, vec.conjugate(), sigma);
}
};
template<typename MatrixType> struct LLT_Traits<MatrixType,Lower>
{
typedef const TriangularView<const MatrixType, Lower> MatrixL;
typedef const TriangularView<const typename MatrixType::AdjointReturnType, Upper> MatrixU;
static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); }
static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); }
static bool inplace_decomposition(MatrixType& m)
{ return llt_inplace<typename MatrixType::Scalar, Lower>::blocked(m)==-1; }
};
template<typename MatrixType> struct LLT_Traits<MatrixType,Upper>
{
typedef const TriangularView<const typename MatrixType::AdjointReturnType, Lower> MatrixL;
typedef const TriangularView<const MatrixType, Upper> MatrixU;
static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); }
static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); }
static bool inplace_decomposition(MatrixType& m)
{ return llt_inplace<typename MatrixType::Scalar, Upper>::blocked(m)==-1; }
};
} // end namespace internal
/** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix
*
* \returns a reference to *this
*
* Example: \include TutorialLinAlgComputeTwice.cpp
* Output: \verbinclude TutorialLinAlgComputeTwice.out
*/
template<typename MatrixType, int _UpLo>
LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const MatrixType& a)
{
check_template_parameters();
eigen_assert(a.rows()==a.cols());
const Index size = a.rows();
m_matrix.resize(size, size);
m_matrix = a;
m_isInitialized = true;
bool ok = Traits::inplace_decomposition(m_matrix);
m_info = ok ? Success : NumericalIssue;
return *this;
}
/** Performs a rank one update (or dowdate) of the current decomposition.
* If A = LL^* before the rank one update,
* then after it we have LL^* = A + sigma * v v^* where \a v must be a vector
* of same dimension.
*/
template<typename _MatrixType, int _UpLo>
template<typename VectorType>
LLT<_MatrixType,_UpLo> LLT<_MatrixType,_UpLo>::rankUpdate(const VectorType& v, const RealScalar& sigma)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType);
eigen_assert(v.size()==m_matrix.cols());
eigen_assert(m_isInitialized);
if(internal::llt_inplace<typename MatrixType::Scalar, UpLo>::rankUpdate(m_matrix,v,sigma)>=0)
m_info = NumericalIssue;
else
m_info = Success;
return *this;
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename _MatrixType,int _UpLo>
template<typename RhsType, typename DstType>
void LLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const
{
dst = rhs;
solveInPlace(dst);
}
#endif
/** \internal use x = llt_object.solve(x);
*
* This is the \em in-place version of solve().
*
* \param bAndX represents both the right-hand side matrix b and result x.
*
* \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
*
* This version avoids a copy when the right hand side matrix b is not
* needed anymore.
*
* \sa LLT::solve(), MatrixBase::llt()
*/
template<typename MatrixType, int _UpLo>
template<typename Derived>
void LLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
eigen_assert(m_matrix.rows()==bAndX.rows());
matrixL().solveInPlace(bAndX);
matrixU().solveInPlace(bAndX);
}
/** \returns the matrix represented by the decomposition,
* i.e., it returns the product: L L^*.
* This function is provided for debug purpose. */
template<typename MatrixType, int _UpLo>
MatrixType LLT<MatrixType,_UpLo>::reconstructedMatrix() const
{
eigen_assert(m_isInitialized && "LLT is not initialized.");
return matrixL() * matrixL().adjoint().toDenseMatrix();
}
#ifndef __CUDACC__
/** \cholesky_module
* \returns the LLT decomposition of \c *this
* \sa SelfAdjointView::llt()
*/
template<typename Derived>
inline const LLT<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::llt() const
{
return LLT<PlainObject>(derived());
}
/** \cholesky_module
* \returns the LLT decomposition of \c *this
* \sa SelfAdjointView::llt()
*/
template<typename MatrixType, unsigned int UpLo>
inline const LLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo>
SelfAdjointView<MatrixType, UpLo>::llt() const
{
return LLT<PlainObject,UpLo>(m_matrix);
}
#endif // __CUDACC__
} // end namespace Eigen
#endif // EIGEN_LLT_H

View File

@ -0,0 +1,102 @@
/*
Copyright (c) 2011, Intel Corporation. All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
********************************************************************************
* Content : Eigen bindings to Intel(R) MKL
* LLt decomposition based on LAPACKE_?potrf function.
********************************************************************************
*/
#ifndef EIGEN_LLT_MKL_H
#define EIGEN_LLT_MKL_H
#include "Eigen/src/Core/util/MKL_support.h"
#include <iostream>
namespace Eigen {
namespace internal {
template<typename Scalar> struct mkl_llt;
#define EIGEN_MKL_LLT(EIGTYPE, MKLTYPE, MKLPREFIX) \
template<> struct mkl_llt<EIGTYPE> \
{ \
template<typename MatrixType> \
static inline Index potrf(MatrixType& m, char uplo) \
{ \
lapack_int matrix_order; \
lapack_int size, lda, info, StorageOrder; \
EIGTYPE* a; \
eigen_assert(m.rows()==m.cols()); \
/* Set up parameters for ?potrf */ \
size = m.rows(); \
StorageOrder = MatrixType::Flags&RowMajorBit?RowMajor:ColMajor; \
matrix_order = StorageOrder==RowMajor ? LAPACK_ROW_MAJOR : LAPACK_COL_MAJOR; \
a = &(m.coeffRef(0,0)); \
lda = m.outerStride(); \
\
info = LAPACKE_##MKLPREFIX##potrf( matrix_order, uplo, size, (MKLTYPE*)a, lda ); \
info = (info==0) ? -1 : info>0 ? info-1 : size; \
return info; \
} \
}; \
template<> struct llt_inplace<EIGTYPE, Lower> \
{ \
template<typename MatrixType> \
static Index blocked(MatrixType& m) \
{ \
return mkl_llt<EIGTYPE>::potrf(m, 'L'); \
} \
template<typename MatrixType, typename VectorType> \
static Index rankUpdate(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) \
{ return Eigen::internal::llt_rank_update_lower(mat, vec, sigma); } \
}; \
template<> struct llt_inplace<EIGTYPE, Upper> \
{ \
template<typename MatrixType> \
static Index blocked(MatrixType& m) \
{ \
return mkl_llt<EIGTYPE>::potrf(m, 'U'); \
} \
template<typename MatrixType, typename VectorType> \
static Index rankUpdate(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) \
{ \
Transpose<MatrixType> matt(mat); \
return llt_inplace<EIGTYPE, Lower>::rankUpdate(matt, vec.conjugate(), sigma); \
} \
};
EIGEN_MKL_LLT(double, double, d)
EIGEN_MKL_LLT(float, float, s)
EIGEN_MKL_LLT(dcomplex, MKL_Complex16, z)
EIGEN_MKL_LLT(scomplex, MKL_Complex8, c)
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_LLT_MKL_H

View File

@ -0,0 +1,6 @@
FILE(GLOB Eigen_CholmodSupport_SRCS "*.h")
INSTALL(FILES
${Eigen_CholmodSupport_SRCS}
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/CholmodSupport COMPONENT Devel
)

View File

@ -0,0 +1,551 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CHOLMODSUPPORT_H
#define EIGEN_CHOLMODSUPPORT_H
namespace Eigen {
namespace internal {
template<typename Scalar, typename CholmodType>
void cholmod_configure_matrix(CholmodType& mat)
{
if (internal::is_same<Scalar,float>::value)
{
mat.xtype = CHOLMOD_REAL;
mat.dtype = CHOLMOD_SINGLE;
}
else if (internal::is_same<Scalar,double>::value)
{
mat.xtype = CHOLMOD_REAL;
mat.dtype = CHOLMOD_DOUBLE;
}
else if (internal::is_same<Scalar,std::complex<float> >::value)
{
mat.xtype = CHOLMOD_COMPLEX;
mat.dtype = CHOLMOD_SINGLE;
}
else if (internal::is_same<Scalar,std::complex<double> >::value)
{
mat.xtype = CHOLMOD_COMPLEX;
mat.dtype = CHOLMOD_DOUBLE;
}
else
{
eigen_assert(false && "Scalar type not supported by CHOLMOD");
}
}
} // namespace internal
/** Wraps the Eigen sparse matrix \a mat into a Cholmod sparse matrix object.
* Note that the data are shared.
*/
template<typename _Scalar, int _Options, typename _StorageIndex>
cholmod_sparse viewAsCholmod(SparseMatrix<_Scalar,_Options,_StorageIndex>& mat)
{
cholmod_sparse res;
res.nzmax = mat.nonZeros();
res.nrow = mat.rows();;
res.ncol = mat.cols();
res.p = mat.outerIndexPtr();
res.i = mat.innerIndexPtr();
res.x = mat.valuePtr();
res.z = 0;
res.sorted = 1;
if(mat.isCompressed())
{
res.packed = 1;
res.nz = 0;
}
else
{
res.packed = 0;
res.nz = mat.innerNonZeroPtr();
}
res.dtype = 0;
res.stype = -1;
if (internal::is_same<_StorageIndex,int>::value)
{
res.itype = CHOLMOD_INT;
}
else if (internal::is_same<_StorageIndex,UF_long>::value)
{
res.itype = CHOLMOD_LONG;
}
else
{
eigen_assert(false && "Index type not supported yet");
}
// setup res.xtype
internal::cholmod_configure_matrix<_Scalar>(res);
res.stype = 0;
return res;
}
template<typename _Scalar, int _Options, typename _Index>
const cholmod_sparse viewAsCholmod(const SparseMatrix<_Scalar,_Options,_Index>& mat)
{
cholmod_sparse res = viewAsCholmod(mat.const_cast_derived());
return res;
}
/** Returns a view of the Eigen sparse matrix \a mat as Cholmod sparse matrix.
* The data are not copied but shared. */
template<typename _Scalar, int _Options, typename _Index, unsigned int UpLo>
cholmod_sparse viewAsCholmod(const SparseSelfAdjointView<const SparseMatrix<_Scalar,_Options,_Index>, UpLo>& mat)
{
cholmod_sparse res = viewAsCholmod(mat.matrix().const_cast_derived());
if(UpLo==Upper) res.stype = 1;
if(UpLo==Lower) res.stype = -1;
return res;
}
/** Returns a view of the Eigen \b dense matrix \a mat as Cholmod dense matrix.
* The data are not copied but shared. */
template<typename Derived>
cholmod_dense viewAsCholmod(MatrixBase<Derived>& mat)
{
EIGEN_STATIC_ASSERT((internal::traits<Derived>::Flags&RowMajorBit)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
typedef typename Derived::Scalar Scalar;
cholmod_dense res;
res.nrow = mat.rows();
res.ncol = mat.cols();
res.nzmax = res.nrow * res.ncol;
res.d = Derived::IsVectorAtCompileTime ? mat.derived().size() : mat.derived().outerStride();
res.x = (void*)(mat.derived().data());
res.z = 0;
internal::cholmod_configure_matrix<Scalar>(res);
return res;
}
/** Returns a view of the Cholmod sparse matrix \a cm as an Eigen sparse matrix.
* The data are not copied but shared. */
template<typename Scalar, int Flags, typename StorageIndex>
MappedSparseMatrix<Scalar,Flags,StorageIndex> viewAsEigen(cholmod_sparse& cm)
{
return MappedSparseMatrix<Scalar,Flags,StorageIndex>
(cm.nrow, cm.ncol, static_cast<StorageIndex*>(cm.p)[cm.ncol],
static_cast<StorageIndex*>(cm.p), static_cast<StorageIndex*>(cm.i),static_cast<Scalar*>(cm.x) );
}
enum CholmodMode {
CholmodAuto, CholmodSimplicialLLt, CholmodSupernodalLLt, CholmodLDLt
};
/** \ingroup CholmodSupport_Module
* \class CholmodBase
* \brief The base class for the direct Cholesky factorization of Cholmod
* \sa class CholmodSupernodalLLT, class CholmodSimplicialLDLT, class CholmodSimplicialLLT
*/
template<typename _MatrixType, int _UpLo, typename Derived>
class CholmodBase : public SparseSolverBase<Derived>
{
protected:
typedef SparseSolverBase<Derived> Base;
using Base::derived;
using Base::m_isInitialized;
public:
typedef _MatrixType MatrixType;
enum { UpLo = _UpLo };
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef MatrixType CholMatrixType;
typedef typename MatrixType::StorageIndex StorageIndex;
public:
CholmodBase()
: m_cholmodFactor(0), m_info(Success)
{
m_shiftOffset[0] = m_shiftOffset[1] = RealScalar(0.0);
cholmod_start(&m_cholmod);
}
explicit CholmodBase(const MatrixType& matrix)
: m_cholmodFactor(0), m_info(Success)
{
m_shiftOffset[0] = m_shiftOffset[1] = RealScalar(0.0);
cholmod_start(&m_cholmod);
compute(matrix);
}
~CholmodBase()
{
if(m_cholmodFactor)
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
cholmod_finish(&m_cholmod);
}
inline StorageIndex cols() const { return internal::convert_index<StorageIndex, Index>(m_cholmodFactor->n); }
inline StorageIndex rows() const { return internal::convert_index<StorageIndex, Index>(m_cholmodFactor->n); }
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was succesful,
* \c NumericalIssue if the matrix.appears to be negative.
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "Decomposition is not initialized.");
return m_info;
}
/** Computes the sparse Cholesky decomposition of \a matrix */
Derived& compute(const MatrixType& matrix)
{
analyzePattern(matrix);
factorize(matrix);
return derived();
}
/** Performs a symbolic decomposition on the sparsity pattern of \a matrix.
*
* This function is particularly useful when solving for several problems having the same structure.
*
* \sa factorize()
*/
void analyzePattern(const MatrixType& matrix)
{
if(m_cholmodFactor)
{
cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
m_cholmodFactor = 0;
}
cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>());
m_cholmodFactor = cholmod_analyze(&A, &m_cholmod);
this->m_isInitialized = true;
this->m_info = Success;
m_analysisIsOk = true;
m_factorizationIsOk = false;
}
/** Performs a numeric decomposition of \a matrix
*
* The given matrix must have the same sparsity pattern as the matrix on which the symbolic decomposition has been performed.
*
* \sa analyzePattern()
*/
void factorize(const MatrixType& matrix)
{
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>());
cholmod_factorize_p(&A, m_shiftOffset, 0, 0, m_cholmodFactor, &m_cholmod);
// If the factorization failed, minor is the column at which it did. On success minor == n.
this->m_info = (m_cholmodFactor->minor == m_cholmodFactor->n ? Success : NumericalIssue);
m_factorizationIsOk = true;
}
/** Returns a reference to the Cholmod's configuration structure to get a full control over the performed operations.
* See the Cholmod user guide for details. */
cholmod_common& cholmod() { return m_cholmod; }
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** \internal */
template<typename Rhs,typename Dest>
void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const
{
eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
const Index size = m_cholmodFactor->n;
EIGEN_UNUSED_VARIABLE(size);
eigen_assert(size==b.rows());
// note: cd stands for Cholmod Dense
Rhs& b_ref(b.const_cast_derived());
cholmod_dense b_cd = viewAsCholmod(b_ref);
cholmod_dense* x_cd = cholmod_solve(CHOLMOD_A, m_cholmodFactor, &b_cd, &m_cholmod);
if(!x_cd)
{
this->m_info = NumericalIssue;
return;
}
// TODO optimize this copy by swapping when possible (be careful with alignment, etc.)
dest = Matrix<Scalar,Dest::RowsAtCompileTime,Dest::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x),b.rows(),b.cols());
cholmod_free_dense(&x_cd, &m_cholmod);
}
/** \internal */
template<typename RhsScalar, int RhsOptions, typename RhsIndex, typename DestScalar, int DestOptions, typename DestIndex>
void _solve_impl(const SparseMatrix<RhsScalar,RhsOptions,RhsIndex> &b, SparseMatrix<DestScalar,DestOptions,DestIndex> &dest) const
{
eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()");
const Index size = m_cholmodFactor->n;
EIGEN_UNUSED_VARIABLE(size);
eigen_assert(size==b.rows());
// note: cs stands for Cholmod Sparse
cholmod_sparse b_cs = viewAsCholmod(b);
cholmod_sparse* x_cs = cholmod_spsolve(CHOLMOD_A, m_cholmodFactor, &b_cs, &m_cholmod);
if(!x_cs)
{
this->m_info = NumericalIssue;
return;
}
// TODO optimize this copy by swapping when possible (be careful with alignment, etc.)
dest = viewAsEigen<DestScalar,DestOptions,DestIndex>(*x_cs);
cholmod_free_sparse(&x_cs, &m_cholmod);
}
#endif // EIGEN_PARSED_BY_DOXYGEN
/** Sets the shift parameter that will be used to adjust the diagonal coefficients during the numerical factorization.
*
* During the numerical factorization, an offset term is added to the diagonal coefficients:\n
* \c d_ii = \a offset + \c d_ii
*
* The default is \a offset=0.
*
* \returns a reference to \c *this.
*/
Derived& setShift(const RealScalar& offset)
{
m_shiftOffset[0] = offset;
return derived();
}
template<typename Stream>
void dumpMemory(Stream& /*s*/)
{}
protected:
mutable cholmod_common m_cholmod;
cholmod_factor* m_cholmodFactor;
RealScalar m_shiftOffset[2];
mutable ComputationInfo m_info;
int m_factorizationIsOk;
int m_analysisIsOk;
};
/** \ingroup CholmodSupport_Module
* \class CholmodSimplicialLLT
* \brief A simplicial direct Cholesky (LLT) factorization and solver based on Cholmod
*
* This class allows to solve for A.X = B sparse linear problems via a simplicial LL^T Cholesky factorization
* using the Cholmod library.
* This simplicial variant is equivalent to Eigen's built-in SimplicialLLT class. Therefore, it has little practical interest.
* The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
* X and B can be either dense or sparse.
*
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
*
* This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
*
* \sa \ref TutorialSparseDirectSolvers, class CholmodSupernodalLLT, class SimplicialLLT
*/
template<typename _MatrixType, int _UpLo = Lower>
class CholmodSimplicialLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT<_MatrixType, _UpLo> >
{
typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT> Base;
using Base::m_cholmod;
public:
typedef _MatrixType MatrixType;
CholmodSimplicialLLT() : Base() { init(); }
CholmodSimplicialLLT(const MatrixType& matrix) : Base()
{
init();
this->compute(matrix);
}
~CholmodSimplicialLLT() {}
protected:
void init()
{
m_cholmod.final_asis = 0;
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
m_cholmod.final_ll = 1;
}
};
/** \ingroup CholmodSupport_Module
* \class CholmodSimplicialLDLT
* \brief A simplicial direct Cholesky (LDLT) factorization and solver based on Cholmod
*
* This class allows to solve for A.X = B sparse linear problems via a simplicial LDL^T Cholesky factorization
* using the Cholmod library.
* This simplicial variant is equivalent to Eigen's built-in SimplicialLDLT class. Therefore, it has little practical interest.
* The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
* X and B can be either dense or sparse.
*
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
*
* This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
*
* \sa \ref TutorialSparseDirectSolvers, class CholmodSupernodalLLT, class SimplicialLDLT
*/
template<typename _MatrixType, int _UpLo = Lower>
class CholmodSimplicialLDLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT<_MatrixType, _UpLo> >
{
typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT> Base;
using Base::m_cholmod;
public:
typedef _MatrixType MatrixType;
CholmodSimplicialLDLT() : Base() { init(); }
CholmodSimplicialLDLT(const MatrixType& matrix) : Base()
{
init();
this->compute(matrix);
}
~CholmodSimplicialLDLT() {}
protected:
void init()
{
m_cholmod.final_asis = 1;
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
}
};
/** \ingroup CholmodSupport_Module
* \class CholmodSupernodalLLT
* \brief A supernodal Cholesky (LLT) factorization and solver based on Cholmod
*
* This class allows to solve for A.X = B sparse linear problems via a supernodal LL^T Cholesky factorization
* using the Cholmod library.
* This supernodal variant performs best on dense enough problems, e.g., 3D FEM, or very high order 2D FEM.
* The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
* X and B can be either dense or sparse.
*
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
*
* This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
*
* \sa \ref TutorialSparseDirectSolvers
*/
template<typename _MatrixType, int _UpLo = Lower>
class CholmodSupernodalLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT<_MatrixType, _UpLo> >
{
typedef CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT> Base;
using Base::m_cholmod;
public:
typedef _MatrixType MatrixType;
CholmodSupernodalLLT() : Base() { init(); }
CholmodSupernodalLLT(const MatrixType& matrix) : Base()
{
init();
this->compute(matrix);
}
~CholmodSupernodalLLT() {}
protected:
void init()
{
m_cholmod.final_asis = 1;
m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
}
};
/** \ingroup CholmodSupport_Module
* \class CholmodDecomposition
* \brief A general Cholesky factorization and solver based on Cholmod
*
* This class allows to solve for A.X = B sparse linear problems via a LL^T or LDL^T Cholesky factorization
* using the Cholmod library. The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
* X and B can be either dense or sparse.
*
* This variant permits to change the underlying Cholesky method at runtime.
* On the other hand, it does not provide access to the result of the factorization.
* The default is to let Cholmod automatically choose between a simplicial and supernodal factorization.
*
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
* or Upper. Default is Lower.
*
* This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed.
*
* \sa \ref TutorialSparseDirectSolvers
*/
template<typename _MatrixType, int _UpLo = Lower>
class CholmodDecomposition : public CholmodBase<_MatrixType, _UpLo, CholmodDecomposition<_MatrixType, _UpLo> >
{
typedef CholmodBase<_MatrixType, _UpLo, CholmodDecomposition> Base;
using Base::m_cholmod;
public:
typedef _MatrixType MatrixType;
CholmodDecomposition() : Base() { init(); }
CholmodDecomposition(const MatrixType& matrix) : Base()
{
init();
this->compute(matrix);
}
~CholmodDecomposition() {}
void setMode(CholmodMode mode)
{
switch(mode)
{
case CholmodAuto:
m_cholmod.final_asis = 1;
m_cholmod.supernodal = CHOLMOD_AUTO;
break;
case CholmodSimplicialLLt:
m_cholmod.final_asis = 0;
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
m_cholmod.final_ll = 1;
break;
case CholmodSupernodalLLt:
m_cholmod.final_asis = 1;
m_cholmod.supernodal = CHOLMOD_SUPERNODAL;
break;
case CholmodLDLt:
m_cholmod.final_asis = 1;
m_cholmod.supernodal = CHOLMOD_SIMPLICIAL;
break;
default:
break;
}
}
protected:
void init()
{
m_cholmod.final_asis = 1;
m_cholmod.supernodal = CHOLMOD_AUTO;
}
};
} // end namespace Eigen
#endif // EIGEN_CHOLMODSUPPORT_H

View File

@ -0,0 +1,325 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ARRAY_H
#define EIGEN_ARRAY_H
namespace Eigen {
/** \class Array
* \ingroup Core_Module
*
* \brief General-purpose arrays with easy API for coefficient-wise operations
*
* The %Array class is very similar to the Matrix class. It provides
* general-purpose one- and two-dimensional arrays. The difference between the
* %Array and the %Matrix class is primarily in the API: the API for the
* %Array class provides easy access to coefficient-wise operations, while the
* API for the %Matrix class provides easy access to linear-algebra
* operations.
*
* See documentation of class Matrix for detailed information on the template parameters
* storage layout.
*
* This class can be extended with the help of the plugin mechanism described on the page
* \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_ARRAY_PLUGIN.
*
* \sa \ref TutorialArrayClass, \ref TopicClassHierarchy
*/
namespace internal {
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
struct traits<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > : traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
{
typedef ArrayXpr XprKind;
typedef ArrayBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > XprBase;
};
}
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
class Array
: public PlainObjectBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
{
public:
typedef PlainObjectBase<Array> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Array)
enum { Options = _Options };
typedef typename Base::PlainObject PlainObject;
protected:
template <typename Derived, typename OtherDerived, bool IsVector>
friend struct internal::conservative_resize_like_impl;
using Base::m_storage;
public:
using Base::base;
using Base::coeff;
using Base::coeffRef;
/**
* The usage of
* using Base::operator=;
* fails on MSVC. Since the code below is working with GCC and MSVC, we skipped
* the usage of 'using'. This should be done only for operator=.
*/
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Array& operator=(const EigenBase<OtherDerived> &other)
{
return Base::operator=(other);
}
/** Set all the entries to \a value.
* \sa DenseBase::setConstant(), DenseBase::fill()
*/
/* This overload is needed because the usage of
* using Base::operator=;
* fails on MSVC. Since the code below is working with GCC and MSVC, we skipped
* the usage of 'using'. This should be done only for operator=.
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Array& operator=(const Scalar &value)
{
Base::setConstant(value);
return *this;
}
/** Copies the value of the expression \a other into \c *this with automatic resizing.
*
* *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized),
* it will be initialized.
*
* Note that copying a row-vector into a vector (and conversely) is allowed.
* The resizing, if any, is then done in the appropriate way so that row-vectors
* remain row-vectors and vectors remain vectors.
*/
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Array& operator=(const DenseBase<OtherDerived>& other)
{
return Base::_set(other);
}
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Array& operator=(const Array& other)
{
return Base::_set(other);
}
/** Default constructor.
*
* For fixed-size matrices, does nothing.
*
* For dynamic-size matrices, creates an empty matrix of size 0. Does not allocate any array. Such a matrix
* is called a null matrix. This constructor is the unique way to create null matrices: resizing
* a matrix to 0 is not supported.
*
* \sa resize(Index,Index)
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Array() : Base()
{
Base::_check_template_params();
EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
// FIXME is it still needed ??
/** \internal */
EIGEN_DEVICE_FUNC
Array(internal::constructor_without_unaligned_array_assert)
: Base(internal::constructor_without_unaligned_array_assert())
{
Base::_check_template_params();
EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
}
#endif
#ifdef EIGEN_HAVE_RVALUE_REFERENCES
EIGEN_DEVICE_FUNC
Array(Array&& other)
: Base(std::move(other))
{
Base::_check_template_params();
if (RowsAtCompileTime!=Dynamic && ColsAtCompileTime!=Dynamic)
Base::_set_noalias(other);
}
EIGEN_DEVICE_FUNC
Array& operator=(Array&& other)
{
other.swap(*this);
return *this;
}
#endif
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename T>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE explicit Array(const T& x)
{
Base::_check_template_params();
Base::template _init1<T>(x);
}
template<typename T0, typename T1>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Array(const T0& val0, const T1& val1)
{
Base::_check_template_params();
this->template _init2<T0,T1>(val0, val1);
}
#else
/** \brief Constructs a fixed-sized array initialized with coefficients starting at \a data */
EIGEN_DEVICE_FUNC explicit Array(const Scalar *data);
/** Constructs a vector or row-vector with given dimension. \only_for_vectors
*
* Note that this is only useful for dynamic-size vectors. For fixed-size vectors,
* it is redundant to pass the dimension here, so it makes more sense to use the default
* constructor Array() instead.
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE explicit Array(Index dim);
/** constructs an initialized 1x1 Array with the given coefficient */
Array(const Scalar& value);
/** constructs an uninitialized array with \a rows rows and \a cols columns.
*
* This is useful for dynamic-size arrays. For fixed-size arrays,
* it is redundant to pass these parameters, so one should use the default constructor
* Array() instead. */
Array(Index rows, Index cols);
/** constructs an initialized 2D vector with given coefficients */
Array(const Scalar& val0, const Scalar& val1);
#endif
/** constructs an initialized 3D vector with given coefficients */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Array(const Scalar& val0, const Scalar& val1, const Scalar& val2)
{
Base::_check_template_params();
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Array, 3)
m_storage.data()[0] = val0;
m_storage.data()[1] = val1;
m_storage.data()[2] = val2;
}
/** constructs an initialized 4D vector with given coefficients */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Array(const Scalar& val0, const Scalar& val1, const Scalar& val2, const Scalar& val3)
{
Base::_check_template_params();
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Array, 4)
m_storage.data()[0] = val0;
m_storage.data()[1] = val1;
m_storage.data()[2] = val2;
m_storage.data()[3] = val3;
}
/** Copy constructor */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Array(const Array& other)
: Base(other)
{ }
/** \sa MatrixBase::operator=(const EigenBase<OtherDerived>&) */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Array(const EigenBase<OtherDerived> &other)
: Base(other.derived())
{ }
EIGEN_DEVICE_FUNC inline Index innerStride() const { return 1; }
EIGEN_DEVICE_FUNC inline Index outerStride() const { return this->innerSize(); }
#ifdef EIGEN_ARRAY_PLUGIN
#include EIGEN_ARRAY_PLUGIN
#endif
private:
template<typename MatrixType, typename OtherDerived, bool SwapPointers>
friend struct internal::matrix_swap_impl;
};
/** \defgroup arraytypedefs Global array typedefs
* \ingroup Core_Module
*
* Eigen defines several typedef shortcuts for most common 1D and 2D array types.
*
* The general patterns are the following:
*
* \c ArrayRowsColsType where \c Rows and \c Cols can be \c 2,\c 3,\c 4 for fixed size square matrices or \c X for dynamic size,
* and where \c Type can be \c i for integer, \c f for float, \c d for double, \c cf for complex float, \c cd
* for complex double.
*
* For example, \c Array33d is a fixed-size 3x3 array type of doubles, and \c ArrayXXf is a dynamic-size matrix of floats.
*
* There are also \c ArraySizeType which are self-explanatory. For example, \c Array4cf is
* a fixed-size 1D array of 4 complex floats.
*
* \sa class Array
*/
#define EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \
/** \ingroup arraytypedefs */ \
typedef Array<Type, Size, Size> Array##SizeSuffix##SizeSuffix##TypeSuffix; \
/** \ingroup arraytypedefs */ \
typedef Array<Type, Size, 1> Array##SizeSuffix##TypeSuffix;
#define EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, Size) \
/** \ingroup arraytypedefs */ \
typedef Array<Type, Size, Dynamic> Array##Size##X##TypeSuffix; \
/** \ingroup arraytypedefs */ \
typedef Array<Type, Dynamic, Size> Array##X##Size##TypeSuffix;
#define EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \
EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 2, 2) \
EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 3, 3) \
EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 4, 4) \
EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, Dynamic, X) \
EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 2) \
EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 3) \
EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 4)
EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(int, i)
EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(float, f)
EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(double, d)
EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(std::complex<float>, cf)
EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(std::complex<double>, cd)
#undef EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES
#undef EIGEN_MAKE_ARRAY_TYPEDEFS
#undef EIGEN_MAKE_ARRAY_TYPEDEFS_LARGE
#define EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, SizeSuffix) \
using Eigen::Matrix##SizeSuffix##TypeSuffix; \
using Eigen::Vector##SizeSuffix##TypeSuffix; \
using Eigen::RowVector##SizeSuffix##TypeSuffix;
#define EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(TypeSuffix) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 2) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 3) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 4) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, X) \
#define EIGEN_USING_ARRAY_TYPEDEFS \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(i) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(f) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(d) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(cf) \
EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(cd)
} // end namespace Eigen
#endif // EIGEN_ARRAY_H

View File

@ -0,0 +1,227 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ARRAYBASE_H
#define EIGEN_ARRAYBASE_H
namespace Eigen {
template<typename ExpressionType> class MatrixWrapper;
/** \class ArrayBase
* \ingroup Core_Module
*
* \brief Base class for all 1D and 2D array, and related expressions
*
* An array is similar to a dense vector or matrix. While matrices are mathematical
* objects with well defined linear algebra operators, an array is just a collection
* of scalar values arranged in a one or two dimensionnal fashion. As the main consequence,
* all operations applied to an array are performed coefficient wise. Furthermore,
* arrays support scalar math functions of the c++ standard library (e.g., std::sin(x)), and convenient
* constructors allowing to easily write generic code working for both scalar values
* and arrays.
*
* This class is the base that is inherited by all array expression types.
*
* \tparam Derived is the derived type, e.g., an array or an expression type.
*
* This class can be extended with the help of the plugin mechanism described on the page
* \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_ARRAYBASE_PLUGIN.
*
* \sa class MatrixBase, \ref TopicClassHierarchy
*/
template<typename Derived> class ArrayBase
: public DenseBase<Derived>
{
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** The base class for a given storage type. */
typedef ArrayBase StorageBaseType;
typedef ArrayBase Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl;
using internal::special_scalar_op_base<Derived,typename internal::traits<Derived>::Scalar,
typename NumTraits<typename internal::traits<Derived>::Scalar>::Real>::operator*;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef DenseBase<Derived> Base;
using Base::RowsAtCompileTime;
using Base::ColsAtCompileTime;
using Base::SizeAtCompileTime;
using Base::MaxRowsAtCompileTime;
using Base::MaxColsAtCompileTime;
using Base::MaxSizeAtCompileTime;
using Base::IsVectorAtCompileTime;
using Base::Flags;
using Base::derived;
using Base::const_cast_derived;
using Base::rows;
using Base::cols;
using Base::size;
using Base::coeff;
using Base::coeffRef;
using Base::lazyAssign;
using Base::operator=;
using Base::operator+=;
using Base::operator-=;
using Base::operator*=;
using Base::operator/=;
typedef typename Base::CoeffReturnType CoeffReturnType;
#endif // not EIGEN_PARSED_BY_DOXYGEN
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef typename Base::PlainObject PlainObject;
/** \internal Represents a matrix with all coefficients equal to one another*/
typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,PlainObject> ConstantReturnType;
#endif // not EIGEN_PARSED_BY_DOXYGEN
#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::ArrayBase
# include "../plugins/CommonCwiseUnaryOps.h"
# include "../plugins/MatrixCwiseUnaryOps.h"
# include "../plugins/ArrayCwiseUnaryOps.h"
# include "../plugins/CommonCwiseBinaryOps.h"
# include "../plugins/MatrixCwiseBinaryOps.h"
# include "../plugins/ArrayCwiseBinaryOps.h"
# ifdef EIGEN_ARRAYBASE_PLUGIN
# include EIGEN_ARRAYBASE_PLUGIN
# endif
#undef EIGEN_CURRENT_STORAGE_BASE_CLASS
/** Special case of the template operator=, in order to prevent the compiler
* from generating a default operator= (issue hit with g++ 4.1)
*/
EIGEN_DEVICE_FUNC
Derived& operator=(const ArrayBase& other)
{
internal::call_assignment(derived(), other.derived());
return derived();
}
/** Set all the entries to \a value.
* \sa DenseBase::setConstant(), DenseBase::fill() */
EIGEN_DEVICE_FUNC
Derived& operator=(const Scalar &value)
{ Base::setConstant(value); return derived(); }
EIGEN_DEVICE_FUNC
Derived& operator+=(const Scalar& scalar);
EIGEN_DEVICE_FUNC
Derived& operator-=(const Scalar& scalar);
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
Derived& operator+=(const ArrayBase<OtherDerived>& other);
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
Derived& operator-=(const ArrayBase<OtherDerived>& other);
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
Derived& operator*=(const ArrayBase<OtherDerived>& other);
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
Derived& operator/=(const ArrayBase<OtherDerived>& other);
public:
EIGEN_DEVICE_FUNC
ArrayBase<Derived>& array() { return *this; }
EIGEN_DEVICE_FUNC
const ArrayBase<Derived>& array() const { return *this; }
/** \returns an \link Eigen::MatrixBase Matrix \endlink expression of this array
* \sa MatrixBase::array() */
EIGEN_DEVICE_FUNC
MatrixWrapper<Derived> matrix() { return MatrixWrapper<Derived>(derived()); }
EIGEN_DEVICE_FUNC
const MatrixWrapper<const Derived> matrix() const { return MatrixWrapper<const Derived>(derived()); }
// template<typename Dest>
// inline void evalTo(Dest& dst) const { dst = matrix(); }
protected:
EIGEN_DEVICE_FUNC
ArrayBase() : Base() {}
private:
explicit ArrayBase(Index);
ArrayBase(Index,Index);
template<typename OtherDerived> explicit ArrayBase(const ArrayBase<OtherDerived>&);
protected:
// mixing arrays and matrices is not legal
template<typename OtherDerived> Derived& operator+=(const MatrixBase<OtherDerived>& )
{EIGEN_STATIC_ASSERT(std::ptrdiff_t(sizeof(typename OtherDerived::Scalar))==-1,YOU_CANNOT_MIX_ARRAYS_AND_MATRICES); return *this;}
// mixing arrays and matrices is not legal
template<typename OtherDerived> Derived& operator-=(const MatrixBase<OtherDerived>& )
{EIGEN_STATIC_ASSERT(std::ptrdiff_t(sizeof(typename OtherDerived::Scalar))==-1,YOU_CANNOT_MIX_ARRAYS_AND_MATRICES); return *this;}
};
/** replaces \c *this by \c *this - \a other.
*
* \returns a reference to \c *this
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
ArrayBase<Derived>::operator-=(const ArrayBase<OtherDerived> &other)
{
call_assignment(derived(), other.derived(), internal::sub_assign_op<Scalar>());
return derived();
}
/** replaces \c *this by \c *this + \a other.
*
* \returns a reference to \c *this
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
ArrayBase<Derived>::operator+=(const ArrayBase<OtherDerived>& other)
{
call_assignment(derived(), other.derived(), internal::add_assign_op<Scalar>());
return derived();
}
/** replaces \c *this by \c *this * \a other coefficient wise.
*
* \returns a reference to \c *this
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
ArrayBase<Derived>::operator*=(const ArrayBase<OtherDerived>& other)
{
call_assignment(derived(), other.derived(), internal::mul_assign_op<Scalar,typename OtherDerived::Scalar>());
return derived();
}
/** replaces \c *this by \c *this / \a other coefficient wise.
*
* \returns a reference to \c *this
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
ArrayBase<Derived>::operator/=(const ArrayBase<OtherDerived>& other)
{
call_assignment(derived(), other.derived(), internal::div_assign_op<Scalar>());
return derived();
}
} // end namespace Eigen
#endif // EIGEN_ARRAYBASE_H

View File

@ -0,0 +1,299 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ARRAYWRAPPER_H
#define EIGEN_ARRAYWRAPPER_H
namespace Eigen {
/** \class ArrayWrapper
* \ingroup Core_Module
*
* \brief Expression of a mathematical vector or matrix as an array object
*
* This class is the return type of MatrixBase::array(), and most of the time
* this is the only way it is use.
*
* \sa MatrixBase::array(), class MatrixWrapper
*/
namespace internal {
template<typename ExpressionType>
struct traits<ArrayWrapper<ExpressionType> >
: public traits<typename remove_all<typename ExpressionType::Nested>::type >
{
typedef ArrayXpr XprKind;
// Let's remove NestByRefBit
enum {
Flags0 = traits<typename remove_all<typename ExpressionType::Nested>::type >::Flags,
Flags = Flags0 & ~NestByRefBit
};
};
}
template<typename ExpressionType>
class ArrayWrapper : public ArrayBase<ArrayWrapper<ExpressionType> >
{
public:
typedef ArrayBase<ArrayWrapper> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(ArrayWrapper)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(ArrayWrapper)
typedef typename internal::remove_all<ExpressionType>::type NestedExpression;
typedef typename internal::conditional<
internal::is_lvalue<ExpressionType>::value,
Scalar,
const Scalar
>::type ScalarWithConstIfNotLvalue;
typedef typename internal::ref_selector<ExpressionType>::type NestedExpressionType;
EIGEN_DEVICE_FUNC
explicit EIGEN_STRONG_INLINE ArrayWrapper(ExpressionType& matrix) : m_expression(matrix) {}
EIGEN_DEVICE_FUNC
inline Index rows() const { return m_expression.rows(); }
EIGEN_DEVICE_FUNC
inline Index cols() const { return m_expression.cols(); }
EIGEN_DEVICE_FUNC
inline Index outerStride() const { return m_expression.outerStride(); }
EIGEN_DEVICE_FUNC
inline Index innerStride() const { return m_expression.innerStride(); }
EIGEN_DEVICE_FUNC
inline ScalarWithConstIfNotLvalue* data() { return m_expression.const_cast_derived().data(); }
EIGEN_DEVICE_FUNC
inline const Scalar* data() const { return m_expression.data(); }
EIGEN_DEVICE_FUNC
inline CoeffReturnType coeff(Index rowId, Index colId) const
{
return m_expression.coeff(rowId, colId);
}
EIGEN_DEVICE_FUNC
inline Scalar& coeffRef(Index rowId, Index colId)
{
return m_expression.const_cast_derived().coeffRef(rowId, colId);
}
EIGEN_DEVICE_FUNC
inline const Scalar& coeffRef(Index rowId, Index colId) const
{
return m_expression.const_cast_derived().coeffRef(rowId, colId);
}
EIGEN_DEVICE_FUNC
inline CoeffReturnType coeff(Index index) const
{
return m_expression.coeff(index);
}
EIGEN_DEVICE_FUNC
inline Scalar& coeffRef(Index index)
{
return m_expression.const_cast_derived().coeffRef(index);
}
EIGEN_DEVICE_FUNC
inline const Scalar& coeffRef(Index index) const
{
return m_expression.const_cast_derived().coeffRef(index);
}
template<int LoadMode>
inline const PacketScalar packet(Index rowId, Index colId) const
{
return m_expression.template packet<LoadMode>(rowId, colId);
}
template<int LoadMode>
inline void writePacket(Index rowId, Index colId, const PacketScalar& val)
{
m_expression.const_cast_derived().template writePacket<LoadMode>(rowId, colId, val);
}
template<int LoadMode>
inline const PacketScalar packet(Index index) const
{
return m_expression.template packet<LoadMode>(index);
}
template<int LoadMode>
inline void writePacket(Index index, const PacketScalar& val)
{
m_expression.const_cast_derived().template writePacket<LoadMode>(index, val);
}
template<typename Dest>
EIGEN_DEVICE_FUNC
inline void evalTo(Dest& dst) const { dst = m_expression; }
const typename internal::remove_all<NestedExpressionType>::type&
EIGEN_DEVICE_FUNC
nestedExpression() const
{
return m_expression;
}
/** Forwards the resizing request to the nested expression
* \sa DenseBase::resize(Index) */
EIGEN_DEVICE_FUNC
void resize(Index newSize) { m_expression.const_cast_derived().resize(newSize); }
/** Forwards the resizing request to the nested expression
* \sa DenseBase::resize(Index,Index)*/
EIGEN_DEVICE_FUNC
void resize(Index rows, Index cols) { m_expression.const_cast_derived().resize(rows,cols); }
protected:
NestedExpressionType m_expression;
};
/** \class MatrixWrapper
* \ingroup Core_Module
*
* \brief Expression of an array as a mathematical vector or matrix
*
* This class is the return type of ArrayBase::matrix(), and most of the time
* this is the only way it is use.
*
* \sa MatrixBase::matrix(), class ArrayWrapper
*/
namespace internal {
template<typename ExpressionType>
struct traits<MatrixWrapper<ExpressionType> >
: public traits<typename remove_all<typename ExpressionType::Nested>::type >
{
typedef MatrixXpr XprKind;
// Let's remove NestByRefBit
enum {
Flags0 = traits<typename remove_all<typename ExpressionType::Nested>::type >::Flags,
Flags = Flags0 & ~NestByRefBit
};
};
}
template<typename ExpressionType>
class MatrixWrapper : public MatrixBase<MatrixWrapper<ExpressionType> >
{
public:
typedef MatrixBase<MatrixWrapper<ExpressionType> > Base;
EIGEN_DENSE_PUBLIC_INTERFACE(MatrixWrapper)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(MatrixWrapper)
typedef typename internal::remove_all<ExpressionType>::type NestedExpression;
typedef typename internal::conditional<
internal::is_lvalue<ExpressionType>::value,
Scalar,
const Scalar
>::type ScalarWithConstIfNotLvalue;
typedef typename internal::ref_selector<ExpressionType>::type NestedExpressionType;
EIGEN_DEVICE_FUNC
explicit inline MatrixWrapper(ExpressionType& matrix) : m_expression(matrix) {}
EIGEN_DEVICE_FUNC
inline Index rows() const { return m_expression.rows(); }
EIGEN_DEVICE_FUNC
inline Index cols() const { return m_expression.cols(); }
EIGEN_DEVICE_FUNC
inline Index outerStride() const { return m_expression.outerStride(); }
EIGEN_DEVICE_FUNC
inline Index innerStride() const { return m_expression.innerStride(); }
EIGEN_DEVICE_FUNC
inline ScalarWithConstIfNotLvalue* data() { return m_expression.const_cast_derived().data(); }
EIGEN_DEVICE_FUNC
inline const Scalar* data() const { return m_expression.data(); }
EIGEN_DEVICE_FUNC
inline CoeffReturnType coeff(Index rowId, Index colId) const
{
return m_expression.coeff(rowId, colId);
}
EIGEN_DEVICE_FUNC
inline Scalar& coeffRef(Index rowId, Index colId)
{
return m_expression.const_cast_derived().coeffRef(rowId, colId);
}
EIGEN_DEVICE_FUNC
inline const Scalar& coeffRef(Index rowId, Index colId) const
{
return m_expression.derived().coeffRef(rowId, colId);
}
EIGEN_DEVICE_FUNC
inline CoeffReturnType coeff(Index index) const
{
return m_expression.coeff(index);
}
EIGEN_DEVICE_FUNC
inline Scalar& coeffRef(Index index)
{
return m_expression.const_cast_derived().coeffRef(index);
}
EIGEN_DEVICE_FUNC
inline const Scalar& coeffRef(Index index) const
{
return m_expression.const_cast_derived().coeffRef(index);
}
template<int LoadMode>
inline const PacketScalar packet(Index rowId, Index colId) const
{
return m_expression.template packet<LoadMode>(rowId, colId);
}
template<int LoadMode>
inline void writePacket(Index rowId, Index colId, const PacketScalar& val)
{
m_expression.const_cast_derived().template writePacket<LoadMode>(rowId, colId, val);
}
template<int LoadMode>
inline const PacketScalar packet(Index index) const
{
return m_expression.template packet<LoadMode>(index);
}
template<int LoadMode>
inline void writePacket(Index index, const PacketScalar& val)
{
m_expression.const_cast_derived().template writePacket<LoadMode>(index, val);
}
EIGEN_DEVICE_FUNC
const typename internal::remove_all<NestedExpressionType>::type&
nestedExpression() const
{
return m_expression;
}
/** Forwards the resizing request to the nested expression
* \sa DenseBase::resize(Index) */
EIGEN_DEVICE_FUNC
void resize(Index newSize) { m_expression.const_cast_derived().resize(newSize); }
/** Forwards the resizing request to the nested expression
* \sa DenseBase::resize(Index,Index)*/
EIGEN_DEVICE_FUNC
void resize(Index rows, Index cols) { m_expression.const_cast_derived().resize(rows,cols); }
protected:
NestedExpressionType m_expression;
};
} // end namespace Eigen
#endif // EIGEN_ARRAYWRAPPER_H

View File

@ -0,0 +1,90 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2007 Michael Olbrich <michael.olbrich@gmx.net>
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ASSIGN_H
#define EIGEN_ASSIGN_H
namespace Eigen {
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>
::lazyAssign(const DenseBase<OtherDerived>& other)
{
enum{
SameType = internal::is_same<typename Derived::Scalar,typename OtherDerived::Scalar>::value
};
EIGEN_STATIC_ASSERT_LVALUE(Derived)
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Derived,OtherDerived)
EIGEN_STATIC_ASSERT(SameType,YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
eigen_assert(rows() == other.rows() && cols() == other.cols());
internal::call_assignment_no_alias(derived(),other.derived());
return derived();
}
template<typename Derived>
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::operator=(const DenseBase<OtherDerived>& other)
{
internal::call_assignment(derived(), other.derived());
return derived();
}
template<typename Derived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::operator=(const DenseBase& other)
{
internal::call_assignment(derived(), other.derived());
return derived();
}
template<typename Derived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::operator=(const MatrixBase& other)
{
internal::call_assignment(derived(), other.derived());
return derived();
}
template<typename Derived>
template <typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::operator=(const DenseBase<OtherDerived>& other)
{
internal::call_assignment(derived(), other.derived());
return derived();
}
template<typename Derived>
template <typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::operator=(const EigenBase<OtherDerived>& other)
{
internal::call_assignment(derived(), other.derived());
return derived();
}
template<typename Derived>
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::operator=(const ReturnByValue<OtherDerived>& other)
{
other.derived().evalTo(derived());
return derived();
}
} // end namespace Eigen
#endif // EIGEN_ASSIGN_H

View File

@ -0,0 +1,828 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2011-2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ASSIGN_EVALUATOR_H
#define EIGEN_ASSIGN_EVALUATOR_H
namespace Eigen {
// This implementation is based on Assign.h
namespace internal {
/***************************************************************************
* Part 1 : the logic deciding a strategy for traversal and unrolling *
***************************************************************************/
// copy_using_evaluator_traits is based on assign_traits
template <typename DstEvaluator, typename SrcEvaluator, typename AssignFunc>
struct copy_using_evaluator_traits
{
typedef typename DstEvaluator::XprType Dst;
typedef typename Dst::Scalar DstScalar;
// TODO distinguish between linear traversal and inner-traversals
typedef typename find_best_packet<DstScalar,Dst::SizeAtCompileTime>::type PacketType;
enum {
DstFlags = DstEvaluator::Flags,
SrcFlags = SrcEvaluator::Flags,
RequiredAlignment = unpacket_traits<PacketType>::alignment
};
public:
enum {
DstAlignment = DstEvaluator::Alignment,
SrcAlignment = SrcEvaluator::Alignment,
DstHasDirectAccess = DstFlags & DirectAccessBit,
JointAlignment = EIGEN_PLAIN_ENUM_MIN(DstAlignment,SrcAlignment)
};
private:
enum {
InnerSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::SizeAtCompileTime)
: int(DstFlags)&RowMajorBit ? int(Dst::ColsAtCompileTime)
: int(Dst::RowsAtCompileTime),
InnerMaxSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::MaxSizeAtCompileTime)
: int(DstFlags)&RowMajorBit ? int(Dst::MaxColsAtCompileTime)
: int(Dst::MaxRowsAtCompileTime),
MaxSizeAtCompileTime = Dst::SizeAtCompileTime,
PacketSize = unpacket_traits<PacketType>::size
};
enum {
DstIsRowMajor = DstFlags&RowMajorBit,
SrcIsRowMajor = SrcFlags&RowMajorBit,
StorageOrdersAgree = (int(DstIsRowMajor) == int(SrcIsRowMajor)),
MightVectorize = StorageOrdersAgree
&& (int(DstFlags) & int(SrcFlags) & ActualPacketAccessBit)
&& (functor_traits<AssignFunc>::PacketAccess),
MayInnerVectorize = MightVectorize && int(InnerSize)!=Dynamic && int(InnerSize)%int(PacketSize)==0
&& int(JointAlignment)>=int(RequiredAlignment),
MayLinearize = StorageOrdersAgree && (int(DstFlags) & int(SrcFlags) & LinearAccessBit),
MayLinearVectorize = MightVectorize && MayLinearize && DstHasDirectAccess
&& ((int(DstAlignment)>=int(RequiredAlignment)) || MaxSizeAtCompileTime == Dynamic),
/* If the destination isn't aligned, we have to do runtime checks and we don't unroll,
so it's only good for large enough sizes. */
MaySliceVectorize = MightVectorize && DstHasDirectAccess
&& (int(InnerMaxSize)==Dynamic || int(InnerMaxSize)>=3*PacketSize)
/* slice vectorization can be slow, so we only want it if the slices are big, which is
indicated by InnerMaxSize rather than InnerSize, think of the case of a dynamic block
in a fixed-size matrix */
};
public:
enum {
Traversal = int(MayInnerVectorize) ? int(InnerVectorizedTraversal)
: int(MayLinearVectorize) ? int(LinearVectorizedTraversal)
: int(MaySliceVectorize) ? int(SliceVectorizedTraversal)
: int(MayLinearize) ? int(LinearTraversal)
: int(DefaultTraversal),
Vectorized = int(Traversal) == InnerVectorizedTraversal
|| int(Traversal) == LinearVectorizedTraversal
|| int(Traversal) == SliceVectorizedTraversal
};
private:
enum {
UnrollingLimit = EIGEN_UNROLLING_LIMIT * (Vectorized ? int(PacketSize) : 1),
MayUnrollCompletely = int(Dst::SizeAtCompileTime) != Dynamic
&& int(SrcEvaluator::CoeffReadCost) != Dynamic
&& int(Dst::SizeAtCompileTime) * int(SrcEvaluator::CoeffReadCost) <= int(UnrollingLimit),
MayUnrollInner = int(InnerSize) != Dynamic
&& int(SrcEvaluator::CoeffReadCost) != Dynamic
&& int(InnerSize) * int(SrcEvaluator::CoeffReadCost) <= int(UnrollingLimit)
};
public:
enum {
Unrolling = (int(Traversal) == int(InnerVectorizedTraversal) || int(Traversal) == int(DefaultTraversal))
? (
int(MayUnrollCompletely) ? int(CompleteUnrolling)
: int(MayUnrollInner) ? int(InnerUnrolling)
: int(NoUnrolling)
)
: int(Traversal) == int(LinearVectorizedTraversal)
? ( bool(MayUnrollCompletely) && (int(DstAlignment)>=int(RequiredAlignment)) ? int(CompleteUnrolling)
: int(NoUnrolling) )
: int(Traversal) == int(LinearTraversal)
? ( bool(MayUnrollCompletely) ? int(CompleteUnrolling)
: int(NoUnrolling) )
: int(NoUnrolling)
};
#ifdef EIGEN_DEBUG_ASSIGN
static void debug()
{
std::cerr << "DstXpr: " << typeid(typename DstEvaluator::XprType).name() << std::endl;
std::cerr << "SrcXpr: " << typeid(typename SrcEvaluator::XprType).name() << std::endl;
std::cerr.setf(std::ios::hex, std::ios::basefield);
EIGEN_DEBUG_VAR(DstFlags)
EIGEN_DEBUG_VAR(SrcFlags)
std::cerr.unsetf(std::ios::hex);
EIGEN_DEBUG_VAR(DstAlignment)
EIGEN_DEBUG_VAR(SrcAlignment)
EIGEN_DEBUG_VAR(RequiredAlignment)
EIGEN_DEBUG_VAR(JointAlignment)
EIGEN_DEBUG_VAR(InnerSize)
EIGEN_DEBUG_VAR(InnerMaxSize)
EIGEN_DEBUG_VAR(PacketSize)
EIGEN_DEBUG_VAR(StorageOrdersAgree)
EIGEN_DEBUG_VAR(MightVectorize)
EIGEN_DEBUG_VAR(MayLinearize)
EIGEN_DEBUG_VAR(MayInnerVectorize)
EIGEN_DEBUG_VAR(MayLinearVectorize)
EIGEN_DEBUG_VAR(MaySliceVectorize)
EIGEN_DEBUG_VAR(Traversal)
EIGEN_DEBUG_VAR(UnrollingLimit)
EIGEN_DEBUG_VAR(MayUnrollCompletely)
EIGEN_DEBUG_VAR(MayUnrollInner)
EIGEN_DEBUG_VAR(Unrolling)
std::cerr << std::endl;
}
#endif
};
/***************************************************************************
* Part 2 : meta-unrollers
***************************************************************************/
/************************
*** Default traversal ***
************************/
template<typename Kernel, int Index, int Stop>
struct copy_using_evaluator_DefaultTraversal_CompleteUnrolling
{
// FIXME: this is not very clean, perhaps this information should be provided by the kernel?
typedef typename Kernel::DstEvaluatorType DstEvaluatorType;
typedef typename DstEvaluatorType::XprType DstXprType;
enum {
outer = Index / DstXprType::InnerSizeAtCompileTime,
inner = Index % DstXprType::InnerSizeAtCompileTime
};
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
kernel.assignCoeffByOuterInner(outer, inner);
copy_using_evaluator_DefaultTraversal_CompleteUnrolling<Kernel, Index+1, Stop>::run(kernel);
}
};
template<typename Kernel, int Stop>
struct copy_using_evaluator_DefaultTraversal_CompleteUnrolling<Kernel, Stop, Stop>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&) { }
};
template<typename Kernel, int Index_, int Stop>
struct copy_using_evaluator_DefaultTraversal_InnerUnrolling
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel, Index outer)
{
kernel.assignCoeffByOuterInner(outer, Index_);
copy_using_evaluator_DefaultTraversal_InnerUnrolling<Kernel, Index_+1, Stop>::run(kernel, outer);
}
};
template<typename Kernel, int Stop>
struct copy_using_evaluator_DefaultTraversal_InnerUnrolling<Kernel, Stop, Stop>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&, Index) { }
};
/***********************
*** Linear traversal ***
***********************/
template<typename Kernel, int Index, int Stop>
struct copy_using_evaluator_LinearTraversal_CompleteUnrolling
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel& kernel)
{
kernel.assignCoeff(Index);
copy_using_evaluator_LinearTraversal_CompleteUnrolling<Kernel, Index+1, Stop>::run(kernel);
}
};
template<typename Kernel, int Stop>
struct copy_using_evaluator_LinearTraversal_CompleteUnrolling<Kernel, Stop, Stop>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&) { }
};
/**************************
*** Inner vectorization ***
**************************/
template<typename Kernel, int Index, int Stop>
struct copy_using_evaluator_innervec_CompleteUnrolling
{
// FIXME: this is not very clean, perhaps this information should be provided by the kernel?
typedef typename Kernel::DstEvaluatorType DstEvaluatorType;
typedef typename DstEvaluatorType::XprType DstXprType;
typedef typename Kernel::PacketType PacketType;
enum {
outer = Index / DstXprType::InnerSizeAtCompileTime,
inner = Index % DstXprType::InnerSizeAtCompileTime,
JointAlignment = Kernel::AssignmentTraits::JointAlignment
};
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
kernel.template assignPacketByOuterInner<Aligned, JointAlignment, PacketType>(outer, inner);
enum { NextIndex = Index + unpacket_traits<PacketType>::size };
copy_using_evaluator_innervec_CompleteUnrolling<Kernel, NextIndex, Stop>::run(kernel);
}
};
template<typename Kernel, int Stop>
struct copy_using_evaluator_innervec_CompleteUnrolling<Kernel, Stop, Stop>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&) { }
};
template<typename Kernel, int Index_, int Stop>
struct copy_using_evaluator_innervec_InnerUnrolling
{
typedef typename Kernel::PacketType PacketType;
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel, Index outer)
{
kernel.template assignPacketByOuterInner<Aligned, Aligned, PacketType>(outer, Index_);
enum { NextIndex = Index_ + unpacket_traits<PacketType>::size };
copy_using_evaluator_innervec_InnerUnrolling<Kernel, NextIndex, Stop>::run(kernel, outer);
}
};
template<typename Kernel, int Stop>
struct copy_using_evaluator_innervec_InnerUnrolling<Kernel, Stop, Stop>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &, Index) { }
};
/***************************************************************************
* Part 3 : implementation of all cases
***************************************************************************/
// dense_assignment_loop is based on assign_impl
template<typename Kernel,
int Traversal = Kernel::AssignmentTraits::Traversal,
int Unrolling = Kernel::AssignmentTraits::Unrolling>
struct dense_assignment_loop;
/************************
*** Default traversal ***
************************/
template<typename Kernel>
struct dense_assignment_loop<Kernel, DefaultTraversal, NoUnrolling>
{
EIGEN_DEVICE_FUNC static void run(Kernel &kernel)
{
for(Index outer = 0; outer < kernel.outerSize(); ++outer) {
for(Index inner = 0; inner < kernel.innerSize(); ++inner) {
kernel.assignCoeffByOuterInner(outer, inner);
}
}
}
};
template<typename Kernel>
struct dense_assignment_loop<Kernel, DefaultTraversal, CompleteUnrolling>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
copy_using_evaluator_DefaultTraversal_CompleteUnrolling<Kernel, 0, DstXprType::SizeAtCompileTime>::run(kernel);
}
};
template<typename Kernel>
struct dense_assignment_loop<Kernel, DefaultTraversal, InnerUnrolling>
{
typedef typename Kernel::StorageIndex StorageIndex;
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
const Index outerSize = kernel.outerSize();
for(Index outer = 0; outer < outerSize; ++outer)
copy_using_evaluator_DefaultTraversal_InnerUnrolling<Kernel, 0, DstXprType::InnerSizeAtCompileTime>::run(kernel, outer);
}
};
/***************************
*** Linear vectorization ***
***************************/
// The goal of unaligned_dense_assignment_loop is simply to factorize the handling
// of the non vectorizable beginning and ending parts
template <bool IsAligned = false>
struct unaligned_dense_assignment_loop
{
// if IsAligned = true, then do nothing
template <typename Kernel>
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel&, Index, Index) {}
};
template <>
struct unaligned_dense_assignment_loop<false>
{
// MSVC must not inline this functions. If it does, it fails to optimize the
// packet access path.
// FIXME check which version exhibits this issue
#if EIGEN_COMP_MSVC
template <typename Kernel>
static EIGEN_DONT_INLINE void run(Kernel &kernel,
Index start,
Index end)
#else
template <typename Kernel>
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel,
Index start,
Index end)
#endif
{
for (Index index = start; index < end; ++index)
kernel.assignCoeff(index);
}
};
template<typename Kernel>
struct dense_assignment_loop<Kernel, LinearVectorizedTraversal, NoUnrolling>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
const Index size = kernel.size();
typedef typename Kernel::Scalar Scalar;
typedef typename Kernel::PacketType PacketType;
enum {
requestedAlignment = Kernel::AssignmentTraits::RequiredAlignment,
packetSize = unpacket_traits<PacketType>::size,
dstIsAligned = int(Kernel::AssignmentTraits::DstAlignment)>=int(requestedAlignment),
dstAlignment = packet_traits<Scalar>::AlignedOnScalar ? int(requestedAlignment)
: int(Kernel::AssignmentTraits::DstAlignment),
srcAlignment = Kernel::AssignmentTraits::JointAlignment
};
const Index alignedStart = dstIsAligned ? 0 : internal::first_aligned<requestedAlignment>(&kernel.dstEvaluator().coeffRef(0), size);
const Index alignedEnd = alignedStart + ((size-alignedStart)/packetSize)*packetSize;
unaligned_dense_assignment_loop<dstIsAligned!=0>::run(kernel, 0, alignedStart);
for(Index index = alignedStart; index < alignedEnd; index += packetSize)
kernel.template assignPacket<dstAlignment, srcAlignment, PacketType>(index);
unaligned_dense_assignment_loop<>::run(kernel, alignedEnd, size);
}
};
template<typename Kernel>
struct dense_assignment_loop<Kernel, LinearVectorizedTraversal, CompleteUnrolling>
{
typedef typename Kernel::StorageIndex StorageIndex;
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
enum { size = DstXprType::SizeAtCompileTime,
packetSize = packet_traits<typename Kernel::Scalar>::size,
alignedSize = (size/packetSize)*packetSize };
copy_using_evaluator_innervec_CompleteUnrolling<Kernel, 0, alignedSize>::run(kernel);
copy_using_evaluator_DefaultTraversal_CompleteUnrolling<Kernel, alignedSize, size>::run(kernel);
}
};
/**************************
*** Inner vectorization ***
**************************/
template<typename Kernel>
struct dense_assignment_loop<Kernel, InnerVectorizedTraversal, NoUnrolling>
{
typedef typename Kernel::PacketType PacketType;
EIGEN_DEVICE_FUNC static inline void run(Kernel &kernel)
{
const Index innerSize = kernel.innerSize();
const Index outerSize = kernel.outerSize();
const Index packetSize = unpacket_traits<PacketType>::size;
for(Index outer = 0; outer < outerSize; ++outer)
for(Index inner = 0; inner < innerSize; inner+=packetSize)
kernel.template assignPacketByOuterInner<Aligned, Aligned, PacketType>(outer, inner);
}
};
template<typename Kernel>
struct dense_assignment_loop<Kernel, InnerVectorizedTraversal, CompleteUnrolling>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
copy_using_evaluator_innervec_CompleteUnrolling<Kernel, 0, DstXprType::SizeAtCompileTime>::run(kernel);
}
};
template<typename Kernel>
struct dense_assignment_loop<Kernel, InnerVectorizedTraversal, InnerUnrolling>
{
typedef typename Kernel::StorageIndex StorageIndex;
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
const Index outerSize = kernel.outerSize();
for(Index outer = 0; outer < outerSize; ++outer)
copy_using_evaluator_innervec_InnerUnrolling<Kernel, 0, DstXprType::InnerSizeAtCompileTime>::run(kernel, outer);
}
};
/***********************
*** Linear traversal ***
***********************/
template<typename Kernel>
struct dense_assignment_loop<Kernel, LinearTraversal, NoUnrolling>
{
EIGEN_DEVICE_FUNC static inline void run(Kernel &kernel)
{
const Index size = kernel.size();
for(Index i = 0; i < size; ++i)
kernel.assignCoeff(i);
}
};
template<typename Kernel>
struct dense_assignment_loop<Kernel, LinearTraversal, CompleteUnrolling>
{
EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void run(Kernel &kernel)
{
typedef typename Kernel::DstEvaluatorType::XprType DstXprType;
copy_using_evaluator_LinearTraversal_CompleteUnrolling<Kernel, 0, DstXprType::SizeAtCompileTime>::run(kernel);
}
};
/**************************
*** Slice vectorization ***
***************************/
template<typename Kernel>
struct dense_assignment_loop<Kernel, SliceVectorizedTraversal, NoUnrolling>
{
EIGEN_DEVICE_FUNC static inline void run(Kernel &kernel)
{
typedef typename Kernel::Scalar Scalar;
typedef typename Kernel::PacketType PacketType;
enum {
packetSize = unpacket_traits<PacketType>::size,
requestedAlignment = int(Kernel::AssignmentTraits::RequiredAlignment),
alignable = packet_traits<Scalar>::AlignedOnScalar || int(Kernel::AssignmentTraits::DstAlignment)>=sizeof(Scalar),
dstIsAligned = int(Kernel::AssignmentTraits::DstAlignment)>=int(requestedAlignment),
dstAlignment = alignable ? int(requestedAlignment)
: int(Kernel::AssignmentTraits::DstAlignment)
};
const Scalar *dst_ptr = &kernel.dstEvaluator().coeffRef(0,0);
if((!bool(dstIsAligned)) && (size_t(dst_ptr) % sizeof(Scalar))>0)
{
// the pointer is not aligend-on scalar, so alignment is not possible
return dense_assignment_loop<Kernel,DefaultTraversal,NoUnrolling>::run(kernel);
}
const Index packetAlignedMask = packetSize - 1;
const Index innerSize = kernel.innerSize();
const Index outerSize = kernel.outerSize();
const Index alignedStep = alignable ? (packetSize - kernel.outerStride() % packetSize) & packetAlignedMask : 0;
Index alignedStart = ((!alignable) || bool(dstIsAligned)) ? 0 : internal::first_aligned<requestedAlignment>(dst_ptr, innerSize);
for(Index outer = 0; outer < outerSize; ++outer)
{
const Index alignedEnd = alignedStart + ((innerSize-alignedStart) & ~packetAlignedMask);
// do the non-vectorizable part of the assignment
for(Index inner = 0; inner<alignedStart ; ++inner)
kernel.assignCoeffByOuterInner(outer, inner);
// do the vectorizable part of the assignment
for(Index inner = alignedStart; inner<alignedEnd; inner+=packetSize)
kernel.template assignPacketByOuterInner<dstAlignment, Unaligned, PacketType>(outer, inner);
// do the non-vectorizable part of the assignment
for(Index inner = alignedEnd; inner<innerSize ; ++inner)
kernel.assignCoeffByOuterInner(outer, inner);
alignedStart = std::min<Index>((alignedStart+alignedStep)%packetSize, innerSize);
}
}
};
/***************************************************************************
* Part 4 : Generic dense assignment kernel
***************************************************************************/
// This class generalize the assignment of a coefficient (or packet) from one dense evaluator
// to another dense writable evaluator.
// It is parametrized by the two evaluators, and the actual assignment functor.
// This abstraction level permits to keep the evaluation loops as simple and as generic as possible.
// One can customize the assignment using this generic dense_assignment_kernel with different
// functors, or by completely overloading it, by-passing a functor.
template<typename DstEvaluatorTypeT, typename SrcEvaluatorTypeT, typename Functor, int Version = Specialized>
class generic_dense_assignment_kernel
{
protected:
typedef typename DstEvaluatorTypeT::XprType DstXprType;
typedef typename SrcEvaluatorTypeT::XprType SrcXprType;
public:
typedef DstEvaluatorTypeT DstEvaluatorType;
typedef SrcEvaluatorTypeT SrcEvaluatorType;
typedef typename DstEvaluatorType::Scalar Scalar;
typedef typename DstEvaluatorType::StorageIndex StorageIndex;
typedef copy_using_evaluator_traits<DstEvaluatorTypeT, SrcEvaluatorTypeT, Functor> AssignmentTraits;
typedef typename AssignmentTraits::PacketType PacketType;
EIGEN_DEVICE_FUNC generic_dense_assignment_kernel(DstEvaluatorType &dst, const SrcEvaluatorType &src, const Functor &func, DstXprType& dstExpr)
: m_dst(dst), m_src(src), m_functor(func), m_dstExpr(dstExpr)
{
#ifdef EIGEN_DEBUG_ASSIGN
AssignmentTraits::debug();
#endif
}
EIGEN_DEVICE_FUNC Index size() const { return m_dstExpr.size(); }
EIGEN_DEVICE_FUNC Index innerSize() const { return m_dstExpr.innerSize(); }
EIGEN_DEVICE_FUNC Index outerSize() const { return m_dstExpr.outerSize(); }
EIGEN_DEVICE_FUNC Index rows() const { return m_dstExpr.rows(); }
EIGEN_DEVICE_FUNC Index cols() const { return m_dstExpr.cols(); }
EIGEN_DEVICE_FUNC Index outerStride() const { return m_dstExpr.outerStride(); }
// TODO get rid of this one:
EIGEN_DEVICE_FUNC DstXprType& dstExpression() const { return m_dstExpr; }
EIGEN_DEVICE_FUNC DstEvaluatorType& dstEvaluator() { return m_dst; }
EIGEN_DEVICE_FUNC const SrcEvaluatorType& srcEvaluator() const { return m_src; }
/// Assign src(row,col) to dst(row,col) through the assignment functor.
EIGEN_DEVICE_FUNC void assignCoeff(Index row, Index col)
{
m_functor.assignCoeff(m_dst.coeffRef(row,col), m_src.coeff(row,col));
}
/// \sa assignCoeff(Index,Index)
EIGEN_DEVICE_FUNC void assignCoeff(Index index)
{
m_functor.assignCoeff(m_dst.coeffRef(index), m_src.coeff(index));
}
/// \sa assignCoeff(Index,Index)
EIGEN_DEVICE_FUNC void assignCoeffByOuterInner(Index outer, Index inner)
{
Index row = rowIndexByOuterInner(outer, inner);
Index col = colIndexByOuterInner(outer, inner);
assignCoeff(row, col);
}
template<int StoreMode, int LoadMode, typename PacketType>
EIGEN_DEVICE_FUNC void assignPacket(Index row, Index col)
{
m_functor.template assignPacket<StoreMode>(&m_dst.coeffRef(row,col), m_src.template packet<LoadMode,PacketType>(row,col));
}
template<int StoreMode, int LoadMode, typename PacketType>
EIGEN_DEVICE_FUNC void assignPacket(Index index)
{
m_functor.template assignPacket<StoreMode>(&m_dst.coeffRef(index), m_src.template packet<LoadMode,PacketType>(index));
}
template<int StoreMode, int LoadMode, typename PacketType>
EIGEN_DEVICE_FUNC void assignPacketByOuterInner(Index outer, Index inner)
{
Index row = rowIndexByOuterInner(outer, inner);
Index col = colIndexByOuterInner(outer, inner);
assignPacket<StoreMode,LoadMode,PacketType>(row, col);
}
EIGEN_DEVICE_FUNC static Index rowIndexByOuterInner(Index outer, Index inner)
{
typedef typename DstEvaluatorType::ExpressionTraits Traits;
return int(Traits::RowsAtCompileTime) == 1 ? 0
: int(Traits::ColsAtCompileTime) == 1 ? inner
: int(DstEvaluatorType::Flags)&RowMajorBit ? outer
: inner;
}
EIGEN_DEVICE_FUNC static Index colIndexByOuterInner(Index outer, Index inner)
{
typedef typename DstEvaluatorType::ExpressionTraits Traits;
return int(Traits::ColsAtCompileTime) == 1 ? 0
: int(Traits::RowsAtCompileTime) == 1 ? inner
: int(DstEvaluatorType::Flags)&RowMajorBit ? inner
: outer;
}
protected:
DstEvaluatorType& m_dst;
const SrcEvaluatorType& m_src;
const Functor &m_functor;
// TODO find a way to avoid the needs of the original expression
DstXprType& m_dstExpr;
};
/***************************************************************************
* Part 5 : Entry point for dense rectangular assignment
***************************************************************************/
template<typename DstXprType, typename SrcXprType, typename Functor>
EIGEN_DEVICE_FUNC void call_dense_assignment_loop(const DstXprType& dst, const SrcXprType& src, const Functor &func)
{
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
typedef evaluator<DstXprType> DstEvaluatorType;
typedef evaluator<SrcXprType> SrcEvaluatorType;
DstEvaluatorType dstEvaluator(dst);
SrcEvaluatorType srcEvaluator(src);
typedef generic_dense_assignment_kernel<DstEvaluatorType,SrcEvaluatorType,Functor> Kernel;
Kernel kernel(dstEvaluator, srcEvaluator, func, dst.const_cast_derived());
dense_assignment_loop<Kernel>::run(kernel);
}
template<typename DstXprType, typename SrcXprType>
EIGEN_DEVICE_FUNC void call_dense_assignment_loop(const DstXprType& dst, const SrcXprType& src)
{
call_dense_assignment_loop(dst, src, internal::assign_op<typename DstXprType::Scalar>());
}
/***************************************************************************
* Part 6 : Generic assignment
***************************************************************************/
// Based on the respective shapes of the destination and source,
// the class AssignmentKind determine the kind of assignment mechanism.
// AssignmentKind must define a Kind typedef.
template<typename DstShape, typename SrcShape> struct AssignmentKind;
// Assignement kind defined in this file:
struct Dense2Dense {};
struct EigenBase2EigenBase {};
template<typename,typename> struct AssignmentKind { typedef EigenBase2EigenBase Kind; };
template<> struct AssignmentKind<DenseShape,DenseShape> { typedef Dense2Dense Kind; };
// This is the main assignment class
template< typename DstXprType, typename SrcXprType, typename Functor,
typename Kind = typename AssignmentKind< typename evaluator_traits<DstXprType>::Shape , typename evaluator_traits<SrcXprType>::Shape >::Kind,
typename Scalar = typename DstXprType::Scalar>
struct Assignment;
// The only purpose of this call_assignment() function is to deal with noalias() / AssumeAliasing and automatic transposition.
// Indeed, I (Gael) think that this concept of AssumeAliasing was a mistake, and it makes thing quite complicated.
// So this intermediate function removes everything related to AssumeAliasing such that Assignment
// does not has to bother about these annoying details.
template<typename Dst, typename Src>
EIGEN_DEVICE_FUNC void call_assignment(Dst& dst, const Src& src)
{
call_assignment(dst, src, internal::assign_op<typename Dst::Scalar>());
}
template<typename Dst, typename Src>
EIGEN_DEVICE_FUNC void call_assignment(const Dst& dst, const Src& src)
{
call_assignment(dst, src, internal::assign_op<typename Dst::Scalar>());
}
// Deal with AssumeAliasing
template<typename Dst, typename Src, typename Func>
EIGEN_DEVICE_FUNC void call_assignment(Dst& dst, const Src& src, const Func& func, typename enable_if<evaluator_traits<Src>::AssumeAliasing==1, void*>::type = 0)
{
typename plain_matrix_type<Src>::type tmp(src);
call_assignment_no_alias(dst, tmp, func);
}
template<typename Dst, typename Src, typename Func>
EIGEN_DEVICE_FUNC void call_assignment(Dst& dst, const Src& src, const Func& func, typename enable_if<evaluator_traits<Src>::AssumeAliasing==0, void*>::type = 0)
{
call_assignment_no_alias(dst, src, func);
}
// by-pass AssumeAliasing
// FIXME the const version should probably not be needed
// When there is no aliasing, we require that 'dst' has been properly resized
template<typename Dst, template <typename> class StorageBase, typename Src, typename Func>
EIGEN_DEVICE_FUNC void call_assignment(const NoAlias<Dst,StorageBase>& dst, const Src& src, const Func& func)
{
call_assignment_no_alias(dst.expression(), src, func);
}
template<typename Dst, template <typename> class StorageBase, typename Src, typename Func>
EIGEN_DEVICE_FUNC void call_assignment(NoAlias<Dst,StorageBase>& dst, const Src& src, const Func& func)
{
call_assignment_no_alias(dst.expression(), src, func);
}
template<typename Dst, typename Src, typename Func>
EIGEN_DEVICE_FUNC void call_assignment_no_alias(Dst& dst, const Src& src, const Func& func)
{
enum {
NeedToTranspose = ( (int(Dst::RowsAtCompileTime) == 1 && int(Src::ColsAtCompileTime) == 1)
| // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&".
// revert to || as soon as not needed anymore.
(int(Dst::ColsAtCompileTime) == 1 && int(Src::RowsAtCompileTime) == 1))
&& int(Dst::SizeAtCompileTime) != 1
};
Index dstRows = NeedToTranspose ? src.cols() : src.rows();
Index dstCols = NeedToTranspose ? src.rows() : src.cols();
if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
dst.resize(dstRows, dstCols);
typedef typename internal::conditional<NeedToTranspose, Transpose<Dst>, Dst>::type ActualDstTypeCleaned;
typedef typename internal::conditional<NeedToTranspose, Transpose<Dst>, Dst&>::type ActualDstType;
ActualDstType actualDst(dst);
// TODO check whether this is the right place to perform these checks:
EIGEN_STATIC_ASSERT_LVALUE(Dst)
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(ActualDstTypeCleaned,Src)
// TODO this line is commented to allow matrix = permutation
// Actually, the "Scalar" type for a permutation matrix does not really make sense,
// perhaps it could be void, and EIGEN_CHECK_BINARY_COMPATIBILIY could allow micing void with anything...?
// EIGEN_CHECK_BINARY_COMPATIBILIY(Func,typename ActualDstTypeCleaned::Scalar,typename Src::Scalar);
Assignment<ActualDstTypeCleaned,Src,Func>::run(actualDst, src, func);
}
template<typename Dst, typename Src>
EIGEN_DEVICE_FUNC void call_assignment_no_alias(Dst& dst, const Src& src)
{
call_assignment_no_alias(dst, src, internal::assign_op<typename Dst::Scalar>());
}
template<typename Dst, typename Src, typename Func>
EIGEN_DEVICE_FUNC void call_assignment_no_alias_no_transpose(Dst& dst, const Src& src, const Func& func)
{
Index dstRows = src.rows();
Index dstCols = src.cols();
if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
dst.resize(dstRows, dstCols);
// TODO check whether this is the right place to perform these checks:
EIGEN_STATIC_ASSERT_LVALUE(Dst)
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Dst,Src)
Assignment<Dst,Src,Func>::run(dst, src, func);
}
template<typename Dst, typename Src>
EIGEN_DEVICE_FUNC void call_assignment_no_alias_no_transpose(Dst& dst, const Src& src)
{
call_assignment_no_alias_no_transpose(dst, src, internal::assign_op<typename Dst::Scalar>());
}
// forward declaration
template<typename Dst, typename Src> void check_for_aliasing(const Dst &dst, const Src &src);
// Generic Dense to Dense assignment
template< typename DstXprType, typename SrcXprType, typename Functor, typename Scalar>
struct Assignment<DstXprType, SrcXprType, Functor, Dense2Dense, Scalar>
{
EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const Functor &func)
{
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
#ifndef EIGEN_NO_DEBUG
internal::check_for_aliasing(dst, src);
#endif
call_dense_assignment_loop(dst, src, func);
}
};
// Generic assignment through evalTo.
// TODO: not sure we have to keep that one, but it helps porting current code to new evaluator mechanism.
template< typename DstXprType, typename SrcXprType, typename Functor, typename Scalar>
struct Assignment<DstXprType, SrcXprType, Functor, EigenBase2EigenBase, Scalar>
{
EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar> &/*func*/)
{
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
src.evalTo(dst);
}
};
} // namespace internal
} // end namespace Eigen
#endif // EIGEN_ASSIGN_EVALUATOR_H

174
third_party/eigen3/Eigen/src/Core/Assign_MKL.h vendored Executable file
View File

@ -0,0 +1,174 @@
/*
Copyright (c) 2011, Intel Corporation. All rights reserved.
Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
********************************************************************************
* Content : Eigen bindings to Intel(R) MKL
* MKL VML support for coefficient-wise unary Eigen expressions like a=b.sin()
********************************************************************************
*/
#ifndef EIGEN_ASSIGN_VML_H
#define EIGEN_ASSIGN_VML_H
namespace Eigen {
namespace internal {
template<typename Dst, typename Src>
class vml_assign_traits
{
private:
enum {
DstHasDirectAccess = Dst::Flags & DirectAccessBit,
SrcHasDirectAccess = Src::Flags & DirectAccessBit,
StorageOrdersAgree = (int(Dst::IsRowMajor) == int(Src::IsRowMajor)),
InnerSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::SizeAtCompileTime)
: int(Dst::Flags)&RowMajorBit ? int(Dst::ColsAtCompileTime)
: int(Dst::RowsAtCompileTime),
InnerMaxSize = int(Dst::IsVectorAtCompileTime) ? int(Dst::MaxSizeAtCompileTime)
: int(Dst::Flags)&RowMajorBit ? int(Dst::MaxColsAtCompileTime)
: int(Dst::MaxRowsAtCompileTime),
MaxSizeAtCompileTime = Dst::SizeAtCompileTime,
MightEnableVml = StorageOrdersAgree && DstHasDirectAccess && SrcHasDirectAccess && Src::InnerStrideAtCompileTime==1 && Dst::InnerStrideAtCompileTime==1,
MightLinearize = MightEnableVml && (int(Dst::Flags) & int(Src::Flags) & LinearAccessBit),
VmlSize = MightLinearize ? MaxSizeAtCompileTime : InnerMaxSize,
LargeEnough = VmlSize==Dynamic || VmlSize>=EIGEN_MKL_VML_THRESHOLD
};
public:
enum {
EnableVml = MightEnableVml && LargeEnough,
Traversal = MightLinearize ? LinearTraversal : DefaultTraversal
};
};
#define EIGEN_PP_EXPAND(ARG) ARG
#if !defined (EIGEN_FAST_MATH) || (EIGEN_FAST_MATH != 1)
#define EIGEN_VMLMODE_EXPAND_LA , VML_HA
#else
#define EIGEN_VMLMODE_EXPAND_LA , VML_LA
#endif
#define EIGEN_VMLMODE_EXPAND__
#define EIGEN_VMLMODE_PREFIX_LA vm
#define EIGEN_VMLMODE_PREFIX__ v
#define EIGEN_VMLMODE_PREFIX(VMLMODE) EIGEN_CAT(EIGEN_VMLMODE_PREFIX_,VMLMODE)
#define EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, VMLOP, EIGENTYPE, VMLTYPE, VMLMODE) \
template< typename DstXprType, typename SrcXprNested> \
struct Assignment<DstXprType, CwiseUnaryOp<scalar_##EIGENOP##_op<EIGENTYPE>, SrcXprNested>, assign_op<EIGENTYPE>, \
Dense2Dense, typename enable_if<vml_assign_traits<DstXprType,SrcXprNested>::EnableVml,EIGENTYPE>::type> { \
typedef CwiseUnaryOp<scalar_##EIGENOP##_op<EIGENTYPE>, SrcXprNested> SrcXprType; \
static void run(DstXprType &dst, const SrcXprType &src, const assign_op<EIGENTYPE> &/*func*/) { \
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols()); \
if(vml_assign_traits<DstXprType,SrcXprNested>::Traversal==LinearTraversal) { \
VMLOP(dst.size(), (const VMLTYPE*)src.nestedExpression().data(), \
(VMLTYPE*)dst.data() EIGEN_PP_EXPAND(EIGEN_VMLMODE_EXPAND_##VMLMODE) ); \
} else { \
const Index outerSize = dst.outerSize(); \
for(Index outer = 0; outer < outerSize; ++outer) { \
const EIGENTYPE *src_ptr = src.IsRowMajor ? &(src.nestedExpression().coeffRef(outer,0)) : \
&(src.nestedExpression().coeffRef(0, outer)); \
EIGENTYPE *dst_ptr = dst.IsRowMajor ? &(dst.coeffRef(outer,0)) : &(dst.coeffRef(0, outer)); \
VMLOP( dst.innerSize(), (const VMLTYPE*)src_ptr, \
(VMLTYPE*)dst_ptr EIGEN_PP_EXPAND(EIGEN_VMLMODE_EXPAND_##VMLMODE)); \
} \
} \
} \
}; \
#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(EIGENOP, VMLOP, VMLMODE) \
EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, EIGEN_CAT(EIGEN_VMLMODE_PREFIX(VMLMODE),s##VMLOP), float, float, VMLMODE) \
EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, EIGEN_CAT(EIGEN_VMLMODE_PREFIX(VMLMODE),d##VMLOP), double, double, VMLMODE)
#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS_CPLX(EIGENOP, VMLOP, VMLMODE) \
EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, EIGEN_CAT(EIGEN_VMLMODE_PREFIX(VMLMODE),c##VMLOP), scomplex, MKL_Complex8, VMLMODE) \
EIGEN_MKL_VML_DECLARE_UNARY_CALL(EIGENOP, EIGEN_CAT(EIGEN_VMLMODE_PREFIX(VMLMODE),z##VMLOP), dcomplex, MKL_Complex16, VMLMODE)
#define EIGEN_MKL_VML_DECLARE_UNARY_CALLS(EIGENOP, VMLOP, VMLMODE) \
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(EIGENOP, VMLOP, VMLMODE) \
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_CPLX(EIGENOP, VMLOP, VMLMODE)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(sin, Sin, LA)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(asin, Asin, LA)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(sinh, Sinh, LA)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(cos, Cos, LA)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(acos, Acos, LA)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(cosh, Cosh, LA)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(tan, Tan, LA)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(atan, Atan, LA)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(tanh, Tanh, LA)
// EIGEN_MKL_VML_DECLARE_UNARY_CALLS(abs, Abs, _)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(exp, Exp, LA)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(log, Ln, LA)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(log10, Log10, LA)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS(sqrt, Sqrt, _)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(square, Sqr, _)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_CPLX(arg, Arg, _)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(round, Round, _)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(floor, Floor, _)
EIGEN_MKL_VML_DECLARE_UNARY_CALLS_REAL(ceil, Ceil, _)
#define EIGEN_MKL_VML_DECLARE_POW_CALL(EIGENOP, VMLOP, EIGENTYPE, VMLTYPE, VMLMODE) \
template< typename DstXprType, typename SrcXprNested> \
struct Assignment<DstXprType, CwiseUnaryOp<scalar_##EIGENOP##_op<EIGENTYPE>, SrcXprNested>, assign_op<EIGENTYPE>, \
Dense2Dense, typename enable_if<vml_assign_traits<DstXprType,SrcXprNested>::EnableVml,EIGENTYPE>::type> { \
typedef CwiseUnaryOp<scalar_##EIGENOP##_op<EIGENTYPE>, SrcXprNested> SrcXprType; \
static void run(DstXprType &dst, const SrcXprType &src, const assign_op<EIGENTYPE> &/*func*/) { \
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols()); \
VMLTYPE exponent = reinterpret_cast<const VMLTYPE&>(src.functor().m_exponent); \
if(vml_assign_traits<DstXprType,SrcXprNested>::Traversal==LinearTraversal) \
{ \
VMLOP( dst.size(), (const VMLTYPE*)src.nestedExpression().data(), exponent, \
(VMLTYPE*)dst.data() EIGEN_PP_EXPAND(EIGEN_VMLMODE_EXPAND_##VMLMODE) ); \
} else { \
const Index outerSize = dst.outerSize(); \
for(Index outer = 0; outer < outerSize; ++outer) { \
const EIGENTYPE *src_ptr = src.IsRowMajor ? &(src.nestedExpression().coeffRef(outer,0)) : \
&(src.nestedExpression().coeffRef(0, outer)); \
EIGENTYPE *dst_ptr = dst.IsRowMajor ? &(dst.coeffRef(outer,0)) : &(dst.coeffRef(0, outer)); \
VMLOP( dst.innerSize(), (const VMLTYPE*)src_ptr, exponent, \
(VMLTYPE*)dst_ptr EIGEN_PP_EXPAND(EIGEN_VMLMODE_EXPAND_##VMLMODE)); \
} \
} \
} \
};
EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmsPowx, float, float, LA)
EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmdPowx, double, double, LA)
EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmcPowx, scomplex, MKL_Complex8, LA)
EIGEN_MKL_VML_DECLARE_POW_CALL(pow, vmzPowx, dcomplex, MKL_Complex16, LA)
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_ASSIGN_VML_H

View File

@ -0,0 +1,353 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_BANDMATRIX_H
#define EIGEN_BANDMATRIX_H
namespace Eigen {
namespace internal {
template<typename Derived>
class BandMatrixBase : public EigenBase<Derived>
{
public:
enum {
Flags = internal::traits<Derived>::Flags,
CoeffReadCost = internal::traits<Derived>::CoeffReadCost,
RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime,
MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime,
Supers = internal::traits<Derived>::Supers,
Subs = internal::traits<Derived>::Subs,
Options = internal::traits<Derived>::Options
};
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef Matrix<Scalar,RowsAtCompileTime,ColsAtCompileTime> DenseMatrixType;
typedef typename DenseMatrixType::StorageIndex StorageIndex;
typedef typename internal::traits<Derived>::CoefficientsType CoefficientsType;
typedef EigenBase<Derived> Base;
protected:
enum {
DataRowsAtCompileTime = ((Supers!=Dynamic) && (Subs!=Dynamic))
? 1 + Supers + Subs
: Dynamic,
SizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime)
};
public:
using Base::derived;
using Base::rows;
using Base::cols;
/** \returns the number of super diagonals */
inline Index supers() const { return derived().supers(); }
/** \returns the number of sub diagonals */
inline Index subs() const { return derived().subs(); }
/** \returns an expression of the underlying coefficient matrix */
inline const CoefficientsType& coeffs() const { return derived().coeffs(); }
/** \returns an expression of the underlying coefficient matrix */
inline CoefficientsType& coeffs() { return derived().coeffs(); }
/** \returns a vector expression of the \a i -th column,
* only the meaningful part is returned.
* \warning the internal storage must be column major. */
inline Block<CoefficientsType,Dynamic,1> col(Index i)
{
EIGEN_STATIC_ASSERT((Options&RowMajor)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
Index start = 0;
Index len = coeffs().rows();
if (i<=supers())
{
start = supers()-i;
len = (std::min)(rows(),std::max<Index>(0,coeffs().rows() - (supers()-i)));
}
else if (i>=rows()-subs())
len = std::max<Index>(0,coeffs().rows() - (i + 1 - rows() + subs()));
return Block<CoefficientsType,Dynamic,1>(coeffs(), start, i, len, 1);
}
/** \returns a vector expression of the main diagonal */
inline Block<CoefficientsType,1,SizeAtCompileTime> diagonal()
{ return Block<CoefficientsType,1,SizeAtCompileTime>(coeffs(),supers(),0,1,(std::min)(rows(),cols())); }
/** \returns a vector expression of the main diagonal (const version) */
inline const Block<const CoefficientsType,1,SizeAtCompileTime> diagonal() const
{ return Block<const CoefficientsType,1,SizeAtCompileTime>(coeffs(),supers(),0,1,(std::min)(rows(),cols())); }
template<int Index> struct DiagonalIntReturnType {
enum {
ReturnOpposite = (Options&SelfAdjoint) && (((Index)>0 && Supers==0) || ((Index)<0 && Subs==0)),
Conjugate = ReturnOpposite && NumTraits<Scalar>::IsComplex,
ActualIndex = ReturnOpposite ? -Index : Index,
DiagonalSize = (RowsAtCompileTime==Dynamic || ColsAtCompileTime==Dynamic)
? Dynamic
: (ActualIndex<0
? EIGEN_SIZE_MIN_PREFER_DYNAMIC(ColsAtCompileTime, RowsAtCompileTime + ActualIndex)
: EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime, ColsAtCompileTime - ActualIndex))
};
typedef Block<CoefficientsType,1, DiagonalSize> BuildType;
typedef typename internal::conditional<Conjugate,
CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>,BuildType >,
BuildType>::type Type;
};
/** \returns a vector expression of the \a N -th sub or super diagonal */
template<int N> inline typename DiagonalIntReturnType<N>::Type diagonal()
{
return typename DiagonalIntReturnType<N>::BuildType(coeffs(), supers()-N, (std::max)(0,N), 1, diagonalLength(N));
}
/** \returns a vector expression of the \a N -th sub or super diagonal */
template<int N> inline const typename DiagonalIntReturnType<N>::Type diagonal() const
{
return typename DiagonalIntReturnType<N>::BuildType(coeffs(), supers()-N, (std::max)(0,N), 1, diagonalLength(N));
}
/** \returns a vector expression of the \a i -th sub or super diagonal */
inline Block<CoefficientsType,1,Dynamic> diagonal(Index i)
{
eigen_assert((i<0 && -i<=subs()) || (i>=0 && i<=supers()));
return Block<CoefficientsType,1,Dynamic>(coeffs(), supers()-i, std::max<Index>(0,i), 1, diagonalLength(i));
}
/** \returns a vector expression of the \a i -th sub or super diagonal */
inline const Block<const CoefficientsType,1,Dynamic> diagonal(Index i) const
{
eigen_assert((i<0 && -i<=subs()) || (i>=0 && i<=supers()));
return Block<const CoefficientsType,1,Dynamic>(coeffs(), supers()-i, std::max<Index>(0,i), 1, diagonalLength(i));
}
template<typename Dest> inline void evalTo(Dest& dst) const
{
dst.resize(rows(),cols());
dst.setZero();
dst.diagonal() = diagonal();
for (Index i=1; i<=supers();++i)
dst.diagonal(i) = diagonal(i);
for (Index i=1; i<=subs();++i)
dst.diagonal(-i) = diagonal(-i);
}
DenseMatrixType toDenseMatrix() const
{
DenseMatrixType res(rows(),cols());
evalTo(res);
return res;
}
protected:
inline Index diagonalLength(Index i) const
{ return i<0 ? (std::min)(cols(),rows()+i) : (std::min)(rows(),cols()-i); }
};
/**
* \class BandMatrix
* \ingroup Core_Module
*
* \brief Represents a rectangular matrix with a banded storage
*
* \param _Scalar Numeric type, i.e. float, double, int
* \param Rows Number of rows, or \b Dynamic
* \param Cols Number of columns, or \b Dynamic
* \param Supers Number of super diagonal
* \param Subs Number of sub diagonal
* \param _Options A combination of either \b #RowMajor or \b #ColMajor, and of \b #SelfAdjoint
* The former controls \ref TopicStorageOrders "storage order", and defaults to
* column-major. The latter controls whether the matrix represents a selfadjoint
* matrix in which case either Supers of Subs have to be null.
*
* \sa class TridiagonalMatrix
*/
template<typename _Scalar, int _Rows, int _Cols, int _Supers, int _Subs, int _Options>
struct traits<BandMatrix<_Scalar,_Rows,_Cols,_Supers,_Subs,_Options> >
{
typedef _Scalar Scalar;
typedef Dense StorageKind;
typedef Eigen::Index StorageIndex;
enum {
CoeffReadCost = NumTraits<Scalar>::ReadCost,
RowsAtCompileTime = _Rows,
ColsAtCompileTime = _Cols,
MaxRowsAtCompileTime = _Rows,
MaxColsAtCompileTime = _Cols,
Flags = LvalueBit,
Supers = _Supers,
Subs = _Subs,
Options = _Options,
DataRowsAtCompileTime = ((Supers!=Dynamic) && (Subs!=Dynamic)) ? 1 + Supers + Subs : Dynamic
};
typedef Matrix<Scalar,DataRowsAtCompileTime,ColsAtCompileTime,Options&RowMajor?RowMajor:ColMajor> CoefficientsType;
};
template<typename _Scalar, int Rows, int Cols, int Supers, int Subs, int Options>
class BandMatrix : public BandMatrixBase<BandMatrix<_Scalar,Rows,Cols,Supers,Subs,Options> >
{
public:
typedef typename internal::traits<BandMatrix>::Scalar Scalar;
typedef typename internal::traits<BandMatrix>::StorageIndex StorageIndex;
typedef typename internal::traits<BandMatrix>::CoefficientsType CoefficientsType;
explicit inline BandMatrix(Index rows=Rows, Index cols=Cols, Index supers=Supers, Index subs=Subs)
: m_coeffs(1+supers+subs,cols),
m_rows(rows), m_supers(supers), m_subs(subs)
{
}
/** \returns the number of columns */
inline Index rows() const { return m_rows.value(); }
/** \returns the number of rows */
inline Index cols() const { return m_coeffs.cols(); }
/** \returns the number of super diagonals */
inline Index supers() const { return m_supers.value(); }
/** \returns the number of sub diagonals */
inline Index subs() const { return m_subs.value(); }
inline const CoefficientsType& coeffs() const { return m_coeffs; }
inline CoefficientsType& coeffs() { return m_coeffs; }
protected:
CoefficientsType m_coeffs;
internal::variable_if_dynamic<Index, Rows> m_rows;
internal::variable_if_dynamic<Index, Supers> m_supers;
internal::variable_if_dynamic<Index, Subs> m_subs;
};
template<typename _CoefficientsType,int _Rows, int _Cols, int _Supers, int _Subs,int _Options>
class BandMatrixWrapper;
template<typename _CoefficientsType,int _Rows, int _Cols, int _Supers, int _Subs,int _Options>
struct traits<BandMatrixWrapper<_CoefficientsType,_Rows,_Cols,_Supers,_Subs,_Options> >
{
typedef typename _CoefficientsType::Scalar Scalar;
typedef typename _CoefficientsType::StorageKind StorageKind;
typedef typename _CoefficientsType::StorageIndex StorageIndex;
enum {
CoeffReadCost = internal::traits<_CoefficientsType>::CoeffReadCost,
RowsAtCompileTime = _Rows,
ColsAtCompileTime = _Cols,
MaxRowsAtCompileTime = _Rows,
MaxColsAtCompileTime = _Cols,
Flags = LvalueBit,
Supers = _Supers,
Subs = _Subs,
Options = _Options,
DataRowsAtCompileTime = ((Supers!=Dynamic) && (Subs!=Dynamic)) ? 1 + Supers + Subs : Dynamic
};
typedef _CoefficientsType CoefficientsType;
};
template<typename _CoefficientsType,int _Rows, int _Cols, int _Supers, int _Subs,int _Options>
class BandMatrixWrapper : public BandMatrixBase<BandMatrixWrapper<_CoefficientsType,_Rows,_Cols,_Supers,_Subs,_Options> >
{
public:
typedef typename internal::traits<BandMatrixWrapper>::Scalar Scalar;
typedef typename internal::traits<BandMatrixWrapper>::CoefficientsType CoefficientsType;
typedef typename internal::traits<BandMatrixWrapper>::StorageIndex StorageIndex;
explicit inline BandMatrixWrapper(const CoefficientsType& coeffs, Index rows=_Rows, Index cols=_Cols, Index supers=_Supers, Index subs=_Subs)
: m_coeffs(coeffs),
m_rows(rows), m_supers(supers), m_subs(subs)
{
EIGEN_UNUSED_VARIABLE(cols);
//internal::assert(coeffs.cols()==cols() && (supers()+subs()+1)==coeffs.rows());
}
/** \returns the number of columns */
inline Index rows() const { return m_rows.value(); }
/** \returns the number of rows */
inline Index cols() const { return m_coeffs.cols(); }
/** \returns the number of super diagonals */
inline Index supers() const { return m_supers.value(); }
/** \returns the number of sub diagonals */
inline Index subs() const { return m_subs.value(); }
inline const CoefficientsType& coeffs() const { return m_coeffs; }
protected:
const CoefficientsType& m_coeffs;
internal::variable_if_dynamic<Index, _Rows> m_rows;
internal::variable_if_dynamic<Index, _Supers> m_supers;
internal::variable_if_dynamic<Index, _Subs> m_subs;
};
/**
* \class TridiagonalMatrix
* \ingroup Core_Module
*
* \brief Represents a tridiagonal matrix with a compact banded storage
*
* \param _Scalar Numeric type, i.e. float, double, int
* \param Size Number of rows and cols, or \b Dynamic
* \param _Options Can be 0 or \b SelfAdjoint
*
* \sa class BandMatrix
*/
template<typename Scalar, int Size, int Options>
class TridiagonalMatrix : public BandMatrix<Scalar,Size,Size,Options&SelfAdjoint?0:1,1,Options|RowMajor>
{
typedef BandMatrix<Scalar,Size,Size,Options&SelfAdjoint?0:1,1,Options|RowMajor> Base;
typedef typename Base::StorageIndex StorageIndex;
public:
explicit TridiagonalMatrix(Index size = Size) : Base(size,size,Options&SelfAdjoint?0:1,1) {}
inline typename Base::template DiagonalIntReturnType<1>::Type super()
{ return Base::template diagonal<1>(); }
inline const typename Base::template DiagonalIntReturnType<1>::Type super() const
{ return Base::template diagonal<1>(); }
inline typename Base::template DiagonalIntReturnType<-1>::Type sub()
{ return Base::template diagonal<-1>(); }
inline const typename Base::template DiagonalIntReturnType<-1>::Type sub() const
{ return Base::template diagonal<-1>(); }
protected:
};
struct BandShape {};
template<typename _Scalar, int _Rows, int _Cols, int _Supers, int _Subs, int _Options>
struct evaluator_traits<BandMatrix<_Scalar,_Rows,_Cols,_Supers,_Subs,_Options> >
: public evaluator_traits_base<BandMatrix<_Scalar,_Rows,_Cols,_Supers,_Subs,_Options> >
{
typedef BandShape Shape;
};
template<typename _CoefficientsType,int _Rows, int _Cols, int _Supers, int _Subs,int _Options>
struct evaluator_traits<BandMatrixWrapper<_CoefficientsType,_Rows,_Cols,_Supers,_Subs,_Options> >
: public evaluator_traits_base<BandMatrixWrapper<_CoefficientsType,_Rows,_Cols,_Supers,_Subs,_Options> >
{
typedef BandShape Shape;
};
template<> struct AssignmentKind<DenseShape,BandShape> { typedef EigenBase2EigenBase Kind; };
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_BANDMATRIX_H

View File

@ -0,0 +1,436 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_BLOCK_H
#define EIGEN_BLOCK_H
namespace Eigen {
/** \class Block
* \ingroup Core_Module
*
* \brief Expression of a fixed-size or dynamic-size block
*
* \param XprType the type of the expression in which we are taking a block
* \param BlockRows the number of rows of the block we are taking at compile time (optional)
* \param BlockCols the number of columns of the block we are taking at compile time (optional)
* \param InnerPanel is true, if the block maps to a set of rows of a row major matrix or
* to set of columns of a column major matrix (optional). The parameter allows to determine
* at compile time whether aligned access is possible on the block expression.
*
* This class represents an expression of either a fixed-size or dynamic-size block. It is the return
* type of DenseBase::block(Index,Index,Index,Index) and DenseBase::block<int,int>(Index,Index) and
* most of the time this is the only way it is used.
*
* However, if you want to directly maniputate block expressions,
* for instance if you want to write a function returning such an expression, you
* will need to use this class.
*
* Here is an example illustrating the dynamic case:
* \include class_Block.cpp
* Output: \verbinclude class_Block.out
*
* \note Even though this expression has dynamic size, in the case where \a XprType
* has fixed size, this expression inherits a fixed maximal size which means that evaluating
* it does not cause a dynamic memory allocation.
*
* Here is an example illustrating the fixed-size case:
* \include class_FixedBlock.cpp
* Output: \verbinclude class_FixedBlock.out
*
* \sa DenseBase::block(Index,Index,Index,Index), DenseBase::block(Index,Index), class VectorBlock
*/
namespace internal {
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel>
struct traits<Block<XprType, BlockRows, BlockCols, InnerPanel> > : traits<XprType>
{
typedef typename traits<XprType>::Scalar Scalar;
typedef typename traits<XprType>::StorageKind StorageKind;
typedef typename traits<XprType>::XprKind XprKind;
typedef typename ref_selector<XprType>::type XprTypeNested;
typedef typename remove_reference<XprTypeNested>::type _XprTypeNested;
enum{
MatrixRows = traits<XprType>::RowsAtCompileTime,
MatrixCols = traits<XprType>::ColsAtCompileTime,
RowsAtCompileTime = MatrixRows == 0 ? 0 : BlockRows,
ColsAtCompileTime = MatrixCols == 0 ? 0 : BlockCols,
MaxRowsAtCompileTime = BlockRows==0 ? 0
: RowsAtCompileTime != Dynamic ? int(RowsAtCompileTime)
: int(traits<XprType>::MaxRowsAtCompileTime),
MaxColsAtCompileTime = BlockCols==0 ? 0
: ColsAtCompileTime != Dynamic ? int(ColsAtCompileTime)
: int(traits<XprType>::MaxColsAtCompileTime),
XprTypeIsRowMajor = (int(traits<XprType>::Flags)&RowMajorBit) != 0,
IsRowMajor = (MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1
: (MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0
: XprTypeIsRowMajor,
HasSameStorageOrderAsXprType = (IsRowMajor == XprTypeIsRowMajor),
InnerSize = IsRowMajor ? int(ColsAtCompileTime) : int(RowsAtCompileTime),
InnerStrideAtCompileTime = HasSameStorageOrderAsXprType
? int(inner_stride_at_compile_time<XprType>::ret)
: int(outer_stride_at_compile_time<XprType>::ret),
OuterStrideAtCompileTime = HasSameStorageOrderAsXprType
? int(outer_stride_at_compile_time<XprType>::ret)
: int(inner_stride_at_compile_time<XprType>::ret),
// FIXME, this traits is rather specialized for dense object and it needs to be cleaned further
FlagsLvalueBit = is_lvalue<XprType>::value ? LvalueBit : 0,
FlagsRowMajorBit = IsRowMajor ? RowMajorBit : 0,
Flags = (traits<XprType>::Flags & (DirectAccessBit | (InnerPanel?CompressedAccessBit:0))) | FlagsLvalueBit | FlagsRowMajorBit,
// FIXME DirectAccessBit should not be handled by expressions
//
// Alignment is needed by MapBase's assertions
// We can sefely set it to false here. Internal alignment errors will be detected by an eigen_internal_assert in the respective evaluator
Alignment = 0
};
};
template<typename XprType, int BlockRows=Dynamic, int BlockCols=Dynamic, bool InnerPanel = false,
bool HasDirectAccess = internal::has_direct_access<XprType>::ret> class BlockImpl_dense;
} // end namespace internal
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel, typename StorageKind> class BlockImpl;
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel> class Block
: public BlockImpl<XprType, BlockRows, BlockCols, InnerPanel, typename internal::traits<XprType>::StorageKind>
{
typedef BlockImpl<XprType, BlockRows, BlockCols, InnerPanel, typename internal::traits<XprType>::StorageKind> Impl;
public:
//typedef typename Impl::Base Base;
typedef Impl Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(Block)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Block)
typedef typename internal::remove_all<XprType>::type NestedExpression;
/** Column or Row constructor
*/
EIGEN_DEVICE_FUNC
inline Block(XprType& xpr, Index i) : Impl(xpr,i)
{
eigen_assert( (i>=0) && (
((BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) && i<xpr.rows())
||((BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) && i<xpr.cols())));
}
/** Fixed-size constructor
*/
EIGEN_DEVICE_FUNC
inline Block(XprType& xpr, Index startRow, Index startCol)
: Impl(xpr, startRow, startCol)
{
EIGEN_STATIC_ASSERT(RowsAtCompileTime!=Dynamic && ColsAtCompileTime!=Dynamic,THIS_METHOD_IS_ONLY_FOR_FIXED_SIZE)
eigen_assert(startRow >= 0 && BlockRows >= 1 && startRow + BlockRows <= xpr.rows()
&& startCol >= 0 && BlockCols >= 1 && startCol + BlockCols <= xpr.cols());
}
/** Dynamic-size constructor
*/
EIGEN_DEVICE_FUNC
inline Block(XprType& xpr,
Index startRow, Index startCol,
Index blockRows, Index blockCols)
: Impl(xpr, startRow, startCol, blockRows, blockCols)
{
eigen_assert((RowsAtCompileTime==Dynamic || RowsAtCompileTime==blockRows)
&& (ColsAtCompileTime==Dynamic || ColsAtCompileTime==blockCols));
eigen_assert(startRow >= 0 && blockRows >= 0 && startRow <= xpr.rows() - blockRows
&& startCol >= 0 && blockCols >= 0 && startCol <= xpr.cols() - blockCols);
}
};
// The generic default implementation for dense block simplu forward to the internal::BlockImpl_dense
// that must be specialized for direct and non-direct access...
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel>
class BlockImpl<XprType, BlockRows, BlockCols, InnerPanel, Dense>
: public internal::BlockImpl_dense<XprType, BlockRows, BlockCols, InnerPanel>
{
typedef internal::BlockImpl_dense<XprType, BlockRows, BlockCols, InnerPanel> Impl;
typedef typename XprType::StorageIndex StorageIndex;
public:
typedef Impl Base;
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(BlockImpl)
EIGEN_DEVICE_FUNC inline BlockImpl(XprType& xpr, Index i) : Impl(xpr,i) {}
EIGEN_DEVICE_FUNC inline BlockImpl(XprType& xpr, Index startRow, Index startCol) : Impl(xpr, startRow, startCol) {}
EIGEN_DEVICE_FUNC
inline BlockImpl(XprType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols)
: Impl(xpr, startRow, startCol, blockRows, blockCols) {}
};
namespace internal {
/** \internal Internal implementation of dense Blocks in the general case. */
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel, bool HasDirectAccess> class BlockImpl_dense
: public internal::dense_xpr_base<Block<XprType, BlockRows, BlockCols, InnerPanel> >::type
{
typedef Block<XprType, BlockRows, BlockCols, InnerPanel> BlockType;
public:
typedef typename internal::dense_xpr_base<BlockType>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(BlockType)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(BlockImpl_dense)
// class InnerIterator; // FIXME apparently never used
/** Column or Row constructor
*/
EIGEN_DEVICE_FUNC
inline BlockImpl_dense(XprType& xpr, Index i)
: m_xpr(xpr),
// It is a row if and only if BlockRows==1 and BlockCols==XprType::ColsAtCompileTime,
// and it is a column if and only if BlockRows==XprType::RowsAtCompileTime and BlockCols==1,
// all other cases are invalid.
// The case a 1x1 matrix seems ambiguous, but the result is the same anyway.
m_startRow( (BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) ? i : 0),
m_startCol( (BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) ? i : 0),
m_blockRows(BlockRows==1 ? 1 : xpr.rows()),
m_blockCols(BlockCols==1 ? 1 : xpr.cols())
{}
/** Fixed-size constructor
*/
EIGEN_DEVICE_FUNC
inline BlockImpl_dense(XprType& xpr, Index startRow, Index startCol)
: m_xpr(xpr), m_startRow(startRow), m_startCol(startCol),
m_blockRows(BlockRows), m_blockCols(BlockCols)
{}
/** Dynamic-size constructor
*/
EIGEN_DEVICE_FUNC
inline BlockImpl_dense(XprType& xpr,
Index startRow, Index startCol,
Index blockRows, Index blockCols)
: m_xpr(xpr), m_startRow(startRow), m_startCol(startCol),
m_blockRows(blockRows), m_blockCols(blockCols)
{}
EIGEN_DEVICE_FUNC inline Index rows() const { return m_blockRows.value(); }
EIGEN_DEVICE_FUNC inline Index cols() const { return m_blockCols.value(); }
EIGEN_DEVICE_FUNC
inline Scalar& coeffRef(Index rowId, Index colId)
{
EIGEN_STATIC_ASSERT_LVALUE(XprType)
return m_xpr.const_cast_derived()
.coeffRef(rowId + m_startRow.value(), colId + m_startCol.value());
}
EIGEN_DEVICE_FUNC
inline const Scalar& coeffRef(Index rowId, Index colId) const
{
return m_xpr.derived()
.coeffRef(rowId + m_startRow.value(), colId + m_startCol.value());
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const CoeffReturnType coeff(Index rowId, Index colId) const
{
return m_xpr.coeff(rowId + m_startRow.value(), colId + m_startCol.value());
}
EIGEN_DEVICE_FUNC
inline Scalar& coeffRef(Index index)
{
EIGEN_STATIC_ASSERT_LVALUE(XprType)
return m_xpr.const_cast_derived()
.coeffRef(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
}
EIGEN_DEVICE_FUNC
inline const Scalar& coeffRef(Index index) const
{
return m_xpr.const_cast_derived()
.coeffRef(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
}
EIGEN_DEVICE_FUNC
inline const CoeffReturnType coeff(Index index) const
{
return m_xpr
.coeff(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
}
template<int LoadMode>
inline PacketScalar packet(Index rowId, Index colId) const
{
return m_xpr.template packet<Unaligned>
(rowId + m_startRow.value(), colId + m_startCol.value());
}
template<int LoadMode>
inline void writePacket(Index rowId, Index colId, const PacketScalar& val)
{
m_xpr.const_cast_derived().template writePacket<Unaligned>
(rowId + m_startRow.value(), colId + m_startCol.value(), val);
}
template<int LoadMode>
inline PacketScalar packet(Index index) const
{
return m_xpr.template packet<Unaligned>
(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0));
}
template<int LoadMode>
inline void writePacket(Index index, const PacketScalar& val)
{
m_xpr.const_cast_derived().template writePacket<Unaligned>
(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index),
m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0), val);
}
#ifdef EIGEN_PARSED_BY_DOXYGEN
/** \sa MapBase::data() */
EIGEN_DEVICE_FUNC inline const Scalar* data() const;
EIGEN_DEVICE_FUNC inline Index innerStride() const;
EIGEN_DEVICE_FUNC inline Index outerStride() const;
#endif
EIGEN_DEVICE_FUNC
const typename internal::remove_all<typename XprType::Nested>::type& nestedExpression() const
{
return m_xpr;
}
EIGEN_DEVICE_FUNC
StorageIndex startRow() const
{
return m_startRow.value();
}
EIGEN_DEVICE_FUNC
StorageIndex startCol() const
{
return m_startCol.value();
}
protected:
const typename XprType::Nested m_xpr;
const internal::variable_if_dynamic<StorageIndex, XprType::RowsAtCompileTime == 1 ? 0 : Dynamic> m_startRow;
const internal::variable_if_dynamic<StorageIndex, XprType::ColsAtCompileTime == 1 ? 0 : Dynamic> m_startCol;
const internal::variable_if_dynamic<StorageIndex, RowsAtCompileTime> m_blockRows;
const internal::variable_if_dynamic<StorageIndex, ColsAtCompileTime> m_blockCols;
};
/** \internal Internal implementation of dense Blocks in the direct access case.*/
template<typename XprType, int BlockRows, int BlockCols, bool InnerPanel>
class BlockImpl_dense<XprType,BlockRows,BlockCols, InnerPanel,true>
: public MapBase<Block<XprType, BlockRows, BlockCols, InnerPanel> >
{
typedef Block<XprType, BlockRows, BlockCols, InnerPanel> BlockType;
enum {
XprTypeIsRowMajor = (int(traits<XprType>::Flags)&RowMajorBit) != 0
};
public:
typedef MapBase<BlockType> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(BlockType)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(BlockImpl_dense)
/** Column or Row constructor
*/
EIGEN_DEVICE_FUNC
inline BlockImpl_dense(XprType& xpr, Index i)
: Base(xpr.data() + i * ( ((BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) && (!XprTypeIsRowMajor))
|| ((BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) && ( XprTypeIsRowMajor)) ? xpr.innerStride() : xpr.outerStride()),
BlockRows==1 ? 1 : xpr.rows(),
BlockCols==1 ? 1 : xpr.cols()),
m_xpr(xpr)
{
init();
}
/** Fixed-size constructor
*/
EIGEN_DEVICE_FUNC
inline BlockImpl_dense(XprType& xpr, Index startRow, Index startCol)
: Base(xpr.data()+xpr.innerStride()*(XprTypeIsRowMajor?startCol:startRow) + xpr.outerStride()*(XprTypeIsRowMajor?startRow:startCol)),
m_xpr(xpr)
{
init();
}
/** Dynamic-size constructor
*/
EIGEN_DEVICE_FUNC
inline BlockImpl_dense(XprType& xpr,
Index startRow, Index startCol,
Index blockRows, Index blockCols)
: Base(xpr.data()+xpr.innerStride()*(XprTypeIsRowMajor?startCol:startRow) + xpr.outerStride()*(XprTypeIsRowMajor?startRow:startCol), blockRows, blockCols),
m_xpr(xpr)
{
init();
}
EIGEN_DEVICE_FUNC
const typename internal::remove_all<typename XprType::Nested>::type& nestedExpression() const
{
return m_xpr;
}
/** \sa MapBase::innerStride() */
EIGEN_DEVICE_FUNC
inline Index innerStride() const
{
return internal::traits<BlockType>::HasSameStorageOrderAsXprType
? m_xpr.innerStride()
: m_xpr.outerStride();
}
/** \sa MapBase::outerStride() */
EIGEN_DEVICE_FUNC
inline Index outerStride() const
{
return m_outerStride;
}
#ifndef __SUNPRO_CC
// FIXME sunstudio is not friendly with the above friend...
// META-FIXME there is no 'friend' keyword around here. Is this obsolete?
protected:
#endif
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** \internal used by allowAligned() */
EIGEN_DEVICE_FUNC
inline BlockImpl_dense(XprType& xpr, const Scalar* data, Index blockRows, Index blockCols)
: Base(data, blockRows, blockCols), m_xpr(xpr)
{
init();
}
#endif
protected:
EIGEN_DEVICE_FUNC
void init()
{
m_outerStride = internal::traits<BlockType>::HasSameStorageOrderAsXprType
? m_xpr.outerStride()
: m_xpr.innerStride();
}
typename XprType::Nested m_xpr;
Index m_outerStride;
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_BLOCK_H

View File

@ -0,0 +1,160 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ALLANDANY_H
#define EIGEN_ALLANDANY_H
namespace Eigen {
namespace internal {
template<typename Derived, int UnrollCount>
struct all_unroller
{
typedef typename Derived::ExpressionTraits Traits;
enum {
col = (UnrollCount-1) / Traits::RowsAtCompileTime,
row = (UnrollCount-1) % Traits::RowsAtCompileTime
};
static inline bool run(const Derived &mat)
{
return all_unroller<Derived, UnrollCount-1>::run(mat) && mat.coeff(row, col);
}
};
template<typename Derived>
struct all_unroller<Derived, 0>
{
static inline bool run(const Derived &/*mat*/) { return true; }
};
template<typename Derived>
struct all_unroller<Derived, Dynamic>
{
static inline bool run(const Derived &) { return false; }
};
template<typename Derived, int UnrollCount>
struct any_unroller
{
typedef typename Derived::ExpressionTraits Traits;
enum {
col = (UnrollCount-1) / Traits::RowsAtCompileTime,
row = (UnrollCount-1) % Traits::RowsAtCompileTime
};
static inline bool run(const Derived &mat)
{
return any_unroller<Derived, UnrollCount-1>::run(mat) || mat.coeff(row, col);
}
};
template<typename Derived>
struct any_unroller<Derived, 0>
{
static inline bool run(const Derived & /*mat*/) { return false; }
};
template<typename Derived>
struct any_unroller<Derived, Dynamic>
{
static inline bool run(const Derived &) { return false; }
};
} // end namespace internal
/** \returns true if all coefficients are true
*
* Example: \include MatrixBase_all.cpp
* Output: \verbinclude MatrixBase_all.out
*
* \sa any(), Cwise::operator<()
*/
template<typename Derived>
inline bool DenseBase<Derived>::all() const
{
typedef internal::evaluator<Derived> Evaluator;
enum {
unroll = SizeAtCompileTime != Dynamic
&& Evaluator::CoeffReadCost != Dynamic
&& NumTraits<Scalar>::AddCost != Dynamic
&& SizeAtCompileTime * (Evaluator::CoeffReadCost + NumTraits<Scalar>::AddCost) <= EIGEN_UNROLLING_LIMIT
};
Evaluator evaluator(derived());
if(unroll)
return internal::all_unroller<Evaluator, unroll ? int(SizeAtCompileTime) : Dynamic>::run(evaluator);
else
{
for(Index j = 0; j < cols(); ++j)
for(Index i = 0; i < rows(); ++i)
if (!evaluator.coeff(i, j)) return false;
return true;
}
}
/** \returns true if at least one coefficient is true
*
* \sa all()
*/
template<typename Derived>
inline bool DenseBase<Derived>::any() const
{
typedef internal::evaluator<Derived> Evaluator;
enum {
unroll = SizeAtCompileTime != Dynamic
&& Evaluator::CoeffReadCost != Dynamic
&& NumTraits<Scalar>::AddCost != Dynamic
&& SizeAtCompileTime * (Evaluator::CoeffReadCost + NumTraits<Scalar>::AddCost) <= EIGEN_UNROLLING_LIMIT
};
Evaluator evaluator(derived());
if(unroll)
return internal::any_unroller<Evaluator, unroll ? int(SizeAtCompileTime) : Dynamic>::run(evaluator);
else
{
for(Index j = 0; j < cols(); ++j)
for(Index i = 0; i < rows(); ++i)
if (evaluator.coeff(i, j)) return true;
return false;
}
}
/** \returns the number of coefficients which evaluate to true
*
* \sa all(), any()
*/
template<typename Derived>
inline Eigen::Index DenseBase<Derived>::count() const
{
return derived().template cast<bool>().template cast<Index>().sum();
}
/** \returns true is \c *this contains at least one Not A Number (NaN).
*
* \sa allFinite()
*/
template<typename Derived>
inline bool DenseBase<Derived>::hasNaN() const
{
return !((derived().array()==derived().array()).all());
}
/** \returns true if \c *this contains only finite numbers, i.e., no NaN and no +/-INF values.
*
* \sa hasNaN()
*/
template<typename Derived>
inline bool DenseBase<Derived>::allFinite() const
{
return !((derived()-derived()).hasNaN());
}
} // end namespace Eigen
#endif // EIGEN_ALLANDANY_H

View File

@ -0,0 +1,11 @@
FILE(GLOB Eigen_Core_SRCS "*.h")
INSTALL(FILES
${Eigen_Core_SRCS}
DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Core COMPONENT Devel
)
ADD_SUBDIRECTORY(products)
ADD_SUBDIRECTORY(util)
ADD_SUBDIRECTORY(arch)
ADD_SUBDIRECTORY(functors)

View File

@ -0,0 +1,163 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_COMMAINITIALIZER_H
#define EIGEN_COMMAINITIALIZER_H
namespace Eigen {
/** \class CommaInitializer
* \ingroup Core_Module
*
* \brief Helper class used by the comma initializer operator
*
* This class is internally used to implement the comma initializer feature. It is
* the return type of MatrixBase::operator<<, and most of the time this is the only
* way it is used.
*
* \sa \ref MatrixBaseCommaInitRef "MatrixBase::operator<<", CommaInitializer::finished()
*/
template<typename XprType>
struct CommaInitializer
{
typedef typename XprType::Scalar Scalar;
EIGEN_DEVICE_FUNC
inline CommaInitializer(XprType& xpr, const Scalar& s)
: m_xpr(xpr), m_row(0), m_col(1), m_currentBlockRows(1)
{
m_xpr.coeffRef(0,0) = s;
}
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
inline CommaInitializer(XprType& xpr, const DenseBase<OtherDerived>& other)
: m_xpr(xpr), m_row(0), m_col(other.cols()), m_currentBlockRows(other.rows())
{
m_xpr.block(0, 0, other.rows(), other.cols()) = other;
}
/* Copy/Move constructor which transfers ownership. This is crucial in
* absence of return value optimization to avoid assertions during destruction. */
// FIXME in C++11 mode this could be replaced by a proper RValue constructor
EIGEN_DEVICE_FUNC
inline CommaInitializer(const CommaInitializer& o)
: m_xpr(o.m_xpr), m_row(o.m_row), m_col(o.m_col), m_currentBlockRows(o.m_currentBlockRows) {
// Mark original object as finished. In absence of R-value references we need to const_cast:
const_cast<CommaInitializer&>(o).m_row = m_xpr.rows();
const_cast<CommaInitializer&>(o).m_col = m_xpr.cols();
const_cast<CommaInitializer&>(o).m_currentBlockRows = 0;
}
/* inserts a scalar value in the target matrix */
EIGEN_DEVICE_FUNC
CommaInitializer& operator,(const Scalar& s)
{
if (m_col==m_xpr.cols())
{
m_row+=m_currentBlockRows;
m_col = 0;
m_currentBlockRows = 1;
eigen_assert(m_row<m_xpr.rows()
&& "Too many rows passed to comma initializer (operator<<)");
}
eigen_assert(m_col<m_xpr.cols()
&& "Too many coefficients passed to comma initializer (operator<<)");
eigen_assert(m_currentBlockRows==1);
m_xpr.coeffRef(m_row, m_col++) = s;
return *this;
}
/* inserts a matrix expression in the target matrix */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
CommaInitializer& operator,(const DenseBase<OtherDerived>& other)
{
if(other.cols()==0 || other.rows()==0)
return *this;
if (m_col==m_xpr.cols())
{
m_row+=m_currentBlockRows;
m_col = 0;
m_currentBlockRows = other.rows();
eigen_assert(m_row+m_currentBlockRows<=m_xpr.rows()
&& "Too many rows passed to comma initializer (operator<<)");
}
eigen_assert(m_col<m_xpr.cols()
&& "Too many coefficients passed to comma initializer (operator<<)");
eigen_assert(m_currentBlockRows==other.rows());
if (OtherDerived::SizeAtCompileTime != Dynamic)
m_xpr.template block<OtherDerived::RowsAtCompileTime != Dynamic ? OtherDerived::RowsAtCompileTime : 1,
OtherDerived::ColsAtCompileTime != Dynamic ? OtherDerived::ColsAtCompileTime : 1>
(m_row, m_col) = other;
else
m_xpr.block(m_row, m_col, other.rows(), other.cols()) = other;
m_col += other.cols();
return *this;
}
EIGEN_DEVICE_FUNC
inline ~CommaInitializer()
#if defined VERIFY_RAISES_ASSERT && (!defined EIGEN_NO_ASSERTION_CHECKING) && defined EIGEN_EXCEPTIONS
throw(Eigen::eigen_assert_exception)
#endif
{
eigen_assert((m_row+m_currentBlockRows) == m_xpr.rows()
&& m_col == m_xpr.cols()
&& "Too few coefficients passed to comma initializer (operator<<)");
}
/** \returns the built matrix once all its coefficients have been set.
* Calling finished is 100% optional. Its purpose is to write expressions
* like this:
* \code
* quaternion.fromRotationMatrix((Matrix3f() << axis0, axis1, axis2).finished());
* \endcode
*/
EIGEN_DEVICE_FUNC
inline XprType& finished() { return m_xpr; }
XprType& m_xpr; // target expression
Index m_row; // current row id
Index m_col; // current col id
Index m_currentBlockRows; // current block height
};
/** \anchor MatrixBaseCommaInitRef
* Convenient operator to set the coefficients of a matrix.
*
* The coefficients must be provided in a row major order and exactly match
* the size of the matrix. Otherwise an assertion is raised.
*
* Example: \include MatrixBase_set.cpp
* Output: \verbinclude MatrixBase_set.out
*
* \note According the c++ standard, the argument expressions of this comma initializer are evaluated in arbitrary order.
*
* \sa CommaInitializer::finished(), class CommaInitializer
*/
template<typename Derived>
inline CommaInitializer<Derived> DenseBase<Derived>::operator<< (const Scalar& s)
{
return CommaInitializer<Derived>(*static_cast<Derived*>(this), s);
}
/** \sa operator<<(const Scalar&) */
template<typename Derived>
template<typename OtherDerived>
inline CommaInitializer<Derived>
DenseBase<Derived>::operator<<(const DenseBase<OtherDerived>& other)
{
return CommaInitializer<Derived>(*static_cast<Derived *>(this), other);
}
} // end namespace Eigen
#endif // EIGEN_COMMAINITIALIZER_H

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,127 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_COREITERATORS_H
#define EIGEN_COREITERATORS_H
namespace Eigen {
/* This file contains the respective InnerIterator definition of the expressions defined in Eigen/Core
*/
namespace internal {
template<typename XprType, typename EvaluatorKind>
class inner_iterator_selector;
}
/** \class InnerIterator
* \brief An InnerIterator allows to loop over the element of any matrix expression.
*
* \warning To be used with care because an evaluator is constructed every time an InnerIterator iterator is constructed.
*
* TODO: add a usage example
*/
template<typename XprType>
class InnerIterator
{
protected:
typedef internal::inner_iterator_selector<XprType, typename internal::evaluator_traits<XprType>::Kind> IteratorType;
typedef internal::evaluator<XprType> EvaluatorType;
typedef typename internal::traits<XprType>::Scalar Scalar;
public:
/** Construct an iterator over the \a outerId -th row or column of \a xpr */
InnerIterator(const XprType &xpr, const Index &outerId)
: m_eval(xpr), m_iter(m_eval, outerId, xpr.innerSize())
{}
/// \returns the value of the current coefficient.
EIGEN_STRONG_INLINE Scalar value() const { return m_iter.value(); }
/** Increment the iterator \c *this to the next non-zero coefficient.
* Explicit zeros are not skipped over. To skip explicit zeros, see class SparseView
*/
EIGEN_STRONG_INLINE InnerIterator& operator++() { m_iter.operator++(); return *this; }
/// \returns the column or row index of the current coefficient.
EIGEN_STRONG_INLINE Index index() const { return m_iter.index(); }
/// \returns the row index of the current coefficient.
EIGEN_STRONG_INLINE Index row() const { return m_iter.row(); }
/// \returns the column index of the current coefficient.
EIGEN_STRONG_INLINE Index col() const { return m_iter.col(); }
/// \returns \c true if the iterator \c *this still references a valid coefficient.
EIGEN_STRONG_INLINE operator bool() const { return m_iter; }
protected:
EvaluatorType m_eval;
IteratorType m_iter;
private:
// If you get here, then you're not using the right InnerIterator type, e.g.:
// SparseMatrix<double,RowMajor> A;
// SparseMatrix<double>::InnerIterator it(A,0);
template<typename T> InnerIterator(const EigenBase<T>&,Index outer);
};
namespace internal {
// Generic inner iterator implementation for dense objects
template<typename XprType>
class inner_iterator_selector<XprType, IndexBased>
{
protected:
typedef evaluator<XprType> EvaluatorType;
typedef typename traits<XprType>::Scalar Scalar;
enum { IsRowMajor = (XprType::Flags&RowMajorBit)==RowMajorBit };
public:
EIGEN_STRONG_INLINE inner_iterator_selector(const EvaluatorType &eval, const Index &outerId, const Index &innerSize)
: m_eval(eval), m_inner(0), m_outer(outerId), m_end(innerSize)
{}
EIGEN_STRONG_INLINE Scalar value() const
{
return (IsRowMajor) ? m_eval.coeff(m_outer, m_inner)
: m_eval.coeff(m_inner, m_outer);
}
EIGEN_STRONG_INLINE inner_iterator_selector& operator++() { m_inner++; return *this; }
EIGEN_STRONG_INLINE Index index() const { return m_inner; }
inline Index row() const { return IsRowMajor ? m_outer : index(); }
inline Index col() const { return IsRowMajor ? index() : m_outer; }
EIGEN_STRONG_INLINE operator bool() const { return m_inner < m_end && m_inner>=0; }
protected:
const EvaluatorType& m_eval;
Index m_inner;
const Index m_outer;
const Index m_end;
};
// For iterator-based evaluator, inner-iterator is already implemented as
// evaluator<>::InnerIterator
template<typename XprType>
class inner_iterator_selector<XprType, IteratorBased>
: public evaluator<XprType>::InnerIterator
{
protected:
typedef typename evaluator<XprType>::InnerIterator Base;
typedef evaluator<XprType> EvaluatorType;
public:
EIGEN_STRONG_INLINE inner_iterator_selector(const EvaluatorType &eval, const Index &outerId, const Index &/*innerSize*/)
: Base(eval, outerId)
{}
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_COREITERATORS_H

View File

@ -0,0 +1,184 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CWISE_BINARY_OP_H
#define EIGEN_CWISE_BINARY_OP_H
namespace Eigen {
/** \class CwiseBinaryOp
* \ingroup Core_Module
*
* \brief Generic expression where a coefficient-wise binary operator is applied to two expressions
*
* \param BinaryOp template functor implementing the operator
* \param Lhs the type of the left-hand side
* \param Rhs the type of the right-hand side
*
* This class represents an expression where a coefficient-wise binary operator is applied to two expressions.
* It is the return type of binary operators, by which we mean only those binary operators where
* both the left-hand side and the right-hand side are Eigen expressions.
* For example, the return type of matrix1+matrix2 is a CwiseBinaryOp.
*
* Most of the time, this is the only way that it is used, so you typically don't have to name
* CwiseBinaryOp types explicitly.
*
* \sa MatrixBase::binaryExpr(const MatrixBase<OtherDerived> &,const CustomBinaryOp &) const, class CwiseUnaryOp, class CwiseNullaryOp
*/
namespace internal {
template<typename BinaryOp, typename Lhs, typename Rhs>
struct traits<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >
{
// we must not inherit from traits<Lhs> since it has
// the potential to cause problems with MSVC
typedef typename remove_all<Lhs>::type Ancestor;
typedef typename traits<Ancestor>::XprKind XprKind;
enum {
RowsAtCompileTime = traits<Ancestor>::RowsAtCompileTime,
ColsAtCompileTime = traits<Ancestor>::ColsAtCompileTime,
MaxRowsAtCompileTime = traits<Ancestor>::MaxRowsAtCompileTime,
MaxColsAtCompileTime = traits<Ancestor>::MaxColsAtCompileTime
};
// even though we require Lhs and Rhs to have the same scalar type (see CwiseBinaryOp constructor),
// we still want to handle the case when the result type is different.
typedef typename result_of<
BinaryOp(
typename Lhs::Scalar,
typename Rhs::Scalar
)
>::type Scalar;
typedef typename cwise_promote_storage_type<typename traits<Lhs>::StorageKind,
typename traits<Rhs>::StorageKind,
BinaryOp>::ret StorageKind;
typedef typename promote_index_type<typename traits<Lhs>::StorageIndex,
typename traits<Rhs>::StorageIndex>::type StorageIndex;
typedef typename Lhs::Nested LhsNested;
typedef typename Rhs::Nested RhsNested;
typedef typename remove_reference<LhsNested>::type _LhsNested;
typedef typename remove_reference<RhsNested>::type _RhsNested;
enum {
Flags = _LhsNested::Flags & RowMajorBit
};
};
} // end namespace internal
template<typename BinaryOp, typename Lhs, typename Rhs, typename StorageKind>
class CwiseBinaryOpImpl;
template<typename BinaryOp, typename LhsType, typename RhsType>
class CwiseBinaryOp :
public CwiseBinaryOpImpl<
BinaryOp, LhsType, RhsType,
typename internal::cwise_promote_storage_type<typename internal::traits<LhsType>::StorageKind,
typename internal::traits<RhsType>::StorageKind,
BinaryOp>::ret>,
internal::no_assignment_operator
{
public:
typedef typename internal::remove_all<LhsType>::type Lhs;
typedef typename internal::remove_all<RhsType>::type Rhs;
typedef typename CwiseBinaryOpImpl<
BinaryOp, LhsType, RhsType,
typename internal::cwise_promote_storage_type<typename internal::traits<LhsType>::StorageKind,
typename internal::traits<Rhs>::StorageKind,
BinaryOp>::ret>::Base Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseBinaryOp)
typedef typename internal::ref_selector<LhsType>::type LhsNested;
typedef typename internal::ref_selector<RhsType>::type RhsNested;
typedef typename internal::remove_reference<LhsNested>::type _LhsNested;
typedef typename internal::remove_reference<RhsNested>::type _RhsNested;
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE CwiseBinaryOp(const Lhs& aLhs, const Rhs& aRhs, const BinaryOp& func = BinaryOp())
: m_lhs(aLhs), m_rhs(aRhs), m_functor(func)
{
EIGEN_CHECK_BINARY_COMPATIBILIY(BinaryOp,typename Lhs::Scalar,typename Rhs::Scalar);
// require the sizes to match
EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Lhs, Rhs)
eigen_assert(aLhs.rows() == aRhs.rows() && aLhs.cols() == aRhs.cols());
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index rows() const {
// return the fixed size type if available to enable compile time optimizations
if (internal::traits<typename internal::remove_all<LhsNested>::type>::RowsAtCompileTime==Dynamic)
return m_rhs.rows();
else
return m_lhs.rows();
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index cols() const {
// return the fixed size type if available to enable compile time optimizations
if (internal::traits<typename internal::remove_all<LhsNested>::type>::ColsAtCompileTime==Dynamic)
return m_rhs.cols();
else
return m_lhs.cols();
}
/** \returns the left hand side nested expression */
EIGEN_DEVICE_FUNC
const _LhsNested& lhs() const { return m_lhs; }
/** \returns the right hand side nested expression */
EIGEN_DEVICE_FUNC
const _RhsNested& rhs() const { return m_rhs; }
/** \returns the functor representing the binary operation */
EIGEN_DEVICE_FUNC
const BinaryOp& functor() const { return m_functor; }
protected:
LhsNested m_lhs;
RhsNested m_rhs;
const BinaryOp m_functor;
};
// Generic API dispatcher
template<typename BinaryOp, typename Lhs, typename Rhs, typename StorageKind>
class CwiseBinaryOpImpl
: public internal::generic_xpr_base<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >::type
{
public:
typedef typename internal::generic_xpr_base<CwiseBinaryOp<BinaryOp, Lhs, Rhs> >::type Base;
};
/** replaces \c *this by \c *this - \a other.
*
* \returns a reference to \c *this
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
MatrixBase<Derived>::operator-=(const MatrixBase<OtherDerived> &other)
{
call_assignment(derived(), other.derived(), internal::sub_assign_op<Scalar>());
return derived();
}
/** replaces \c *this by \c *this + \a other.
*
* \returns a reference to \c *this
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived &
MatrixBase<Derived>::operator+=(const MatrixBase<OtherDerived>& other)
{
call_assignment(derived(), other.derived(), internal::add_assign_op<Scalar>());
return derived();
}
} // end namespace Eigen
#endif // EIGEN_CWISE_BINARY_OP_H

View File

@ -0,0 +1,871 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CWISE_NULLARY_OP_H
#define EIGEN_CWISE_NULLARY_OP_H
namespace Eigen {
/** \class CwiseNullaryOp
* \ingroup Core_Module
*
* \brief Generic expression of a matrix where all coefficients are defined by a functor
*
* \param NullaryOp template functor implementing the operator
* \param PlainObjectType the underlying plain matrix/array type
*
* This class represents an expression of a generic nullary operator.
* It is the return type of the Ones(), Zero(), Constant(), Identity() and Random() methods,
* and most of the time this is the only way it is used.
*
* However, if you want to write a function returning such an expression, you
* will need to use this class.
*
* \sa class CwiseUnaryOp, class CwiseBinaryOp, DenseBase::NullaryExpr()
*/
namespace internal {
template<typename NullaryOp, typename PlainObjectType>
struct traits<CwiseNullaryOp<NullaryOp, PlainObjectType> > : traits<PlainObjectType>
{
enum {
Flags = traits<PlainObjectType>::Flags & RowMajorBit
};
};
}
template<typename NullaryOp, typename PlainObjectType>
class CwiseNullaryOp : public internal::dense_xpr_base< CwiseNullaryOp<NullaryOp, PlainObjectType> >::type, internal::no_assignment_operator
{
public:
typedef typename internal::dense_xpr_base<CwiseNullaryOp>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(CwiseNullaryOp)
EIGEN_DEVICE_FUNC
CwiseNullaryOp(Index rows, Index cols, const NullaryOp& func = NullaryOp())
: m_rows(rows), m_cols(cols), m_functor(func)
{
eigen_assert(rows >= 0
&& (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows)
&& cols >= 0
&& (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols));
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index rows() const { return m_rows.value(); }
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index cols() const { return m_cols.value(); }
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const Scalar coeff(Index rowId, Index colId) const
{
return m_functor(rowId, colId);
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(Index rowId, Index colId) const
{
return m_functor.packetOp(rowId, colId);
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const Scalar coeff(Index index) const
{
return m_functor(index);
}
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(Index index) const
{
return m_functor.packetOp(index);
}
/** \returns the functor representing the nullary operation */
EIGEN_DEVICE_FUNC
const NullaryOp& functor() const { return m_functor; }
protected:
const internal::variable_if_dynamic<Index, RowsAtCompileTime> m_rows;
const internal::variable_if_dynamic<Index, ColsAtCompileTime> m_cols;
const NullaryOp m_functor;
};
/** \returns an expression of a matrix defined by a custom functor \a func
*
* The parameters \a rows and \a cols are the number of rows and of columns of
* the returned matrix. Must be compatible with this MatrixBase type.
*
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
* it is redundant to pass \a rows and \a cols as arguments, so Zero() should be used
* instead.
*
* The template parameter \a CustomNullaryOp is the type of the functor.
*
* \sa class CwiseNullaryOp
*/
template<typename Derived>
template<typename CustomNullaryOp>
EIGEN_STRONG_INLINE const CwiseNullaryOp<CustomNullaryOp, typename DenseBase<Derived>::PlainObject>
DenseBase<Derived>::NullaryExpr(Index rows, Index cols, const CustomNullaryOp& func)
{
return CwiseNullaryOp<CustomNullaryOp, PlainObject>(rows, cols, func);
}
/** \returns an expression of a matrix defined by a custom functor \a func
*
* The parameter \a size is the size of the returned vector.
* Must be compatible with this MatrixBase type.
*
* \only_for_vectors
*
* This variant is meant to be used for dynamic-size vector types. For fixed-size types,
* it is redundant to pass \a size as argument, so Zero() should be used
* instead.
*
* The template parameter \a CustomNullaryOp is the type of the functor.
*
* Here is an example with C++11 random generators: \include random_cpp11.cpp
* Output: \verbinclude random_cpp11.out
*
* \sa class CwiseNullaryOp
*/
template<typename Derived>
template<typename CustomNullaryOp>
EIGEN_STRONG_INLINE const CwiseNullaryOp<CustomNullaryOp, typename DenseBase<Derived>::PlainObject>
DenseBase<Derived>::NullaryExpr(Index size, const CustomNullaryOp& func)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
if(RowsAtCompileTime == 1) return CwiseNullaryOp<CustomNullaryOp, PlainObject>(1, size, func);
else return CwiseNullaryOp<CustomNullaryOp, PlainObject>(size, 1, func);
}
/** \returns an expression of a matrix defined by a custom functor \a func
*
* This variant is only for fixed-size DenseBase types. For dynamic-size types, you
* need to use the variants taking size arguments.
*
* The template parameter \a CustomNullaryOp is the type of the functor.
*
* \sa class CwiseNullaryOp
*/
template<typename Derived>
template<typename CustomNullaryOp>
EIGEN_STRONG_INLINE const CwiseNullaryOp<CustomNullaryOp, typename DenseBase<Derived>::PlainObject>
DenseBase<Derived>::NullaryExpr(const CustomNullaryOp& func)
{
return CwiseNullaryOp<CustomNullaryOp, PlainObject>(RowsAtCompileTime, ColsAtCompileTime, func);
}
/** \returns an expression of a constant matrix of value \a value
*
* The parameters \a rows and \a cols are the number of rows and of columns of
* the returned matrix. Must be compatible with this DenseBase type.
*
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
* it is redundant to pass \a rows and \a cols as arguments, so Zero() should be used
* instead.
*
* The template parameter \a CustomNullaryOp is the type of the functor.
*
* \sa class CwiseNullaryOp
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Constant(Index rows, Index cols, const Scalar& value)
{
return DenseBase<Derived>::NullaryExpr(rows, cols, internal::scalar_constant_op<Scalar>(value));
}
/** \returns an expression of a constant matrix of value \a value
*
* The parameter \a size is the size of the returned vector.
* Must be compatible with this DenseBase type.
*
* \only_for_vectors
*
* This variant is meant to be used for dynamic-size vector types. For fixed-size types,
* it is redundant to pass \a size as argument, so Zero() should be used
* instead.
*
* The template parameter \a CustomNullaryOp is the type of the functor.
*
* \sa class CwiseNullaryOp
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Constant(Index size, const Scalar& value)
{
return DenseBase<Derived>::NullaryExpr(size, internal::scalar_constant_op<Scalar>(value));
}
/** \returns an expression of a constant matrix of value \a value
*
* This variant is only for fixed-size DenseBase types. For dynamic-size types, you
* need to use the variants taking size arguments.
*
* The template parameter \a CustomNullaryOp is the type of the functor.
*
* \sa class CwiseNullaryOp
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Constant(const Scalar& value)
{
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
return DenseBase<Derived>::NullaryExpr(RowsAtCompileTime, ColsAtCompileTime, internal::scalar_constant_op<Scalar>(value));
}
/**
* \brief Sets a linearly space vector.
*
* The function generates 'size' equally spaced values in the closed interval [low,high].
* This particular version of LinSpaced() uses sequential access, i.e. vector access is
* assumed to be a(0), a(1), ..., a(size). This assumption allows for better vectorization
* and yields faster code than the random access version.
*
* When size is set to 1, a vector of length 1 containing 'high' is returned.
*
* \only_for_vectors
*
* Example: \include DenseBase_LinSpaced_seq.cpp
* Output: \verbinclude DenseBase_LinSpaced_seq.out
*
* \sa setLinSpaced(Index,const Scalar&,const Scalar&), LinSpaced(Index,Scalar,Scalar), CwiseNullaryOp
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::SequentialLinSpacedReturnType
DenseBase<Derived>::LinSpaced(Sequential_t, Index size, const Scalar& low, const Scalar& high)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return DenseBase<Derived>::NullaryExpr(size, internal::linspaced_op<Scalar,PacketScalar,false>(low,high,size));
}
/**
* \copydoc DenseBase::LinSpaced(Sequential_t, Index, const Scalar&, const Scalar&)
* Special version for fixed size types which does not require the size parameter.
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::SequentialLinSpacedReturnType
DenseBase<Derived>::LinSpaced(Sequential_t, const Scalar& low, const Scalar& high)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
return DenseBase<Derived>::NullaryExpr(Derived::SizeAtCompileTime, internal::linspaced_op<Scalar,PacketScalar,false>(low,high,Derived::SizeAtCompileTime));
}
/**
* \brief Sets a linearly space vector.
*
* The function generates 'size' equally spaced values in the closed interval [low,high].
* When size is set to 1, a vector of length 1 containing 'high' is returned.
*
* \only_for_vectors
*
* Example: \include DenseBase_LinSpaced.cpp
* Output: \verbinclude DenseBase_LinSpaced.out
*
* \sa setLinSpaced(Index,const Scalar&,const Scalar&), LinSpaced(Sequential_t,Index,const Scalar&,const Scalar&,Index), CwiseNullaryOp
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::RandomAccessLinSpacedReturnType
DenseBase<Derived>::LinSpaced(Index size, const Scalar& low, const Scalar& high)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return DenseBase<Derived>::NullaryExpr(size, internal::linspaced_op<Scalar,PacketScalar,true>(low,high,size));
}
/**
* \copydoc DenseBase::LinSpaced(Index, const Scalar&, const Scalar&)
* Special version for fixed size types which does not require the size parameter.
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::RandomAccessLinSpacedReturnType
DenseBase<Derived>::LinSpaced(const Scalar& low, const Scalar& high)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
return DenseBase<Derived>::NullaryExpr(Derived::SizeAtCompileTime, internal::linspaced_op<Scalar,PacketScalar,true>(low,high,Derived::SizeAtCompileTime));
}
/** \returns true if all coefficients in this matrix are approximately equal to \a val, to within precision \a prec */
template<typename Derived>
bool DenseBase<Derived>::isApproxToConstant
(const Scalar& val, const RealScalar& prec) const
{
typename internal::nested_eval<Derived,1>::type self(derived());
for(Index j = 0; j < cols(); ++j)
for(Index i = 0; i < rows(); ++i)
if(!internal::isApprox(self.coeff(i, j), val, prec))
return false;
return true;
}
/** This is just an alias for isApproxToConstant().
*
* \returns true if all coefficients in this matrix are approximately equal to \a value, to within precision \a prec */
template<typename Derived>
bool DenseBase<Derived>::isConstant
(const Scalar& val, const RealScalar& prec) const
{
return isApproxToConstant(val, prec);
}
/** Alias for setConstant(): sets all coefficients in this expression to \a val.
*
* \sa setConstant(), Constant(), class CwiseNullaryOp
*/
template<typename Derived>
EIGEN_STRONG_INLINE void DenseBase<Derived>::fill(const Scalar& val)
{
setConstant(val);
}
/** Sets all coefficients in this expression to \a value.
*
* \sa fill(), setConstant(Index,const Scalar&), setConstant(Index,Index,const Scalar&), setZero(), setOnes(), Constant(), class CwiseNullaryOp, setZero(), setOnes()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setConstant(const Scalar& val)
{
return derived() = Constant(rows(), cols(), val);
}
/** Resizes to the given \a size, and sets all coefficients in this expression to the given \a value.
*
* \only_for_vectors
*
* Example: \include Matrix_setConstant_int.cpp
* Output: \verbinclude Matrix_setConstant_int.out
*
* \sa MatrixBase::setConstant(const Scalar&), setConstant(Index,Index,const Scalar&), class CwiseNullaryOp, MatrixBase::Constant(const Scalar&)
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived&
PlainObjectBase<Derived>::setConstant(Index size, const Scalar& val)
{
resize(size);
return setConstant(val);
}
/** Resizes to the given size, and sets all coefficients in this expression to the given \a value.
*
* \param rows the new number of rows
* \param cols the new number of columns
* \param val the value to which all coefficients are set
*
* Example: \include Matrix_setConstant_int_int.cpp
* Output: \verbinclude Matrix_setConstant_int_int.out
*
* \sa MatrixBase::setConstant(const Scalar&), setConstant(Index,const Scalar&), class CwiseNullaryOp, MatrixBase::Constant(const Scalar&)
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived&
PlainObjectBase<Derived>::setConstant(Index rows, Index cols, const Scalar& val)
{
resize(rows, cols);
return setConstant(val);
}
/**
* \brief Sets a linearly space vector.
*
* The function generates 'size' equally spaced values in the closed interval [low,high].
* When size is set to 1, a vector of length 1 containing 'high' is returned.
*
* \only_for_vectors
*
* Example: \include DenseBase_setLinSpaced.cpp
* Output: \verbinclude DenseBase_setLinSpaced.out
*
* \sa CwiseNullaryOp
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setLinSpaced(Index newSize, const Scalar& low, const Scalar& high)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return derived() = Derived::NullaryExpr(newSize, internal::linspaced_op<Scalar,PacketScalar,false>(low,high,newSize));
}
/**
* \brief Sets a linearly space vector.
*
* The function fill *this with equally spaced values in the closed interval [low,high].
* When size is set to 1, a vector of length 1 containing 'high' is returned.
*
* \only_for_vectors
*
* \sa setLinSpaced(Index, const Scalar&, const Scalar&), CwiseNullaryOp
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setLinSpaced(const Scalar& low, const Scalar& high)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return setLinSpaced(size(), low, high);
}
// zero:
/** \returns an expression of a zero matrix.
*
* The parameters \a rows and \a cols are the number of rows and of columns of
* the returned matrix. Must be compatible with this MatrixBase type.
*
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
* it is redundant to pass \a rows and \a cols as arguments, so Zero() should be used
* instead.
*
* Example: \include MatrixBase_zero_int_int.cpp
* Output: \verbinclude MatrixBase_zero_int_int.out
*
* \sa Zero(), Zero(Index)
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Zero(Index rows, Index cols)
{
return Constant(rows, cols, Scalar(0));
}
/** \returns an expression of a zero vector.
*
* The parameter \a size is the size of the returned vector.
* Must be compatible with this MatrixBase type.
*
* \only_for_vectors
*
* This variant is meant to be used for dynamic-size vector types. For fixed-size types,
* it is redundant to pass \a size as argument, so Zero() should be used
* instead.
*
* Example: \include MatrixBase_zero_int.cpp
* Output: \verbinclude MatrixBase_zero_int.out
*
* \sa Zero(), Zero(Index,Index)
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Zero(Index size)
{
return Constant(size, Scalar(0));
}
/** \returns an expression of a fixed-size zero matrix or vector.
*
* This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
* need to use the variants taking size arguments.
*
* Example: \include MatrixBase_zero.cpp
* Output: \verbinclude MatrixBase_zero.out
*
* \sa Zero(Index), Zero(Index,Index)
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Zero()
{
return Constant(Scalar(0));
}
/** \returns true if *this is approximately equal to the zero matrix,
* within the precision given by \a prec.
*
* Example: \include MatrixBase_isZero.cpp
* Output: \verbinclude MatrixBase_isZero.out
*
* \sa class CwiseNullaryOp, Zero()
*/
template<typename Derived>
bool DenseBase<Derived>::isZero(const RealScalar& prec) const
{
typename internal::nested_eval<Derived,1>::type self(derived());
for(Index j = 0; j < cols(); ++j)
for(Index i = 0; i < rows(); ++i)
if(!internal::isMuchSmallerThan(self.coeff(i, j), static_cast<Scalar>(1), prec))
return false;
return true;
}
/** Sets all coefficients in this expression to zero.
*
* Example: \include MatrixBase_setZero.cpp
* Output: \verbinclude MatrixBase_setZero.out
*
* \sa class CwiseNullaryOp, Zero()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setZero()
{
return setConstant(Scalar(0));
}
/** Resizes to the given \a size, and sets all coefficients in this expression to zero.
*
* \only_for_vectors
*
* Example: \include Matrix_setZero_int.cpp
* Output: \verbinclude Matrix_setZero_int.out
*
* \sa DenseBase::setZero(), setZero(Index,Index), class CwiseNullaryOp, DenseBase::Zero()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived&
PlainObjectBase<Derived>::setZero(Index newSize)
{
resize(newSize);
return setConstant(Scalar(0));
}
/** Resizes to the given size, and sets all coefficients in this expression to zero.
*
* \param rows the new number of rows
* \param cols the new number of columns
*
* Example: \include Matrix_setZero_int_int.cpp
* Output: \verbinclude Matrix_setZero_int_int.out
*
* \sa DenseBase::setZero(), setZero(Index), class CwiseNullaryOp, DenseBase::Zero()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived&
PlainObjectBase<Derived>::setZero(Index rows, Index cols)
{
resize(rows, cols);
return setConstant(Scalar(0));
}
// ones:
/** \returns an expression of a matrix where all coefficients equal one.
*
* The parameters \a rows and \a cols are the number of rows and of columns of
* the returned matrix. Must be compatible with this MatrixBase type.
*
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
* it is redundant to pass \a rows and \a cols as arguments, so Ones() should be used
* instead.
*
* Example: \include MatrixBase_ones_int_int.cpp
* Output: \verbinclude MatrixBase_ones_int_int.out
*
* \sa Ones(), Ones(Index), isOnes(), class Ones
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Ones(Index rows, Index cols)
{
return Constant(rows, cols, Scalar(1));
}
/** \returns an expression of a vector where all coefficients equal one.
*
* The parameter \a newSize is the size of the returned vector.
* Must be compatible with this MatrixBase type.
*
* \only_for_vectors
*
* This variant is meant to be used for dynamic-size vector types. For fixed-size types,
* it is redundant to pass \a size as argument, so Ones() should be used
* instead.
*
* Example: \include MatrixBase_ones_int.cpp
* Output: \verbinclude MatrixBase_ones_int.out
*
* \sa Ones(), Ones(Index,Index), isOnes(), class Ones
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Ones(Index newSize)
{
return Constant(newSize, Scalar(1));
}
/** \returns an expression of a fixed-size matrix or vector where all coefficients equal one.
*
* This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
* need to use the variants taking size arguments.
*
* Example: \include MatrixBase_ones.cpp
* Output: \verbinclude MatrixBase_ones.out
*
* \sa Ones(Index), Ones(Index,Index), isOnes(), class Ones
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename DenseBase<Derived>::ConstantReturnType
DenseBase<Derived>::Ones()
{
return Constant(Scalar(1));
}
/** \returns true if *this is approximately equal to the matrix where all coefficients
* are equal to 1, within the precision given by \a prec.
*
* Example: \include MatrixBase_isOnes.cpp
* Output: \verbinclude MatrixBase_isOnes.out
*
* \sa class CwiseNullaryOp, Ones()
*/
template<typename Derived>
bool DenseBase<Derived>::isOnes
(const RealScalar& prec) const
{
return isApproxToConstant(Scalar(1), prec);
}
/** Sets all coefficients in this expression to one.
*
* Example: \include MatrixBase_setOnes.cpp
* Output: \verbinclude MatrixBase_setOnes.out
*
* \sa class CwiseNullaryOp, Ones()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived& DenseBase<Derived>::setOnes()
{
return setConstant(Scalar(1));
}
/** Resizes to the given \a newSize, and sets all coefficients in this expression to one.
*
* \only_for_vectors
*
* Example: \include Matrix_setOnes_int.cpp
* Output: \verbinclude Matrix_setOnes_int.out
*
* \sa MatrixBase::setOnes(), setOnes(Index,Index), class CwiseNullaryOp, MatrixBase::Ones()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived&
PlainObjectBase<Derived>::setOnes(Index newSize)
{
resize(newSize);
return setConstant(Scalar(1));
}
/** Resizes to the given size, and sets all coefficients in this expression to one.
*
* \param rows the new number of rows
* \param cols the new number of columns
*
* Example: \include Matrix_setOnes_int_int.cpp
* Output: \verbinclude Matrix_setOnes_int_int.out
*
* \sa MatrixBase::setOnes(), setOnes(Index), class CwiseNullaryOp, MatrixBase::Ones()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived&
PlainObjectBase<Derived>::setOnes(Index rows, Index cols)
{
resize(rows, cols);
return setConstant(Scalar(1));
}
// Identity:
/** \returns an expression of the identity matrix (not necessarily square).
*
* The parameters \a rows and \a cols are the number of rows and of columns of
* the returned matrix. Must be compatible with this MatrixBase type.
*
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
* it is redundant to pass \a rows and \a cols as arguments, so Identity() should be used
* instead.
*
* Example: \include MatrixBase_identity_int_int.cpp
* Output: \verbinclude MatrixBase_identity_int_int.out
*
* \sa Identity(), setIdentity(), isIdentity()
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::IdentityReturnType
MatrixBase<Derived>::Identity(Index rows, Index cols)
{
return DenseBase<Derived>::NullaryExpr(rows, cols, internal::scalar_identity_op<Scalar>());
}
/** \returns an expression of the identity matrix (not necessarily square).
*
* This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
* need to use the variant taking size arguments.
*
* Example: \include MatrixBase_identity.cpp
* Output: \verbinclude MatrixBase_identity.out
*
* \sa Identity(Index,Index), setIdentity(), isIdentity()
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::IdentityReturnType
MatrixBase<Derived>::Identity()
{
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
return MatrixBase<Derived>::NullaryExpr(RowsAtCompileTime, ColsAtCompileTime, internal::scalar_identity_op<Scalar>());
}
/** \returns true if *this is approximately equal to the identity matrix
* (not necessarily square),
* within the precision given by \a prec.
*
* Example: \include MatrixBase_isIdentity.cpp
* Output: \verbinclude MatrixBase_isIdentity.out
*
* \sa class CwiseNullaryOp, Identity(), Identity(Index,Index), setIdentity()
*/
template<typename Derived>
bool MatrixBase<Derived>::isIdentity
(const RealScalar& prec) const
{
typename internal::nested_eval<Derived,1>::type self(derived());
for(Index j = 0; j < cols(); ++j)
{
for(Index i = 0; i < rows(); ++i)
{
if(i == j)
{
if(!internal::isApprox(self.coeff(i, j), static_cast<Scalar>(1), prec))
return false;
}
else
{
if(!internal::isMuchSmallerThan(self.coeff(i, j), static_cast<RealScalar>(1), prec))
return false;
}
}
}
return true;
}
namespace internal {
template<typename Derived, bool Big = (Derived::SizeAtCompileTime>=16)>
struct setIdentity_impl
{
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE Derived& run(Derived& m)
{
return m = Derived::Identity(m.rows(), m.cols());
}
};
template<typename Derived>
struct setIdentity_impl<Derived, true>
{
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE Derived& run(Derived& m)
{
m.setZero();
const Index size = (std::min)(m.rows(), m.cols());
for(Index i = 0; i < size; ++i) m.coeffRef(i,i) = typename Derived::Scalar(1);
return m;
}
};
} // end namespace internal
/** Writes the identity expression (not necessarily square) into *this.
*
* Example: \include MatrixBase_setIdentity.cpp
* Output: \verbinclude MatrixBase_setIdentity.out
*
* \sa class CwiseNullaryOp, Identity(), Identity(Index,Index), isIdentity()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::setIdentity()
{
return internal::setIdentity_impl<Derived>::run(derived());
}
/** \brief Resizes to the given size, and writes the identity expression (not necessarily square) into *this.
*
* \param rows the new number of rows
* \param cols the new number of columns
*
* Example: \include Matrix_setIdentity_int_int.cpp
* Output: \verbinclude Matrix_setIdentity_int_int.out
*
* \sa MatrixBase::setIdentity(), class CwiseNullaryOp, MatrixBase::Identity()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived& MatrixBase<Derived>::setIdentity(Index rows, Index cols)
{
derived().resize(rows, cols);
return setIdentity();
}
/** \returns an expression of the i-th unit (basis) vector.
*
* \only_for_vectors
*
* \sa MatrixBase::Unit(Index), MatrixBase::UnitX(), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::Unit(Index newSize, Index i)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return BasisReturnType(SquareMatrixType::Identity(newSize,newSize), i);
}
/** \returns an expression of the i-th unit (basis) vector.
*
* \only_for_vectors
*
* This variant is for fixed-size vector only.
*
* \sa MatrixBase::Unit(Index,Index), MatrixBase::UnitX(), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::Unit(Index i)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
return BasisReturnType(SquareMatrixType::Identity(),i);
}
/** \returns an expression of the X axis unit vector (1{,0}^*)
*
* \only_for_vectors
*
* \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitX()
{ return Derived::Unit(0); }
/** \returns an expression of the Y axis unit vector (0,1{,0}^*)
*
* \only_for_vectors
*
* \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitY()
{ return Derived::Unit(1); }
/** \returns an expression of the Z axis unit vector (0,0,1{,0}^*)
*
* \only_for_vectors
*
* \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitZ()
{ return Derived::Unit(2); }
/** \returns an expression of the W axis unit vector (0,0,0,1)
*
* \only_for_vectors
*
* \sa MatrixBase::Unit(Index,Index), MatrixBase::Unit(Index), MatrixBase::UnitY(), MatrixBase::UnitZ(), MatrixBase::UnitW()
*/
template<typename Derived>
EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::BasisReturnType MatrixBase<Derived>::UnitW()
{ return Derived::Unit(3); }
} // end namespace Eigen
#endif // EIGEN_CWISE_NULLARY_OP_H

View File

@ -0,0 +1,103 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CWISE_UNARY_OP_H
#define EIGEN_CWISE_UNARY_OP_H
namespace Eigen {
/** \class CwiseUnaryOp
* \ingroup Core_Module
*
* \brief Generic expression where a coefficient-wise unary operator is applied to an expression
*
* \param UnaryOp template functor implementing the operator
* \param XprType the type of the expression to which we are applying the unary operator
*
* This class represents an expression where a unary operator is applied to an expression.
* It is the return type of all operations taking exactly 1 input expression, regardless of the
* presence of other inputs such as scalars. For example, the operator* in the expression 3*matrix
* is considered unary, because only the right-hand side is an expression, and its
* return type is a specialization of CwiseUnaryOp.
*
* Most of the time, this is the only way that it is used, so you typically don't have to name
* CwiseUnaryOp types explicitly.
*
* \sa MatrixBase::unaryExpr(const CustomUnaryOp &) const, class CwiseBinaryOp, class CwiseNullaryOp
*/
namespace internal {
template<typename UnaryOp, typename XprType>
struct traits<CwiseUnaryOp<UnaryOp, XprType> >
: traits<XprType>
{
typedef typename result_of<
UnaryOp(typename XprType::Scalar)
>::type Scalar;
typedef typename XprType::Nested XprTypeNested;
typedef typename remove_reference<XprTypeNested>::type _XprTypeNested;
enum {
Flags = _XprTypeNested::Flags & RowMajorBit
};
};
}
template<typename UnaryOp, typename XprType, typename StorageKind>
class CwiseUnaryOpImpl;
template<typename UnaryOp, typename XprType>
class CwiseUnaryOp : public CwiseUnaryOpImpl<UnaryOp, XprType, typename internal::traits<XprType>::StorageKind>, internal::no_assignment_operator
{
public:
typedef typename CwiseUnaryOpImpl<UnaryOp, XprType,typename internal::traits<XprType>::StorageKind>::Base Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseUnaryOp)
typedef typename internal::remove_all<XprType>::type NestedExpression;
EIGEN_DEVICE_FUNC
explicit inline CwiseUnaryOp(const XprType& xpr, const UnaryOp& func = UnaryOp())
: m_xpr(xpr), m_functor(func) {}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index rows() const { return m_xpr.rows(); }
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index cols() const { return m_xpr.cols(); }
/** \returns the functor representing the unary operation */
EIGEN_DEVICE_FUNC
const UnaryOp& functor() const { return m_functor; }
/** \returns the nested expression */
EIGEN_DEVICE_FUNC
const typename internal::remove_all<typename XprType::Nested>::type&
nestedExpression() const { return m_xpr; }
/** \returns the nested expression */
EIGEN_DEVICE_FUNC
typename internal::remove_all<typename XprType::Nested>::type&
nestedExpression() { return m_xpr.const_cast_derived(); }
protected:
typename XprType::Nested m_xpr;
const UnaryOp m_functor;
};
// Generic API dispatcher
template<typename UnaryOp, typename XprType, typename StorageKind>
class CwiseUnaryOpImpl
: public internal::generic_xpr_base<CwiseUnaryOp<UnaryOp, XprType> >::type
{
public:
typedef typename internal::generic_xpr_base<CwiseUnaryOp<UnaryOp, XprType> >::type Base;
};
} // end namespace Eigen
#endif // EIGEN_CWISE_UNARY_OP_H

View File

@ -0,0 +1,128 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CWISE_UNARY_VIEW_H
#define EIGEN_CWISE_UNARY_VIEW_H
namespace Eigen {
/** \class CwiseUnaryView
* \ingroup Core_Module
*
* \brief Generic lvalue expression of a coefficient-wise unary operator of a matrix or a vector
*
* \param ViewOp template functor implementing the view
* \param MatrixType the type of the matrix we are applying the unary operator
*
* This class represents a lvalue expression of a generic unary view operator of a matrix or a vector.
* It is the return type of real() and imag(), and most of the time this is the only way it is used.
*
* \sa MatrixBase::unaryViewExpr(const CustomUnaryOp &) const, class CwiseUnaryOp
*/
namespace internal {
template<typename ViewOp, typename MatrixType>
struct traits<CwiseUnaryView<ViewOp, MatrixType> >
: traits<MatrixType>
{
typedef typename result_of<
ViewOp(typename traits<MatrixType>::Scalar)
>::type Scalar;
typedef typename MatrixType::Nested MatrixTypeNested;
typedef typename remove_all<MatrixTypeNested>::type _MatrixTypeNested;
enum {
FlagsLvalueBit = is_lvalue<MatrixType>::value ? LvalueBit : 0,
Flags = traits<_MatrixTypeNested>::Flags & (RowMajorBit | FlagsLvalueBit | DirectAccessBit), // FIXME DirectAccessBit should not be handled by expressions
MatrixTypeInnerStride = inner_stride_at_compile_time<MatrixType>::ret,
// need to cast the sizeof's from size_t to int explicitly, otherwise:
// "error: no integral type can represent all of the enumerator values
InnerStrideAtCompileTime = MatrixTypeInnerStride == Dynamic
? int(Dynamic)
: int(MatrixTypeInnerStride) * int(sizeof(typename traits<MatrixType>::Scalar) / sizeof(Scalar)),
OuterStrideAtCompileTime = outer_stride_at_compile_time<MatrixType>::ret == Dynamic
? int(Dynamic)
: outer_stride_at_compile_time<MatrixType>::ret * int(sizeof(typename traits<MatrixType>::Scalar) / sizeof(Scalar))
};
};
}
template<typename ViewOp, typename MatrixType, typename StorageKind>
class CwiseUnaryViewImpl;
template<typename ViewOp, typename MatrixType>
class CwiseUnaryView : public CwiseUnaryViewImpl<ViewOp, MatrixType, typename internal::traits<MatrixType>::StorageKind>
{
public:
typedef typename CwiseUnaryViewImpl<ViewOp, MatrixType,typename internal::traits<MatrixType>::StorageKind>::Base Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(CwiseUnaryView)
typedef typename internal::remove_all<MatrixType>::type NestedExpression;
explicit inline CwiseUnaryView(MatrixType& mat, const ViewOp& func = ViewOp())
: m_matrix(mat), m_functor(func) {}
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(CwiseUnaryView)
EIGEN_STRONG_INLINE Index rows() const { return m_matrix.rows(); }
EIGEN_STRONG_INLINE Index cols() const { return m_matrix.cols(); }
/** \returns the functor representing unary operation */
const ViewOp& functor() const { return m_functor; }
/** \returns the nested expression */
const typename internal::remove_all<typename MatrixType::Nested>::type&
nestedExpression() const { return m_matrix; }
/** \returns the nested expression */
typename internal::remove_all<typename MatrixType::Nested>::type&
nestedExpression() { return m_matrix.const_cast_derived(); }
protected:
typename internal::ref_selector<MatrixType>::type m_matrix;
ViewOp m_functor;
};
// Generic API dispatcher
template<typename ViewOp, typename XprType, typename StorageKind>
class CwiseUnaryViewImpl
: public internal::generic_xpr_base<CwiseUnaryView<ViewOp, XprType> >::type
{
public:
typedef typename internal::generic_xpr_base<CwiseUnaryView<ViewOp, XprType> >::type Base;
};
template<typename ViewOp, typename MatrixType>
class CwiseUnaryViewImpl<ViewOp,MatrixType,Dense>
: public internal::dense_xpr_base< CwiseUnaryView<ViewOp, MatrixType> >::type
{
public:
typedef CwiseUnaryView<ViewOp, MatrixType> Derived;
typedef typename internal::dense_xpr_base< CwiseUnaryView<ViewOp, MatrixType> >::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Derived)
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(CwiseUnaryViewImpl)
EIGEN_DEVICE_FUNC inline Scalar* data() { return &(this->coeffRef(0)); }
EIGEN_DEVICE_FUNC inline const Scalar* data() const { return &(this->coeff(0)); }
EIGEN_DEVICE_FUNC inline Index innerStride() const
{
return derived().nestedExpression().innerStride() * sizeof(typename internal::traits<MatrixType>::Scalar) / sizeof(Scalar);
}
EIGEN_DEVICE_FUNC inline Index outerStride() const
{
return derived().nestedExpression().outerStride() * sizeof(typename internal::traits<MatrixType>::Scalar) / sizeof(Scalar);
}
};
} // end namespace Eigen
#endif // EIGEN_CWISE_UNARY_VIEW_H

View File

@ -0,0 +1,609 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2007-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_DENSEBASE_H
#define EIGEN_DENSEBASE_H
namespace Eigen {
namespace internal {
// The index type defined by EIGEN_DEFAULT_DENSE_INDEX_TYPE must be a signed type.
// This dummy function simply aims at checking that at compile time.
static inline void check_DenseIndex_is_signed() {
EIGEN_STATIC_ASSERT(NumTraits<DenseIndex>::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE);
}
} // end namespace internal
/** \class DenseBase
* \ingroup Core_Module
*
* \brief Base class for all dense matrices, vectors, and arrays
*
* This class is the base that is inherited by all dense objects (matrix, vector, arrays,
* and related expression types). The common Eigen API for dense objects is contained in this class.
*
* \tparam Derived is the derived type, e.g., a matrix type or an expression.
*
* This class can be extended with the help of the plugin mechanism described on the page
* \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_DENSEBASE_PLUGIN.
*
* \sa \ref TopicClassHierarchy
*/
template<typename Derived> class DenseBase
#ifndef EIGEN_PARSED_BY_DOXYGEN
: public internal::special_scalar_op_base<Derived,typename internal::traits<Derived>::Scalar,
typename NumTraits<typename internal::traits<Derived>::Scalar>::Real>
#else
: public DenseCoeffsBase<Derived>
#endif // not EIGEN_PARSED_BY_DOXYGEN
{
public:
using internal::special_scalar_op_base<Derived,typename internal::traits<Derived>::Scalar,
typename NumTraits<typename internal::traits<Derived>::Scalar>::Real>::operator*;
using internal::special_scalar_op_base<Derived,typename internal::traits<Derived>::Scalar,
typename NumTraits<typename internal::traits<Derived>::Scalar>::Real>::operator/;
/** Inner iterator type to iterate over the coefficients of a row or column.
* \sa class InnerIterator
*/
typedef Eigen::InnerIterator<Derived> InnerIterator;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
/**
* \brief The type used to store indices
* \details This typedef is relevant for types that store multiple indices such as
* PermutationMatrix or Transpositions, otherwise it defaults to Eigen::Index
* \sa \ref TopicPreprocessorDirectives, Eigen::Index, SparseMatrixBase.
*/
typedef typename internal::traits<Derived>::StorageIndex StorageIndex;
/** The numeric type of the expression' coefficients, e.g. float, double, int or std::complex<float>, etc. */
typedef typename internal::traits<Derived>::Scalar Scalar;
/** The numeric type of the expression' coefficients, e.g. float, double, int or std::complex<float>, etc.
*
* It is an alias for the Scalar type */
typedef Scalar value_type;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef internal::special_scalar_op_base<Derived,typename internal::traits<Derived>::Scalar,
typename NumTraits<typename internal::traits<Derived>::Scalar>::Real> Base;
using Base::derived;
using Base::const_cast_derived;
using Base::rows;
using Base::cols;
using Base::size;
using Base::rowIndexByOuterInner;
using Base::colIndexByOuterInner;
using Base::coeff;
using Base::coeffByOuterInner;
using Base::operator();
using Base::operator[];
using Base::x;
using Base::y;
using Base::z;
using Base::w;
using Base::stride;
using Base::innerStride;
using Base::outerStride;
using Base::rowStride;
using Base::colStride;
typedef typename Base::CoeffReturnType CoeffReturnType;
enum {
RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
/**< The number of rows at compile-time. This is just a copy of the value provided
* by the \a Derived type. If a value is not known at compile-time,
* it is set to the \a Dynamic constant.
* \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */
ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
/**< The number of columns at compile-time. This is just a copy of the value provided
* by the \a Derived type. If a value is not known at compile-time,
* it is set to the \a Dynamic constant.
* \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */
SizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::RowsAtCompileTime,
internal::traits<Derived>::ColsAtCompileTime>::ret),
/**< This is equal to the number of coefficients, i.e. the number of
* rows times the number of columns, or to \a Dynamic if this is not
* known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */
MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime,
/**< This value is equal to the maximum possible number of rows that this expression
* might have. If this expression might have an arbitrarily high number of rows,
* this value is set to \a Dynamic.
*
* This value is useful to know when evaluating an expression, in order to determine
* whether it is possible to avoid doing a dynamic memory allocation.
*
* \sa RowsAtCompileTime, MaxColsAtCompileTime, MaxSizeAtCompileTime
*/
MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime,
/**< This value is equal to the maximum possible number of columns that this expression
* might have. If this expression might have an arbitrarily high number of columns,
* this value is set to \a Dynamic.
*
* This value is useful to know when evaluating an expression, in order to determine
* whether it is possible to avoid doing a dynamic memory allocation.
*
* \sa ColsAtCompileTime, MaxRowsAtCompileTime, MaxSizeAtCompileTime
*/
MaxSizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::MaxRowsAtCompileTime,
internal::traits<Derived>::MaxColsAtCompileTime>::ret),
/**< This value is equal to the maximum possible number of coefficients that this expression
* might have. If this expression might have an arbitrarily high number of coefficients,
* this value is set to \a Dynamic.
*
* This value is useful to know when evaluating an expression, in order to determine
* whether it is possible to avoid doing a dynamic memory allocation.
*
* \sa SizeAtCompileTime, MaxRowsAtCompileTime, MaxColsAtCompileTime
*/
IsVectorAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime == 1
|| internal::traits<Derived>::MaxColsAtCompileTime == 1,
/**< This is set to true if either the number of rows or the number of
* columns is known at compile-time to be equal to 1. Indeed, in that case,
* we are dealing with a column-vector (if there is only one column) or with
* a row-vector (if there is only one row). */
Flags = internal::traits<Derived>::Flags,
/**< This stores expression \ref flags flags which may or may not be inherited by new expressions
* constructed from this one. See the \ref flags "list of flags".
*/
IsRowMajor = int(Flags) & RowMajorBit, /**< True if this expression has row-major storage order. */
InnerSizeAtCompileTime = int(IsVectorAtCompileTime) ? int(SizeAtCompileTime)
: int(IsRowMajor) ? int(ColsAtCompileTime) : int(RowsAtCompileTime),
InnerStrideAtCompileTime = internal::inner_stride_at_compile_time<Derived>::ret,
OuterStrideAtCompileTime = internal::outer_stride_at_compile_time<Derived>::ret
};
typedef typename internal::find_best_packet<Scalar,SizeAtCompileTime>::type PacketScalar;
enum { IsPlainObjectBase = 0 };
/** The plain matrix type corresponding to this expression.
* \sa PlainObject */
typedef Matrix<typename internal::traits<Derived>::Scalar,
internal::traits<Derived>::RowsAtCompileTime,
internal::traits<Derived>::ColsAtCompileTime,
AutoAlign | (internal::traits<Derived>::Flags&RowMajorBit ? RowMajor : ColMajor),
internal::traits<Derived>::MaxRowsAtCompileTime,
internal::traits<Derived>::MaxColsAtCompileTime
> PlainMatrix;
/** The plain array type corresponding to this expression.
* \sa PlainObject */
typedef Array<typename internal::traits<Derived>::Scalar,
internal::traits<Derived>::RowsAtCompileTime,
internal::traits<Derived>::ColsAtCompileTime,
AutoAlign | (internal::traits<Derived>::Flags&RowMajorBit ? RowMajor : ColMajor),
internal::traits<Derived>::MaxRowsAtCompileTime,
internal::traits<Derived>::MaxColsAtCompileTime
> PlainArray;
/** \brief The plain matrix or array type corresponding to this expression.
*
* This is not necessarily exactly the return type of eval(). In the case of plain matrices,
* the return type of eval() is a const reference to a matrix, not a matrix! It is however guaranteed
* that the return type of eval() is either PlainObject or const PlainObject&.
*/
typedef typename internal::conditional<internal::is_same<typename internal::traits<Derived>::XprKind,MatrixXpr >::value,
PlainMatrix, PlainArray>::type PlainObject;
/** \returns the number of nonzero coefficients which is in practice the number
* of stored coefficients. */
EIGEN_DEVICE_FUNC
inline Index nonZeros() const { return size(); }
/** \returns true if either the number of rows or the number of columns is equal to 1.
* In other words, this function returns
* \code rows()==1 || cols()==1 \endcode
* \sa rows(), cols(), IsVectorAtCompileTime. */
/** \returns the outer size.
*
* \note For a vector, this returns just 1. For a matrix (non-vector), this is the major dimension
* with respect to the \ref TopicStorageOrders "storage order", i.e., the number of columns for a
* column-major matrix, and the number of rows for a row-major matrix. */
EIGEN_DEVICE_FUNC
Index outerSize() const
{
return IsVectorAtCompileTime ? 1
: int(IsRowMajor) ? this->rows() : this->cols();
}
/** \returns the inner size.
*
* \note For a vector, this is just the size. For a matrix (non-vector), this is the minor dimension
* with respect to the \ref TopicStorageOrders "storage order", i.e., the number of rows for a
* column-major matrix, and the number of columns for a row-major matrix. */
EIGEN_DEVICE_FUNC
Index innerSize() const
{
return IsVectorAtCompileTime ? this->size()
: int(IsRowMajor) ? this->cols() : this->rows();
}
/** Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods are
* Matrix::resize() and Array::resize(). The present method only asserts that the new size equals the old size, and does
* nothing else.
*/
EIGEN_DEVICE_FUNC
void resize(Index newSize)
{
EIGEN_ONLY_USED_FOR_DEBUG(newSize);
eigen_assert(newSize == this->size()
&& "DenseBase::resize() does not actually allow to resize.");
}
/** Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods are
* Matrix::resize() and Array::resize(). The present method only asserts that the new size equals the old size, and does
* nothing else.
*/
EIGEN_DEVICE_FUNC
void resize(Index rows, Index cols)
{
EIGEN_ONLY_USED_FOR_DEBUG(rows);
EIGEN_ONLY_USED_FOR_DEBUG(cols);
eigen_assert(rows == this->rows() && cols == this->cols()
&& "DenseBase::resize() does not actually allow to resize.");
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** \internal Represents a matrix with all coefficients equal to one another*/
typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,PlainObject> ConstantReturnType;
/** \internal Represents a vector with linearly spaced coefficients that allows sequential access only. */
typedef CwiseNullaryOp<internal::linspaced_op<Scalar,PacketScalar,false>,PlainObject> SequentialLinSpacedReturnType;
/** \internal Represents a vector with linearly spaced coefficients that allows random access. */
typedef CwiseNullaryOp<internal::linspaced_op<Scalar,PacketScalar,true>,PlainObject> RandomAccessLinSpacedReturnType;
/** \internal the return type of MatrixBase::eigenvalues() */
typedef Matrix<typename NumTraits<typename internal::traits<Derived>::Scalar>::Real, internal::traits<Derived>::ColsAtCompileTime, 1> EigenvaluesReturnType;
#endif // not EIGEN_PARSED_BY_DOXYGEN
/** Copies \a other into *this. \returns a reference to *this. */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
Derived& operator=(const DenseBase<OtherDerived>& other);
/** Special case of the template operator=, in order to prevent the compiler
* from generating a default operator= (issue hit with g++ 4.1)
*/
EIGEN_DEVICE_FUNC
Derived& operator=(const DenseBase& other);
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
Derived& operator=(const EigenBase<OtherDerived> &other);
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
Derived& operator+=(const EigenBase<OtherDerived> &other);
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
Derived& operator-=(const EigenBase<OtherDerived> &other);
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
Derived& operator=(const ReturnByValue<OtherDerived>& func);
/** \ínternal
* Copies \a other into *this without evaluating other. \returns a reference to *this.
* \deprecated */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
Derived& lazyAssign(const DenseBase<OtherDerived>& other);
EIGEN_DEVICE_FUNC
CommaInitializer<Derived> operator<< (const Scalar& s);
/** \deprecated it now returns \c *this */
template<unsigned int Added,unsigned int Removed>
EIGEN_DEPRECATED
const Derived& flagged() const
{ return derived(); }
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
CommaInitializer<Derived> operator<< (const DenseBase<OtherDerived>& other);
typedef Transpose<Derived> TransposeReturnType;
EIGEN_DEVICE_FUNC
TransposeReturnType transpose();
typedef typename internal::add_const<Transpose<const Derived> >::type ConstTransposeReturnType;
EIGEN_DEVICE_FUNC
ConstTransposeReturnType transpose() const;
EIGEN_DEVICE_FUNC
void transposeInPlace();
EIGEN_DEVICE_FUNC static const ConstantReturnType
Constant(Index rows, Index cols, const Scalar& value);
EIGEN_DEVICE_FUNC static const ConstantReturnType
Constant(Index size, const Scalar& value);
EIGEN_DEVICE_FUNC static const ConstantReturnType
Constant(const Scalar& value);
EIGEN_DEVICE_FUNC static const SequentialLinSpacedReturnType
LinSpaced(Sequential_t, Index size, const Scalar& low, const Scalar& high);
EIGEN_DEVICE_FUNC static const RandomAccessLinSpacedReturnType
LinSpaced(Index size, const Scalar& low, const Scalar& high);
EIGEN_DEVICE_FUNC static const SequentialLinSpacedReturnType
LinSpaced(Sequential_t, const Scalar& low, const Scalar& high);
EIGEN_DEVICE_FUNC static const RandomAccessLinSpacedReturnType
LinSpaced(const Scalar& low, const Scalar& high);
template<typename CustomNullaryOp> EIGEN_DEVICE_FUNC
static const CwiseNullaryOp<CustomNullaryOp, PlainObject>
NullaryExpr(Index rows, Index cols, const CustomNullaryOp& func);
template<typename CustomNullaryOp> EIGEN_DEVICE_FUNC
static const CwiseNullaryOp<CustomNullaryOp, PlainObject>
NullaryExpr(Index size, const CustomNullaryOp& func);
template<typename CustomNullaryOp> EIGEN_DEVICE_FUNC
static const CwiseNullaryOp<CustomNullaryOp, PlainObject>
NullaryExpr(const CustomNullaryOp& func);
EIGEN_DEVICE_FUNC static const ConstantReturnType Zero(Index rows, Index cols);
EIGEN_DEVICE_FUNC static const ConstantReturnType Zero(Index size);
EIGEN_DEVICE_FUNC static const ConstantReturnType Zero();
EIGEN_DEVICE_FUNC static const ConstantReturnType Ones(Index rows, Index cols);
EIGEN_DEVICE_FUNC static const ConstantReturnType Ones(Index size);
EIGEN_DEVICE_FUNC static const ConstantReturnType Ones();
EIGEN_DEVICE_FUNC void fill(const Scalar& value);
EIGEN_DEVICE_FUNC Derived& setConstant(const Scalar& value);
EIGEN_DEVICE_FUNC Derived& setLinSpaced(Index size, const Scalar& low, const Scalar& high);
EIGEN_DEVICE_FUNC Derived& setLinSpaced(const Scalar& low, const Scalar& high);
EIGEN_DEVICE_FUNC Derived& setZero();
EIGEN_DEVICE_FUNC Derived& setOnes();
EIGEN_DEVICE_FUNC Derived& setRandom();
template<typename OtherDerived> EIGEN_DEVICE_FUNC
bool isApprox(const DenseBase<OtherDerived>& other,
const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
EIGEN_DEVICE_FUNC
bool isMuchSmallerThan(const RealScalar& other,
const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
template<typename OtherDerived> EIGEN_DEVICE_FUNC
bool isMuchSmallerThan(const DenseBase<OtherDerived>& other,
const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
EIGEN_DEVICE_FUNC bool isApproxToConstant(const Scalar& value, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
EIGEN_DEVICE_FUNC bool isConstant(const Scalar& value, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
EIGEN_DEVICE_FUNC bool isZero(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
EIGEN_DEVICE_FUNC bool isOnes(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
inline bool hasNaN() const;
inline bool allFinite() const;
EIGEN_DEVICE_FUNC
inline Derived& operator*=(const Scalar& other);
EIGEN_DEVICE_FUNC
inline Derived& operator/=(const Scalar& other);
typedef typename internal::add_const_on_value_type<typename internal::eval<Derived>::type>::type EvalReturnType;
/** \returns the matrix or vector obtained by evaluating this expression.
*
* Notice that in the case of a plain matrix or vector (not an expression) this function just returns
* a const reference, in order to avoid a useless copy.
*
* \warning Be carefull with eval() and the auto C++ keyword, as detailed in this \link TopicPitfalls_auto_keyword page \endlink.
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE EvalReturnType eval() const
{
// Even though MSVC does not honor strong inlining when the return type
// is a dynamic matrix, we desperately need strong inlining for fixed
// size types on MSVC.
return typename internal::eval<Derived>::type(derived());
}
/** swaps *this with the expression \a other.
*
*/
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
void swap(const DenseBase<OtherDerived>& other)
{
EIGEN_STATIC_ASSERT(!OtherDerived::IsPlainObjectBase,THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY);
eigen_assert(rows()==other.rows() && cols()==other.cols());
call_assignment(derived(), other.const_cast_derived(), internal::swap_assign_op<Scalar>());
}
/** swaps *this with the matrix or array \a other.
*
*/
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
void swap(PlainObjectBase<OtherDerived>& other)
{
eigen_assert(rows()==other.rows() && cols()==other.cols());
call_assignment(derived(), other.derived(), internal::swap_assign_op<Scalar>());
}
EIGEN_DEVICE_FUNC inline const NestByValue<Derived> nestByValue() const;
EIGEN_DEVICE_FUNC inline const ForceAlignedAccess<Derived> forceAlignedAccess() const;
EIGEN_DEVICE_FUNC inline ForceAlignedAccess<Derived> forceAlignedAccess();
template<bool Enable> EIGEN_DEVICE_FUNC
inline const typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type forceAlignedAccessIf() const;
template<bool Enable> EIGEN_DEVICE_FUNC
inline typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type forceAlignedAccessIf();
EIGEN_DEVICE_FUNC Scalar sum() const;
EIGEN_DEVICE_FUNC Scalar mean() const;
EIGEN_DEVICE_FUNC Scalar trace() const;
EIGEN_DEVICE_FUNC Scalar prod() const;
EIGEN_DEVICE_FUNC typename internal::traits<Derived>::Scalar minCoeff() const;
EIGEN_DEVICE_FUNC typename internal::traits<Derived>::Scalar maxCoeff() const;
template<typename IndexType> EIGEN_DEVICE_FUNC
typename internal::traits<Derived>::Scalar minCoeff(IndexType* row, IndexType* col) const;
template<typename IndexType> EIGEN_DEVICE_FUNC
typename internal::traits<Derived>::Scalar maxCoeff(IndexType* row, IndexType* col) const;
template<typename IndexType> EIGEN_DEVICE_FUNC
typename internal::traits<Derived>::Scalar minCoeff(IndexType* index) const;
template<typename IndexType> EIGEN_DEVICE_FUNC
typename internal::traits<Derived>::Scalar maxCoeff(IndexType* index) const;
template<typename BinaryOp>
EIGEN_DEVICE_FUNC
Scalar redux(const BinaryOp& func) const;
template<typename Visitor>
EIGEN_DEVICE_FUNC
void visit(Visitor& func) const;
inline const WithFormat<Derived> format(const IOFormat& fmt) const;
/** \returns the unique coefficient of a 1x1 expression */
EIGEN_DEVICE_FUNC
CoeffReturnType value() const
{
EIGEN_STATIC_ASSERT_SIZE_1x1(Derived)
eigen_assert(this->rows() == 1 && this->cols() == 1);
return derived().coeff(0,0);
}
bool all() const;
bool any() const;
Index count() const;
typedef VectorwiseOp<Derived, Horizontal> RowwiseReturnType;
typedef const VectorwiseOp<const Derived, Horizontal> ConstRowwiseReturnType;
typedef VectorwiseOp<Derived, Vertical> ColwiseReturnType;
typedef const VectorwiseOp<const Derived, Vertical> ConstColwiseReturnType;
/** \returns a VectorwiseOp wrapper of *this providing additional partial reduction operations
*
* Example: \include MatrixBase_rowwise.cpp
* Output: \verbinclude MatrixBase_rowwise.out
*
* \sa colwise(), class VectorwiseOp, \ref TutorialReductionsVisitorsBroadcasting
*/
//Code moved here due to a CUDA compiler bug
EIGEN_DEVICE_FUNC inline ConstRowwiseReturnType rowwise() const {
return ConstRowwiseReturnType(derived());
}
EIGEN_DEVICE_FUNC RowwiseReturnType rowwise();
/** \returns a VectorwiseOp wrapper of *this providing additional partial reduction operations
*
* Example: \include MatrixBase_colwise.cpp
* Output: \verbinclude MatrixBase_colwise.out
*
* \sa rowwise(), class VectorwiseOp, \ref TutorialReductionsVisitorsBroadcasting
*/
EIGEN_DEVICE_FUNC inline ConstColwiseReturnType colwise() const {
return ConstColwiseReturnType(derived());
}
EIGEN_DEVICE_FUNC ColwiseReturnType colwise();
typedef CwiseNullaryOp<internal::scalar_random_op<Scalar>,PlainObject> RandomReturnType;
static const RandomReturnType Random(Index rows, Index cols);
static const RandomReturnType Random(Index size);
static const RandomReturnType Random();
template<typename ThenDerived,typename ElseDerived>
const Select<Derived,ThenDerived,ElseDerived>
select(const DenseBase<ThenDerived>& thenMatrix,
const DenseBase<ElseDerived>& elseMatrix) const;
template<typename ThenDerived>
inline const Select<Derived,ThenDerived, typename ThenDerived::ConstantReturnType>
select(const DenseBase<ThenDerived>& thenMatrix, const typename ThenDerived::Scalar& elseScalar) const;
template<typename ElseDerived>
inline const Select<Derived, typename ElseDerived::ConstantReturnType, ElseDerived >
select(const typename ElseDerived::Scalar& thenScalar, const DenseBase<ElseDerived>& elseMatrix) const;
template<int p> RealScalar lpNorm() const;
template<int RowFactor, int ColFactor>
EIGEN_DEVICE_FUNC
const Replicate<Derived,RowFactor,ColFactor> replicate() const;
/**
* \return an expression of the replication of \c *this
*
* Example: \include MatrixBase_replicate_int_int.cpp
* Output: \verbinclude MatrixBase_replicate_int_int.out
*
* \sa VectorwiseOp::replicate(), DenseBase::replicate<int,int>(), class Replicate
*/
//Code moved here due to a CUDA compiler bug
EIGEN_DEVICE_FUNC
const Replicate<Derived, Dynamic, Dynamic> replicate(Index rowFactor, Index colFactor) const
{
return Replicate<Derived, Dynamic, Dynamic>(derived(), rowFactor, colFactor);
}
typedef Reverse<Derived, BothDirections> ReverseReturnType;
typedef const Reverse<const Derived, BothDirections> ConstReverseReturnType;
EIGEN_DEVICE_FUNC ReverseReturnType reverse();
/** This is the const version of reverse(). */
//Code moved here due to a CUDA compiler bug
EIGEN_DEVICE_FUNC ConstReverseReturnType reverse() const
{
return ConstReverseReturnType(derived());
}
EIGEN_DEVICE_FUNC void reverseInPlace();
#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::DenseBase
# include "../plugins/BlockMethods.h"
# ifdef EIGEN_DENSEBASE_PLUGIN
# include EIGEN_DENSEBASE_PLUGIN
# endif
#undef EIGEN_CURRENT_STORAGE_BASE_CLASS
// disable the use of evalTo for dense objects with a nice compilation error
template<typename Dest>
EIGEN_DEVICE_FUNC
inline void evalTo(Dest& ) const
{
EIGEN_STATIC_ASSERT((internal::is_same<Dest,void>::value),THE_EVAL_EVALTO_FUNCTION_SHOULD_NEVER_BE_CALLED_FOR_DENSE_OBJECTS);
}
protected:
/** Default constructor. Do nothing. */
EIGEN_DEVICE_FUNC DenseBase()
{
/* Just checks for self-consistency of the flags.
* Only do it when debugging Eigen, as this borders on paranoiac and could slow compilation down
*/
#ifdef EIGEN_INTERNAL_DEBUGGING
EIGEN_STATIC_ASSERT((EIGEN_IMPLIES(MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1, int(IsRowMajor))
&& EIGEN_IMPLIES(MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1, int(!IsRowMajor))),
INVALID_STORAGE_ORDER_FOR_THIS_VECTOR_EXPRESSION)
#endif
}
private:
EIGEN_DEVICE_FUNC explicit DenseBase(int);
EIGEN_DEVICE_FUNC DenseBase(int,int);
template<typename OtherDerived> EIGEN_DEVICE_FUNC explicit DenseBase(const DenseBase<OtherDerived>&);
};
} // end namespace Eigen
#endif // EIGEN_DENSEBASE_H

View File

@ -0,0 +1,651 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_DENSECOEFFSBASE_H
#define EIGEN_DENSECOEFFSBASE_H
namespace Eigen {
namespace internal {
template<typename T> struct add_const_on_value_type_if_arithmetic
{
typedef typename conditional<is_arithmetic<T>::value, T, typename add_const_on_value_type<T>::type>::type type;
};
}
/** \brief Base class providing read-only coefficient access to matrices and arrays.
* \ingroup Core_Module
* \tparam Derived Type of the derived class
* \tparam #ReadOnlyAccessors Constant indicating read-only access
*
* This class defines the \c operator() \c const function and friends, which can be used to read specific
* entries of a matrix or array.
*
* \sa DenseCoeffsBase<Derived, WriteAccessors>, DenseCoeffsBase<Derived, DirectAccessors>,
* \ref TopicClassHierarchy
*/
template<typename Derived>
class DenseCoeffsBase<Derived,ReadOnlyAccessors> : public EigenBase<Derived>
{
public:
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
// Explanation for this CoeffReturnType typedef.
// - This is the return type of the coeff() method.
// - The LvalueBit means exactly that we can offer a coeffRef() method, which means exactly that we can get references
// to coeffs, which means exactly that we can have coeff() return a const reference (as opposed to returning a value).
// - The is_artihmetic check is required since "const int", "const double", etc. will cause warnings on some systems
// while the declaration of "const T", where T is a non arithmetic type does not. Always returning "const Scalar&" is
// not possible, since the underlying expressions might not offer a valid address the reference could be referring to.
typedef typename internal::conditional<bool(internal::traits<Derived>::Flags&LvalueBit),
const Scalar&,
typename internal::conditional<internal::is_arithmetic<Scalar>::value, Scalar, const Scalar>::type
>::type CoeffReturnType;
typedef typename internal::add_const_on_value_type_if_arithmetic<
typename internal::packet_traits<Scalar>::type
>::type PacketReturnType;
typedef EigenBase<Derived> Base;
using Base::rows;
using Base::cols;
using Base::size;
using Base::derived;
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index rowIndexByOuterInner(Index outer, Index inner) const
{
return int(Derived::RowsAtCompileTime) == 1 ? 0
: int(Derived::ColsAtCompileTime) == 1 ? inner
: int(Derived::Flags)&RowMajorBit ? outer
: inner;
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index colIndexByOuterInner(Index outer, Index inner) const
{
return int(Derived::ColsAtCompileTime) == 1 ? 0
: int(Derived::RowsAtCompileTime) == 1 ? inner
: int(Derived::Flags)&RowMajorBit ? inner
: outer;
}
/** Short version: don't use this function, use
* \link operator()(Index,Index) const \endlink instead.
*
* Long version: this function is similar to
* \link operator()(Index,Index) const \endlink, but without the assertion.
* Use this for limiting the performance cost of debugging code when doing
* repeated coefficient access. Only use this when it is guaranteed that the
* parameters \a row and \a col are in range.
*
* If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
* function equivalent to \link operator()(Index,Index) const \endlink.
*
* \sa operator()(Index,Index) const, coeffRef(Index,Index), coeff(Index) const
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE CoeffReturnType coeff(Index row, Index col) const
{
eigen_internal_assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
return internal::evaluator<Derived>(derived()).coeff(row,col);
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE CoeffReturnType coeffByOuterInner(Index outer, Index inner) const
{
return coeff(rowIndexByOuterInner(outer, inner),
colIndexByOuterInner(outer, inner));
}
/** \returns the coefficient at given the given row and column.
*
* \sa operator()(Index,Index), operator[](Index)
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE CoeffReturnType operator()(Index row, Index col) const
{
eigen_assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
return coeff(row, col);
}
/** Short version: don't use this function, use
* \link operator[](Index) const \endlink instead.
*
* Long version: this function is similar to
* \link operator[](Index) const \endlink, but without the assertion.
* Use this for limiting the performance cost of debugging code when doing
* repeated coefficient access. Only use this when it is guaranteed that the
* parameter \a index is in range.
*
* If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
* function equivalent to \link operator[](Index) const \endlink.
*
* \sa operator[](Index) const, coeffRef(Index), coeff(Index,Index) const
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE CoeffReturnType
coeff(Index index) const
{
eigen_internal_assert(index >= 0 && index < size());
return internal::evaluator<Derived>(derived()).coeff(index);
}
/** \returns the coefficient at given index.
*
* This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
*
* \sa operator[](Index), operator()(Index,Index) const, x() const, y() const,
* z() const, w() const
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE CoeffReturnType
operator[](Index index) const
{
EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime,
THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD)
eigen_assert(index >= 0 && index < size());
return coeff(index);
}
/** \returns the coefficient at given index.
*
* This is synonymous to operator[](Index) const.
*
* This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
*
* \sa operator[](Index), operator()(Index,Index) const, x() const, y() const,
* z() const, w() const
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE CoeffReturnType
operator()(Index index) const
{
eigen_assert(index >= 0 && index < size());
return coeff(index);
}
/** equivalent to operator[](0). */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE CoeffReturnType
x() const { return (*this)[0]; }
/** equivalent to operator[](1). */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE CoeffReturnType
y() const { return (*this)[1]; }
/** equivalent to operator[](2). */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE CoeffReturnType
z() const { return (*this)[2]; }
/** equivalent to operator[](3). */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE CoeffReturnType
w() const { return (*this)[3]; }
/** \internal
* \returns the packet of coefficients starting at the given row and column. It is your responsibility
* to ensure that a packet really starts there. This method is only available on expressions having the
* PacketAccessBit.
*
* The \a LoadMode parameter may have the value \a #Aligned or \a #Unaligned. Its effect is to select
* the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
* starting at an address which is a multiple of the packet size.
*/
template<int LoadMode>
EIGEN_STRONG_INLINE PacketReturnType packet(Index row, Index col) const
{
typedef typename internal::packet_traits<Scalar>::type DefaultPacketType;
eigen_internal_assert(row >= 0 && row < rows() && col >= 0 && col < cols());
return internal::evaluator<Derived>(derived()).template packet<LoadMode,DefaultPacketType>(row,col);
}
/** \internal */
template<int LoadMode>
EIGEN_STRONG_INLINE PacketReturnType packetByOuterInner(Index outer, Index inner) const
{
return packet<LoadMode>(rowIndexByOuterInner(outer, inner),
colIndexByOuterInner(outer, inner));
}
/** \internal
* \returns the packet of coefficients starting at the given index. It is your responsibility
* to ensure that a packet really starts there. This method is only available on expressions having the
* PacketAccessBit and the LinearAccessBit.
*
* The \a LoadMode parameter may have the value \a #Aligned or \a #Unaligned. Its effect is to select
* the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets
* starting at an address which is a multiple of the packet size.
*/
template<int LoadMode>
EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
{
typedef typename internal::packet_traits<Scalar>::type DefaultPacketType;
eigen_internal_assert(index >= 0 && index < size());
return internal::evaluator<Derived>(derived()).template packet<LoadMode,DefaultPacketType>(index);
}
protected:
// explanation: DenseBase is doing "using ..." on the methods from DenseCoeffsBase.
// But some methods are only available in the DirectAccess case.
// So we add dummy methods here with these names, so that "using... " doesn't fail.
// It's not private so that the child class DenseBase can access them, and it's not public
// either since it's an implementation detail, so has to be protected.
void coeffRef();
void coeffRefByOuterInner();
void writePacket();
void writePacketByOuterInner();
void copyCoeff();
void copyCoeffByOuterInner();
void copyPacket();
void copyPacketByOuterInner();
void stride();
void innerStride();
void outerStride();
void rowStride();
void colStride();
};
/** \brief Base class providing read/write coefficient access to matrices and arrays.
* \ingroup Core_Module
* \tparam Derived Type of the derived class
* \tparam #WriteAccessors Constant indicating read/write access
*
* This class defines the non-const \c operator() function and friends, which can be used to write specific
* entries of a matrix or array. This class inherits DenseCoeffsBase<Derived, ReadOnlyAccessors> which
* defines the const variant for reading specific entries.
*
* \sa DenseCoeffsBase<Derived, DirectAccessors>, \ref TopicClassHierarchy
*/
template<typename Derived>
class DenseCoeffsBase<Derived, WriteAccessors> : public DenseCoeffsBase<Derived, ReadOnlyAccessors>
{
public:
typedef DenseCoeffsBase<Derived, ReadOnlyAccessors> Base;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
using Base::coeff;
using Base::rows;
using Base::cols;
using Base::size;
using Base::derived;
using Base::rowIndexByOuterInner;
using Base::colIndexByOuterInner;
using Base::operator[];
using Base::operator();
using Base::x;
using Base::y;
using Base::z;
using Base::w;
/** Short version: don't use this function, use
* \link operator()(Index,Index) \endlink instead.
*
* Long version: this function is similar to
* \link operator()(Index,Index) \endlink, but without the assertion.
* Use this for limiting the performance cost of debugging code when doing
* repeated coefficient access. Only use this when it is guaranteed that the
* parameters \a row and \a col are in range.
*
* If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
* function equivalent to \link operator()(Index,Index) \endlink.
*
* \sa operator()(Index,Index), coeff(Index, Index) const, coeffRef(Index)
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar& coeffRef(Index row, Index col)
{
eigen_internal_assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
return internal::evaluator<Derived>(derived()).coeffRef(row,col);
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar&
coeffRefByOuterInner(Index outer, Index inner)
{
return coeffRef(rowIndexByOuterInner(outer, inner),
colIndexByOuterInner(outer, inner));
}
/** \returns a reference to the coefficient at given the given row and column.
*
* \sa operator[](Index)
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar&
operator()(Index row, Index col)
{
eigen_assert(row >= 0 && row < rows()
&& col >= 0 && col < cols());
return coeffRef(row, col);
}
/** Short version: don't use this function, use
* \link operator[](Index) \endlink instead.
*
* Long version: this function is similar to
* \link operator[](Index) \endlink, but without the assertion.
* Use this for limiting the performance cost of debugging code when doing
* repeated coefficient access. Only use this when it is guaranteed that the
* parameters \a row and \a col are in range.
*
* If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this
* function equivalent to \link operator[](Index) \endlink.
*
* \sa operator[](Index), coeff(Index) const, coeffRef(Index,Index)
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar&
coeffRef(Index index)
{
eigen_internal_assert(index >= 0 && index < size());
return internal::evaluator<Derived>(derived()).coeffRef(index);
}
/** \returns a reference to the coefficient at given index.
*
* This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
*
* \sa operator[](Index) const, operator()(Index,Index), x(), y(), z(), w()
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar&
operator[](Index index)
{
EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime,
THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD)
eigen_assert(index >= 0 && index < size());
return coeffRef(index);
}
/** \returns a reference to the coefficient at given index.
*
* This is synonymous to operator[](Index).
*
* This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit.
*
* \sa operator[](Index) const, operator()(Index,Index), x(), y(), z(), w()
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar&
operator()(Index index)
{
eigen_assert(index >= 0 && index < size());
return coeffRef(index);
}
/** equivalent to operator[](0). */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar&
x() { return (*this)[0]; }
/** equivalent to operator[](1). */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar&
y() { return (*this)[1]; }
/** equivalent to operator[](2). */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar&
z() { return (*this)[2]; }
/** equivalent to operator[](3). */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar&
w() { return (*this)[3]; }
};
/** \brief Base class providing direct read-only coefficient access to matrices and arrays.
* \ingroup Core_Module
* \tparam Derived Type of the derived class
* \tparam #DirectAccessors Constant indicating direct access
*
* This class defines functions to work with strides which can be used to access entries directly. This class
* inherits DenseCoeffsBase<Derived, ReadOnlyAccessors> which defines functions to access entries read-only using
* \c operator() .
*
* \sa \ref TopicClassHierarchy
*/
template<typename Derived>
class DenseCoeffsBase<Derived, DirectAccessors> : public DenseCoeffsBase<Derived, ReadOnlyAccessors>
{
public:
typedef DenseCoeffsBase<Derived, ReadOnlyAccessors> Base;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
using Base::rows;
using Base::cols;
using Base::size;
using Base::derived;
/** \returns the pointer increment between two consecutive elements within a slice in the inner direction.
*
* \sa outerStride(), rowStride(), colStride()
*/
EIGEN_DEVICE_FUNC
inline Index innerStride() const
{
return derived().innerStride();
}
/** \returns the pointer increment between two consecutive inner slices (for example, between two consecutive columns
* in a column-major matrix).
*
* \sa innerStride(), rowStride(), colStride()
*/
EIGEN_DEVICE_FUNC
inline Index outerStride() const
{
return derived().outerStride();
}
// FIXME shall we remove it ?
inline Index stride() const
{
return Derived::IsVectorAtCompileTime ? innerStride() : outerStride();
}
/** \returns the pointer increment between two consecutive rows.
*
* \sa innerStride(), outerStride(), colStride()
*/
EIGEN_DEVICE_FUNC
inline Index rowStride() const
{
return Derived::IsRowMajor ? outerStride() : innerStride();
}
/** \returns the pointer increment between two consecutive columns.
*
* \sa innerStride(), outerStride(), rowStride()
*/
EIGEN_DEVICE_FUNC
inline Index colStride() const
{
return Derived::IsRowMajor ? innerStride() : outerStride();
}
};
/** \brief Base class providing direct read/write coefficient access to matrices and arrays.
* \ingroup Core_Module
* \tparam Derived Type of the derived class
* \tparam #DirectWriteAccessors Constant indicating direct access
*
* This class defines functions to work with strides which can be used to access entries directly. This class
* inherits DenseCoeffsBase<Derived, WriteAccessors> which defines functions to access entries read/write using
* \c operator().
*
* \sa \ref TopicClassHierarchy
*/
template<typename Derived>
class DenseCoeffsBase<Derived, DirectWriteAccessors>
: public DenseCoeffsBase<Derived, WriteAccessors>
{
public:
typedef DenseCoeffsBase<Derived, WriteAccessors> Base;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
using Base::rows;
using Base::cols;
using Base::size;
using Base::derived;
/** \returns the pointer increment between two consecutive elements within a slice in the inner direction.
*
* \sa outerStride(), rowStride(), colStride()
*/
EIGEN_DEVICE_FUNC
inline Index innerStride() const
{
return derived().innerStride();
}
/** \returns the pointer increment between two consecutive inner slices (for example, between two consecutive columns
* in a column-major matrix).
*
* \sa innerStride(), rowStride(), colStride()
*/
EIGEN_DEVICE_FUNC
inline Index outerStride() const
{
return derived().outerStride();
}
// FIXME shall we remove it ?
inline Index stride() const
{
return Derived::IsVectorAtCompileTime ? innerStride() : outerStride();
}
/** \returns the pointer increment between two consecutive rows.
*
* \sa innerStride(), outerStride(), colStride()
*/
EIGEN_DEVICE_FUNC
inline Index rowStride() const
{
return Derived::IsRowMajor ? outerStride() : innerStride();
}
/** \returns the pointer increment between two consecutive columns.
*
* \sa innerStride(), outerStride(), rowStride()
*/
EIGEN_DEVICE_FUNC
inline Index colStride() const
{
return Derived::IsRowMajor ? innerStride() : outerStride();
}
};
namespace internal {
template<int Alignment, typename Derived, bool JustReturnZero>
struct first_aligned_impl
{
static inline Index run(const Derived&)
{ return 0; }
};
template<int Alignment, typename Derived>
struct first_aligned_impl<Alignment, Derived, false>
{
static inline Index run(const Derived& m)
{
return internal::first_aligned<Alignment>(&m.const_cast_derived().coeffRef(0,0), m.size());
}
};
/** \internal \returns the index of the first element of the array stored by \a m that is properly aligned with respect to \a Alignment for vectorization.
*
* \tparam Alignment requested alignment in Bytes.
*
* There is also the variant first_aligned(const Scalar*, Integer) defined in Memory.h. See it for more
* documentation.
*/
template<int Alignment, typename Derived>
static inline Index first_aligned(const DenseBase<Derived>& m)
{
enum { ReturnZero = (int(evaluator<Derived>::Alignment) >= Alignment) || !(Derived::Flags & DirectAccessBit) };
return first_aligned_impl<Alignment, Derived, ReturnZero>::run(m.derived());
}
template<typename Derived>
static inline Index first_default_aligned(const DenseBase<Derived>& m)
{
typedef typename Derived::Scalar Scalar;
typedef typename packet_traits<Scalar>::type DefaultPacketType;
return first_aligned<unpacket_traits<DefaultPacketType>::alignment>(m);
}
template<typename Derived, bool HasDirectAccess = has_direct_access<Derived>::ret>
struct inner_stride_at_compile_time
{
enum { ret = traits<Derived>::InnerStrideAtCompileTime };
};
template<typename Derived>
struct inner_stride_at_compile_time<Derived, false>
{
enum { ret = 0 };
};
template<typename Derived, bool HasDirectAccess = has_direct_access<Derived>::ret>
struct outer_stride_at_compile_time
{
enum { ret = traits<Derived>::OuterStrideAtCompileTime };
};
template<typename Derived>
struct outer_stride_at_compile_time<Derived, false>
{
enum { ret = 0 };
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_DENSECOEFFSBASE_H

View File

@ -0,0 +1,563 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2010-2013 Hauke Heibel <hauke.heibel@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MATRIXSTORAGE_H
#define EIGEN_MATRIXSTORAGE_H
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#define EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN EIGEN_DENSE_STORAGE_CTOR_PLUGIN;
#else
#define EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN
#endif
namespace Eigen {
namespace internal {
struct constructor_without_unaligned_array_assert {};
template<typename T, int Size>
EIGEN_DEVICE_FUNC
void check_static_allocation_size()
{
// if EIGEN_STACK_ALLOCATION_LIMIT is defined to 0, then no limit
#if EIGEN_STACK_ALLOCATION_LIMIT
EIGEN_STATIC_ASSERT(Size * sizeof(T) <= EIGEN_STACK_ALLOCATION_LIMIT, OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG);
#endif
}
/** \internal
* Static array. If the MatrixOrArrayOptions require auto-alignment, the array will be automatically aligned:
* to 16 bytes boundary if the total size is a multiple of 16 bytes.
*/
template <typename T, int Size, int MatrixOrArrayOptions,
int Alignment = (MatrixOrArrayOptions&DontAlign) ? 0
: compute_default_alignment<T,Size>::value >
struct plain_array
{
T array[Size];
EIGEN_DEVICE_FUNC
plain_array()
{
check_static_allocation_size<T,Size>();
}
EIGEN_DEVICE_FUNC
plain_array(constructor_without_unaligned_array_assert)
{
check_static_allocation_size<T,Size>();
}
};
#if defined(EIGEN_DISABLE_UNALIGNED_ARRAY_ASSERT)
#define EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(sizemask)
#elif EIGEN_GNUC_AT_LEAST(4,7)
// GCC 4.7 is too aggressive in its optimizations and remove the alignement test based on the fact the array is declared to be aligned.
// See this bug report: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=53900
// Hiding the origin of the array pointer behind a function argument seems to do the trick even if the function is inlined:
template<typename PtrType>
EIGEN_ALWAYS_INLINE PtrType eigen_unaligned_array_assert_workaround_gcc47(PtrType array) { return array; }
#define EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(sizemask) \
eigen_assert((reinterpret_cast<size_t>(eigen_unaligned_array_assert_workaround_gcc47(array)) & (sizemask)) == 0 \
&& "this assertion is explained here: " \
"http://eigen.tuxfamily.org/dox-devel/group__TopicUnalignedArrayAssert.html" \
" **** READ THIS WEB PAGE !!! ****");
#else
#define EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(sizemask) \
eigen_assert((reinterpret_cast<size_t>(array) & (sizemask)) == 0 \
&& "this assertion is explained here: " \
"http://eigen.tuxfamily.org/dox-devel/group__TopicUnalignedArrayAssert.html" \
" **** READ THIS WEB PAGE !!! ****");
#endif
template <typename T, int Size, int MatrixOrArrayOptions>
struct plain_array<T, Size, MatrixOrArrayOptions, 8>
{
EIGEN_ALIGN_TO_BOUNDARY(8) T array[Size];
EIGEN_DEVICE_FUNC
plain_array()
{
EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(7);
check_static_allocation_size<T,Size>();
}
EIGEN_DEVICE_FUNC
plain_array(constructor_without_unaligned_array_assert)
{
check_static_allocation_size<T,Size>();
}
};
template <typename T, int Size, int MatrixOrArrayOptions>
struct plain_array<T, Size, MatrixOrArrayOptions, 16>
{
EIGEN_ALIGN_TO_BOUNDARY(16) T array[Size];
EIGEN_DEVICE_FUNC
plain_array()
{
EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(15);
check_static_allocation_size<T,Size>();
}
EIGEN_DEVICE_FUNC
plain_array(constructor_without_unaligned_array_assert)
{
check_static_allocation_size<T,Size>();
}
};
template <typename T, int Size, int MatrixOrArrayOptions>
struct plain_array<T, Size, MatrixOrArrayOptions, 32>
{
EIGEN_ALIGN_TO_BOUNDARY(32) T array[Size];
EIGEN_DEVICE_FUNC
plain_array()
{
EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(31);
check_static_allocation_size<T,Size>();
}
EIGEN_DEVICE_FUNC
plain_array(constructor_without_unaligned_array_assert)
{
check_static_allocation_size<T,Size>();
}
};
template <typename T, int Size, int MatrixOrArrayOptions>
struct plain_array<T, Size, MatrixOrArrayOptions, 64>
{
EIGEN_ALIGN_TO_BOUNDARY(64) T array[Size];
EIGEN_DEVICE_FUNC
plain_array()
{
EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(63);
check_static_allocation_size<T,Size>();
}
EIGEN_DEVICE_FUNC
plain_array(constructor_without_unaligned_array_assert)
{
check_static_allocation_size<T,Size>();
}
};
template <typename T, int MatrixOrArrayOptions, int Alignment>
struct plain_array<T, 0, MatrixOrArrayOptions, Alignment>
{
T array[1];
EIGEN_DEVICE_FUNC plain_array() {}
EIGEN_DEVICE_FUNC plain_array(constructor_without_unaligned_array_assert) {}
};
} // end namespace internal
/** \internal
*
* \class DenseStorage
* \ingroup Core_Module
*
* \brief Stores the data of a matrix
*
* This class stores the data of fixed-size, dynamic-size or mixed matrices
* in a way as compact as possible.
*
* \sa Matrix
*/
template<typename T, int Size, int _Rows, int _Cols, int _Options> class DenseStorage;
// purely fixed-size matrix
template<typename T, int Size, int _Rows, int _Cols, int _Options> class DenseStorage
{
internal::plain_array<T,Size,_Options> m_data;
public:
EIGEN_DEVICE_FUNC DenseStorage() {}
EIGEN_DEVICE_FUNC
explicit DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(internal::constructor_without_unaligned_array_assert()) {}
EIGEN_DEVICE_FUNC
DenseStorage(const DenseStorage& other) : m_data(other.m_data) {}
EIGEN_DEVICE_FUNC
DenseStorage& operator=(const DenseStorage& other)
{
if (this != &other) m_data = other.m_data;
return *this;
}
EIGEN_DEVICE_FUNC DenseStorage(Index size, Index rows, Index cols) {
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN
eigen_internal_assert(size==rows*cols && rows==_Rows && cols==_Cols);
EIGEN_UNUSED_VARIABLE(size);
EIGEN_UNUSED_VARIABLE(rows);
EIGEN_UNUSED_VARIABLE(cols);
}
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) { std::swap(m_data,other.m_data); }
EIGEN_DEVICE_FUNC static Index rows(void) {return _Rows;}
EIGEN_DEVICE_FUNC static Index cols(void) {return _Cols;}
EIGEN_DEVICE_FUNC void conservativeResize(Index,Index,Index) {}
EIGEN_DEVICE_FUNC void resize(Index,Index,Index) {}
EIGEN_DEVICE_FUNC const T *data() const { return m_data.array; }
EIGEN_DEVICE_FUNC T *data() { return m_data.array; }
};
// null matrix
template<typename T, int _Rows, int _Cols, int _Options> class DenseStorage<T, 0, _Rows, _Cols, _Options>
{
public:
EIGEN_DEVICE_FUNC DenseStorage() {}
EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert) {}
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage&) {}
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage&) { return *this; }
EIGEN_DEVICE_FUNC DenseStorage(Index,Index,Index) {}
EIGEN_DEVICE_FUNC void swap(DenseStorage& ) {}
EIGEN_DEVICE_FUNC static Index rows(void) {return _Rows;}
EIGEN_DEVICE_FUNC static Index cols(void) {return _Cols;}
EIGEN_DEVICE_FUNC void conservativeResize(Index,Index,Index) {}
EIGEN_DEVICE_FUNC void resize(Index,Index,Index) {}
EIGEN_DEVICE_FUNC const T *data() const { return 0; }
EIGEN_DEVICE_FUNC T *data() { return 0; }
};
// more specializations for null matrices; these are necessary to resolve ambiguities
template<typename T, int _Options> class DenseStorage<T, 0, Dynamic, Dynamic, _Options>
: public DenseStorage<T, 0, 0, 0, _Options> { };
template<typename T, int _Rows, int _Options> class DenseStorage<T, 0, _Rows, Dynamic, _Options>
: public DenseStorage<T, 0, 0, 0, _Options> { };
template<typename T, int _Cols, int _Options> class DenseStorage<T, 0, Dynamic, _Cols, _Options>
: public DenseStorage<T, 0, 0, 0, _Options> { };
// dynamic-size matrix with fixed-size storage
template<typename T, int Size, int _Options> class DenseStorage<T, Size, Dynamic, Dynamic, _Options>
{
internal::plain_array<T,Size,_Options> m_data;
Index m_rows;
Index m_cols;
public:
EIGEN_DEVICE_FUNC DenseStorage() : m_rows(0), m_cols(0) {}
EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(internal::constructor_without_unaligned_array_assert()), m_rows(0), m_cols(0) {}
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other) : m_data(other.m_data), m_rows(other.m_rows), m_cols(other.m_cols) {}
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other)
{
if (this != &other)
{
m_data = other.m_data;
m_rows = other.m_rows;
m_cols = other.m_cols;
}
return *this;
}
EIGEN_DEVICE_FUNC DenseStorage(Index, Index rows, Index cols) : m_rows(rows), m_cols(cols) {}
EIGEN_DEVICE_FUNC void swap(DenseStorage& other)
{ std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); std::swap(m_cols,other.m_cols); }
EIGEN_DEVICE_FUNC Index rows() const {return m_rows;}
EIGEN_DEVICE_FUNC Index cols() const {return m_cols;}
EIGEN_DEVICE_FUNC void conservativeResize(Index, Index rows, Index cols) { m_rows = rows; m_cols = cols; }
EIGEN_DEVICE_FUNC void resize(Index, Index rows, Index cols) { m_rows = rows; m_cols = cols; }
EIGEN_DEVICE_FUNC const T *data() const { return m_data.array; }
EIGEN_DEVICE_FUNC T *data() { return m_data.array; }
};
// dynamic-size matrix with fixed-size storage and fixed width
template<typename T, int Size, int _Cols, int _Options> class DenseStorage<T, Size, Dynamic, _Cols, _Options>
{
internal::plain_array<T,Size,_Options> m_data;
Index m_rows;
public:
EIGEN_DEVICE_FUNC DenseStorage() : m_rows(0) {}
EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(internal::constructor_without_unaligned_array_assert()), m_rows(0) {}
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other) : m_data(other.m_data), m_rows(other.m_rows) {}
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other)
{
if (this != &other)
{
m_data = other.m_data;
m_rows = other.m_rows;
}
return *this;
}
EIGEN_DEVICE_FUNC DenseStorage(Index, Index rows, Index) : m_rows(rows) {}
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); }
EIGEN_DEVICE_FUNC Index rows(void) const {return m_rows;}
EIGEN_DEVICE_FUNC Index cols(void) const {return _Cols;}
EIGEN_DEVICE_FUNC void conservativeResize(Index, Index rows, Index) { m_rows = rows; }
EIGEN_DEVICE_FUNC void resize(Index, Index rows, Index) { m_rows = rows; }
EIGEN_DEVICE_FUNC const T *data() const { return m_data.array; }
EIGEN_DEVICE_FUNC T *data() { return m_data.array; }
};
// dynamic-size matrix with fixed-size storage and fixed height
template<typename T, int Size, int _Rows, int _Options> class DenseStorage<T, Size, _Rows, Dynamic, _Options>
{
internal::plain_array<T,Size,_Options> m_data;
Index m_cols;
public:
EIGEN_DEVICE_FUNC DenseStorage() : m_cols(0) {}
EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(internal::constructor_without_unaligned_array_assert()), m_cols(0) {}
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other) : m_data(other.m_data), m_cols(other.m_cols) {}
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other)
{
if (this != &other)
{
m_data = other.m_data;
m_cols = other.m_cols;
}
return *this;
}
EIGEN_DEVICE_FUNC DenseStorage(Index, Index, Index cols) : m_cols(cols) {}
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_cols,other.m_cols); }
EIGEN_DEVICE_FUNC Index rows(void) const {return _Rows;}
EIGEN_DEVICE_FUNC Index cols(void) const {return m_cols;}
void conservativeResize(Index, Index, Index cols) { m_cols = cols; }
void resize(Index, Index, Index cols) { m_cols = cols; }
EIGEN_DEVICE_FUNC const T *data() const { return m_data.array; }
EIGEN_DEVICE_FUNC T *data() { return m_data.array; }
};
// purely dynamic matrix.
template<typename T, int _Options> class DenseStorage<T, Dynamic, Dynamic, Dynamic, _Options>
{
T *m_data;
Index m_rows;
Index m_cols;
public:
EIGEN_DEVICE_FUNC DenseStorage() : m_data(0), m_rows(0), m_cols(0) {}
EIGEN_DEVICE_FUNC explicit DenseStorage(internal::constructor_without_unaligned_array_assert)
: m_data(0), m_rows(0), m_cols(0) {}
EIGEN_DEVICE_FUNC DenseStorage(Index size, Index rows, Index cols)
: m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_rows(rows), m_cols(cols)
{
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN
eigen_internal_assert(size==rows*cols && rows>=0 && cols >=0);
}
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other)
: m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(other.m_rows*other.m_cols))
, m_rows(other.m_rows)
, m_cols(other.m_cols)
{
internal::smart_copy(other.m_data, other.m_data+other.m_rows*other.m_cols, m_data);
}
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other)
{
if (this != &other)
{
DenseStorage tmp(other);
this->swap(tmp);
}
return *this;
}
#ifdef EIGEN_HAVE_RVALUE_REFERENCES
EIGEN_DEVICE_FUNC
DenseStorage(DenseStorage&& other)
: m_data(std::move(other.m_data))
, m_rows(std::move(other.m_rows))
, m_cols(std::move(other.m_cols))
{
other.m_data = nullptr;
other.m_rows = 0;
other.m_cols = 0;
}
EIGEN_DEVICE_FUNC
DenseStorage& operator=(DenseStorage&& other)
{
using std::swap;
swap(m_data, other.m_data);
swap(m_rows, other.m_rows);
swap(m_cols, other.m_cols);
return *this;
}
#endif
EIGEN_DEVICE_FUNC ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, m_rows*m_cols); }
EIGEN_DEVICE_FUNC void swap(DenseStorage& other)
{ std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); std::swap(m_cols,other.m_cols); }
EIGEN_DEVICE_FUNC Index rows(void) const {return m_rows;}
EIGEN_DEVICE_FUNC Index cols(void) const {return m_cols;}
void conservativeResize(Index size, Index rows, Index cols)
{
m_data = internal::conditional_aligned_realloc_new_auto<T,(_Options&DontAlign)==0>(m_data, size, m_rows*m_cols);
m_rows = rows;
m_cols = cols;
}
EIGEN_DEVICE_FUNC void resize(Index size, Index rows, Index cols)
{
if(size != m_rows*m_cols)
{
internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, m_rows*m_cols);
if (size)
m_data = internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size);
else
m_data = 0;
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN
}
m_rows = rows;
m_cols = cols;
}
EIGEN_DEVICE_FUNC const T *data() const { return m_data; }
EIGEN_DEVICE_FUNC T *data() { return m_data; }
};
// matrix with dynamic width and fixed height (so that matrix has dynamic size).
template<typename T, int _Rows, int _Options> class DenseStorage<T, Dynamic, _Rows, Dynamic, _Options>
{
T *m_data;
Index m_cols;
public:
EIGEN_DEVICE_FUNC DenseStorage() : m_data(0), m_cols(0) {}
explicit DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_cols(0) {}
EIGEN_DEVICE_FUNC DenseStorage(Index size, Index rows, Index cols) : m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_cols(cols)
{
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN
eigen_internal_assert(size==rows*cols && rows==_Rows && cols >=0);
EIGEN_UNUSED_VARIABLE(rows);
}
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other)
: m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(_Rows*other.m_cols))
, m_cols(other.m_cols)
{
internal::smart_copy(other.m_data, other.m_data+_Rows*m_cols, m_data);
}
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other)
{
if (this != &other)
{
DenseStorage tmp(other);
this->swap(tmp);
}
return *this;
}
#ifdef EIGEN_HAVE_RVALUE_REFERENCES
EIGEN_DEVICE_FUNC
DenseStorage(DenseStorage&& other)
: m_data(std::move(other.m_data))
, m_cols(std::move(other.m_cols))
{
other.m_data = nullptr;
other.m_cols = 0;
}
EIGEN_DEVICE_FUNC
DenseStorage& operator=(DenseStorage&& other)
{
using std::swap;
swap(m_data, other.m_data);
swap(m_cols, other.m_cols);
return *this;
}
#endif
EIGEN_DEVICE_FUNC ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Rows*m_cols); }
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_cols,other.m_cols); }
EIGEN_DEVICE_FUNC static Index rows(void) {return _Rows;}
EIGEN_DEVICE_FUNC Index cols(void) const {return m_cols;}
EIGEN_DEVICE_FUNC void conservativeResize(Index size, Index, Index cols)
{
m_data = internal::conditional_aligned_realloc_new_auto<T,(_Options&DontAlign)==0>(m_data, size, _Rows*m_cols);
m_cols = cols;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index size, Index, Index cols)
{
if(size != _Rows*m_cols)
{
internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Rows*m_cols);
if (size)
m_data = internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size);
else
m_data = 0;
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN
}
m_cols = cols;
}
EIGEN_DEVICE_FUNC const T *data() const { return m_data; }
EIGEN_DEVICE_FUNC T *data() { return m_data; }
};
// matrix with dynamic height and fixed width (so that matrix has dynamic size).
template<typename T, int _Cols, int _Options> class DenseStorage<T, Dynamic, Dynamic, _Cols, _Options>
{
T *m_data;
Index m_rows;
public:
EIGEN_DEVICE_FUNC DenseStorage() : m_data(0), m_rows(0) {}
explicit DenseStorage(internal::constructor_without_unaligned_array_assert) : m_data(0), m_rows(0) {}
EIGEN_DEVICE_FUNC DenseStorage(Index size, Index rows, Index cols) : m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size)), m_rows(rows)
{
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN
eigen_internal_assert(size==rows*cols && rows>=0 && cols == _Cols);
EIGEN_UNUSED_VARIABLE(cols);
}
EIGEN_DEVICE_FUNC DenseStorage(const DenseStorage& other)
: m_data(internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(other.m_rows*_Cols))
, m_rows(other.m_rows)
{
internal::smart_copy(other.m_data, other.m_data+other.m_rows*_Cols, m_data);
}
EIGEN_DEVICE_FUNC DenseStorage& operator=(const DenseStorage& other)
{
if (this != &other)
{
DenseStorage tmp(other);
this->swap(tmp);
}
return *this;
}
#ifdef EIGEN_HAVE_RVALUE_REFERENCES
EIGEN_DEVICE_FUNC
DenseStorage(DenseStorage&& other)
: m_data(std::move(other.m_data))
, m_rows(std::move(other.m_rows))
{
other.m_data = nullptr;
other.m_rows = 0;
}
EIGEN_DEVICE_FUNC
DenseStorage& operator=(DenseStorage&& other)
{
using std::swap;
swap(m_data, other.m_data);
swap(m_rows, other.m_rows);
return *this;
}
#endif
EIGEN_DEVICE_FUNC ~DenseStorage() { internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Cols*m_rows); }
EIGEN_DEVICE_FUNC void swap(DenseStorage& other) { std::swap(m_data,other.m_data); std::swap(m_rows,other.m_rows); }
EIGEN_DEVICE_FUNC Index rows(void) const {return m_rows;}
EIGEN_DEVICE_FUNC static Index cols(void) {return _Cols;}
void conservativeResize(Index size, Index rows, Index)
{
m_data = internal::conditional_aligned_realloc_new_auto<T,(_Options&DontAlign)==0>(m_data, size, m_rows*_Cols);
m_rows = rows;
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index size, Index rows, Index)
{
if(size != m_rows*_Cols)
{
internal::conditional_aligned_delete_auto<T,(_Options&DontAlign)==0>(m_data, _Cols*m_rows);
if (size)
m_data = internal::conditional_aligned_new_auto<T,(_Options&DontAlign)==0>(size);
else
m_data = 0;
EIGEN_INTERNAL_DENSE_STORAGE_CTOR_PLUGIN
}
m_rows = rows;
}
EIGEN_DEVICE_FUNC const T *data() const { return m_data; }
EIGEN_DEVICE_FUNC T *data() { return m_data; }
};
} // end namespace Eigen
#endif // EIGEN_MATRIX_H

View File

@ -0,0 +1,257 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2007-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_DIAGONAL_H
#define EIGEN_DIAGONAL_H
namespace Eigen {
/** \class Diagonal
* \ingroup Core_Module
*
* \brief Expression of a diagonal/subdiagonal/superdiagonal in a matrix
*
* \param MatrixType the type of the object in which we are taking a sub/main/super diagonal
* \param DiagIndex the index of the sub/super diagonal. The default is 0 and it means the main diagonal.
* A positive value means a superdiagonal, a negative value means a subdiagonal.
* You can also use Dynamic so the index can be set at runtime.
*
* The matrix is not required to be square.
*
* This class represents an expression of the main diagonal, or any sub/super diagonal
* of a square matrix. It is the return type of MatrixBase::diagonal() and MatrixBase::diagonal(Index) and most of the
* time this is the only way it is used.
*
* \sa MatrixBase::diagonal(), MatrixBase::diagonal(Index)
*/
namespace internal {
template<typename MatrixType, int DiagIndex>
struct traits<Diagonal<MatrixType,DiagIndex> >
: traits<MatrixType>
{
typedef typename ref_selector<MatrixType>::type MatrixTypeNested;
typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
typedef typename MatrixType::StorageKind StorageKind;
enum {
RowsAtCompileTime = (int(DiagIndex) == DynamicIndex || int(MatrixType::SizeAtCompileTime) == Dynamic) ? Dynamic
: (EIGEN_PLAIN_ENUM_MIN(MatrixType::RowsAtCompileTime - EIGEN_PLAIN_ENUM_MAX(-DiagIndex, 0),
MatrixType::ColsAtCompileTime - EIGEN_PLAIN_ENUM_MAX( DiagIndex, 0))),
ColsAtCompileTime = 1,
MaxRowsAtCompileTime = int(MatrixType::MaxSizeAtCompileTime) == Dynamic ? Dynamic
: DiagIndex == DynamicIndex ? EIGEN_SIZE_MIN_PREFER_FIXED(MatrixType::MaxRowsAtCompileTime,
MatrixType::MaxColsAtCompileTime)
: (EIGEN_PLAIN_ENUM_MIN(MatrixType::MaxRowsAtCompileTime - EIGEN_PLAIN_ENUM_MAX(-DiagIndex, 0),
MatrixType::MaxColsAtCompileTime - EIGEN_PLAIN_ENUM_MAX( DiagIndex, 0))),
MaxColsAtCompileTime = 1,
MaskLvalueBit = is_lvalue<MatrixType>::value ? LvalueBit : 0,
Flags = (unsigned int)_MatrixTypeNested::Flags & (RowMajorBit | MaskLvalueBit | DirectAccessBit) & ~RowMajorBit, // FIXME DirectAccessBit should not be handled by expressions
MatrixTypeOuterStride = outer_stride_at_compile_time<MatrixType>::ret,
InnerStrideAtCompileTime = MatrixTypeOuterStride == Dynamic ? Dynamic : MatrixTypeOuterStride+1,
OuterStrideAtCompileTime = 0
};
};
}
template<typename MatrixType, int _DiagIndex> class Diagonal
: public internal::dense_xpr_base< Diagonal<MatrixType,_DiagIndex> >::type
{
public:
enum { DiagIndex = _DiagIndex };
typedef typename internal::dense_xpr_base<Diagonal>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Diagonal)
EIGEN_DEVICE_FUNC
explicit inline Diagonal(MatrixType& matrix, Index a_index = DiagIndex) : m_matrix(matrix), m_index(a_index) {}
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Diagonal)
EIGEN_DEVICE_FUNC
inline Index rows() const
{
return m_index.value()<0 ? numext::mini<Index>(m_matrix.cols(),m_matrix.rows()+m_index.value())
: numext::mini<Index>(m_matrix.rows(),m_matrix.cols()-m_index.value());
}
EIGEN_DEVICE_FUNC
inline Index cols() const { return 1; }
EIGEN_DEVICE_FUNC
inline Index innerStride() const
{
return m_matrix.outerStride() + 1;
}
EIGEN_DEVICE_FUNC
inline Index outerStride() const
{
return 0;
}
typedef typename internal::conditional<
internal::is_lvalue<MatrixType>::value,
Scalar,
const Scalar
>::type ScalarWithConstIfNotLvalue;
EIGEN_DEVICE_FUNC
inline ScalarWithConstIfNotLvalue* data() { return &(m_matrix.const_cast_derived().coeffRef(rowOffset(), colOffset())); }
EIGEN_DEVICE_FUNC
inline const Scalar* data() const { return &(m_matrix.const_cast_derived().coeffRef(rowOffset(), colOffset())); }
EIGEN_DEVICE_FUNC
inline Scalar& coeffRef(Index row, Index)
{
EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
return m_matrix.const_cast_derived().coeffRef(row+rowOffset(), row+colOffset());
}
EIGEN_DEVICE_FUNC
inline const Scalar& coeffRef(Index row, Index) const
{
return m_matrix.const_cast_derived().coeffRef(row+rowOffset(), row+colOffset());
}
EIGEN_DEVICE_FUNC
inline CoeffReturnType coeff(Index row, Index) const
{
return m_matrix.coeff(row+rowOffset(), row+colOffset());
}
EIGEN_DEVICE_FUNC
inline Scalar& coeffRef(Index idx)
{
EIGEN_STATIC_ASSERT_LVALUE(MatrixType)
return m_matrix.const_cast_derived().coeffRef(idx+rowOffset(), idx+colOffset());
}
EIGEN_DEVICE_FUNC
inline const Scalar& coeffRef(Index idx) const
{
return m_matrix.const_cast_derived().coeffRef(idx+rowOffset(), idx+colOffset());
}
EIGEN_DEVICE_FUNC
inline CoeffReturnType coeff(Index idx) const
{
return m_matrix.coeff(idx+rowOffset(), idx+colOffset());
}
EIGEN_DEVICE_FUNC
inline const typename internal::remove_all<typename MatrixType::Nested>::type&
nestedExpression() const
{
return m_matrix;
}
EIGEN_DEVICE_FUNC
inline Index index() const
{
return m_index.value();
}
protected:
typename MatrixType::Nested m_matrix;
const internal::variable_if_dynamicindex<Index, DiagIndex> m_index;
private:
// some compilers may fail to optimize std::max etc in case of compile-time constants...
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index absDiagIndex() const { return m_index.value()>0 ? m_index.value() : -m_index.value(); }
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index rowOffset() const { return m_index.value()>0 ? 0 : -m_index.value(); }
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index colOffset() const { return m_index.value()>0 ? m_index.value() : 0; }
// trigger a compile-time error if someone try to call packet
template<int LoadMode> typename MatrixType::PacketReturnType packet(Index) const;
template<int LoadMode> typename MatrixType::PacketReturnType packet(Index,Index) const;
};
/** \returns an expression of the main diagonal of the matrix \c *this
*
* \c *this is not required to be square.
*
* Example: \include MatrixBase_diagonal.cpp
* Output: \verbinclude MatrixBase_diagonal.out
*
* \sa class Diagonal */
template<typename Derived>
inline typename MatrixBase<Derived>::DiagonalReturnType
MatrixBase<Derived>::diagonal()
{
return DiagonalReturnType(derived());
}
/** This is the const version of diagonal(). */
template<typename Derived>
inline typename MatrixBase<Derived>::ConstDiagonalReturnType
MatrixBase<Derived>::diagonal() const
{
return ConstDiagonalReturnType(derived());
}
/** \returns an expression of the \a DiagIndex-th sub or super diagonal of the matrix \c *this
*
* \c *this is not required to be square.
*
* The template parameter \a DiagIndex represent a super diagonal if \a DiagIndex > 0
* and a sub diagonal otherwise. \a DiagIndex == 0 is equivalent to the main diagonal.
*
* Example: \include MatrixBase_diagonal_int.cpp
* Output: \verbinclude MatrixBase_diagonal_int.out
*
* \sa MatrixBase::diagonal(), class Diagonal */
template<typename Derived>
inline typename MatrixBase<Derived>::DiagonalDynamicIndexReturnType
MatrixBase<Derived>::diagonal(Index index)
{
return DiagonalDynamicIndexReturnType(derived(), index);
}
/** This is the const version of diagonal(Index). */
template<typename Derived>
inline typename MatrixBase<Derived>::ConstDiagonalDynamicIndexReturnType
MatrixBase<Derived>::diagonal(Index index) const
{
return ConstDiagonalDynamicIndexReturnType(derived(), index);
}
/** \returns an expression of the \a DiagIndex-th sub or super diagonal of the matrix \c *this
*
* \c *this is not required to be square.
*
* The template parameter \a DiagIndex represent a super diagonal if \a DiagIndex > 0
* and a sub diagonal otherwise. \a DiagIndex == 0 is equivalent to the main diagonal.
*
* Example: \include MatrixBase_diagonal_template_int.cpp
* Output: \verbinclude MatrixBase_diagonal_template_int.out
*
* \sa MatrixBase::diagonal(), class Diagonal */
template<typename Derived>
template<int Index_>
inline typename MatrixBase<Derived>::template DiagonalIndexReturnType<Index_>::Type
MatrixBase<Derived>::diagonal()
{
return typename DiagonalIndexReturnType<Index_>::Type(derived());
}
/** This is the const version of diagonal<int>(). */
template<typename Derived>
template<int Index_>
inline typename MatrixBase<Derived>::template ConstDiagonalIndexReturnType<Index_>::Type
MatrixBase<Derived>::diagonal() const
{
return typename ConstDiagonalIndexReturnType<Index_>::Type(derived());
}
} // end namespace Eigen
#endif // EIGEN_DIAGONAL_H

View File

@ -0,0 +1,340 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2007-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_DIAGONALMATRIX_H
#define EIGEN_DIAGONALMATRIX_H
namespace Eigen {
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename Derived>
class DiagonalBase : public EigenBase<Derived>
{
public:
typedef typename internal::traits<Derived>::DiagonalVectorType DiagonalVectorType;
typedef typename DiagonalVectorType::Scalar Scalar;
typedef typename DiagonalVectorType::RealScalar RealScalar;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::StorageIndex StorageIndex;
enum {
RowsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
ColsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
MaxRowsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime,
MaxColsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime,
IsVectorAtCompileTime = 0,
Flags = NoPreferredStorageOrderBit
};
typedef Matrix<Scalar, RowsAtCompileTime, ColsAtCompileTime, 0, MaxRowsAtCompileTime, MaxColsAtCompileTime> DenseMatrixType;
typedef DenseMatrixType DenseType;
typedef DiagonalMatrix<Scalar,DiagonalVectorType::SizeAtCompileTime,DiagonalVectorType::MaxSizeAtCompileTime> PlainObject;
EIGEN_DEVICE_FUNC
inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
EIGEN_DEVICE_FUNC
inline Derived& derived() { return *static_cast<Derived*>(this); }
EIGEN_DEVICE_FUNC
DenseMatrixType toDenseMatrix() const { return derived(); }
EIGEN_DEVICE_FUNC
inline const DiagonalVectorType& diagonal() const { return derived().diagonal(); }
EIGEN_DEVICE_FUNC
inline DiagonalVectorType& diagonal() { return derived().diagonal(); }
EIGEN_DEVICE_FUNC
inline Index rows() const { return diagonal().size(); }
EIGEN_DEVICE_FUNC
inline Index cols() const { return diagonal().size(); }
template<typename MatrixDerived>
EIGEN_DEVICE_FUNC
const Product<Derived,MatrixDerived,LazyProduct>
operator*(const MatrixBase<MatrixDerived> &matrix) const
{
return Product<Derived, MatrixDerived, LazyProduct>(derived(),matrix.derived());
}
typedef DiagonalWrapper<const CwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const DiagonalVectorType> > InverseReturnType;
EIGEN_DEVICE_FUNC
inline const InverseReturnType
inverse() const
{
return InverseReturnType(diagonal().cwiseInverse());
}
typedef DiagonalWrapper<const CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, const DiagonalVectorType> > ScalarMultipleReturnType;
EIGEN_DEVICE_FUNC
inline const ScalarMultipleReturnType
operator*(const Scalar& scalar) const
{
return ScalarMultipleReturnType(diagonal() * scalar);
}
EIGEN_DEVICE_FUNC
friend inline const ScalarMultipleReturnType
operator*(const Scalar& scalar, const DiagonalBase& other)
{
return ScalarMultipleReturnType(other.diagonal() * scalar);
}
};
#endif
/** \class DiagonalMatrix
* \ingroup Core_Module
*
* \brief Represents a diagonal matrix with its storage
*
* \param _Scalar the type of coefficients
* \param SizeAtCompileTime the dimension of the matrix, or Dynamic
* \param MaxSizeAtCompileTime the dimension of the matrix, or Dynamic. This parameter is optional and defaults
* to SizeAtCompileTime. Most of the time, you do not need to specify it.
*
* \sa class DiagonalWrapper
*/
namespace internal {
template<typename _Scalar, int SizeAtCompileTime, int MaxSizeAtCompileTime>
struct traits<DiagonalMatrix<_Scalar,SizeAtCompileTime,MaxSizeAtCompileTime> >
: traits<Matrix<_Scalar,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
{
typedef Matrix<_Scalar,SizeAtCompileTime,1,0,MaxSizeAtCompileTime,1> DiagonalVectorType;
typedef DiagonalShape StorageKind;
enum {
Flags = LvalueBit | NoPreferredStorageOrderBit
};
};
}
template<typename _Scalar, int SizeAtCompileTime, int MaxSizeAtCompileTime>
class DiagonalMatrix
: public DiagonalBase<DiagonalMatrix<_Scalar,SizeAtCompileTime,MaxSizeAtCompileTime> >
{
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef typename internal::traits<DiagonalMatrix>::DiagonalVectorType DiagonalVectorType;
typedef const DiagonalMatrix& Nested;
typedef _Scalar Scalar;
typedef typename internal::traits<DiagonalMatrix>::StorageKind StorageKind;
typedef typename internal::traits<DiagonalMatrix>::StorageIndex StorageIndex;
#endif
protected:
DiagonalVectorType m_diagonal;
public:
/** const version of diagonal(). */
EIGEN_DEVICE_FUNC
inline const DiagonalVectorType& diagonal() const { return m_diagonal; }
/** \returns a reference to the stored vector of diagonal coefficients. */
EIGEN_DEVICE_FUNC
inline DiagonalVectorType& diagonal() { return m_diagonal; }
/** Default constructor without initialization */
EIGEN_DEVICE_FUNC
inline DiagonalMatrix() {}
/** Constructs a diagonal matrix with given dimension */
EIGEN_DEVICE_FUNC
explicit inline DiagonalMatrix(Index dim) : m_diagonal(dim) {}
/** 2D constructor. */
EIGEN_DEVICE_FUNC
inline DiagonalMatrix(const Scalar& x, const Scalar& y) : m_diagonal(x,y) {}
/** 3D constructor. */
EIGEN_DEVICE_FUNC
inline DiagonalMatrix(const Scalar& x, const Scalar& y, const Scalar& z) : m_diagonal(x,y,z) {}
/** Copy constructor. */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
inline DiagonalMatrix(const DiagonalBase<OtherDerived>& other) : m_diagonal(other.diagonal()) {}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** copy constructor. prevent a default copy constructor from hiding the other templated constructor */
inline DiagonalMatrix(const DiagonalMatrix& other) : m_diagonal(other.diagonal()) {}
#endif
/** generic constructor from expression of the diagonal coefficients */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
explicit inline DiagonalMatrix(const MatrixBase<OtherDerived>& other) : m_diagonal(other)
{}
/** Copy operator. */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
DiagonalMatrix& operator=(const DiagonalBase<OtherDerived>& other)
{
m_diagonal = other.diagonal();
return *this;
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
EIGEN_DEVICE_FUNC
DiagonalMatrix& operator=(const DiagonalMatrix& other)
{
m_diagonal = other.diagonal();
return *this;
}
#endif
/** Resizes to given size. */
EIGEN_DEVICE_FUNC
inline void resize(Index size) { m_diagonal.resize(size); }
/** Sets all coefficients to zero. */
EIGEN_DEVICE_FUNC
inline void setZero() { m_diagonal.setZero(); }
/** Resizes and sets all coefficients to zero. */
EIGEN_DEVICE_FUNC
inline void setZero(Index size) { m_diagonal.setZero(size); }
/** Sets this matrix to be the identity matrix of the current size. */
EIGEN_DEVICE_FUNC
inline void setIdentity() { m_diagonal.setOnes(); }
/** Sets this matrix to be the identity matrix of the given size. */
EIGEN_DEVICE_FUNC
inline void setIdentity(Index size) { m_diagonal.setOnes(size); }
};
/** \class DiagonalWrapper
* \ingroup Core_Module
*
* \brief Expression of a diagonal matrix
*
* \param _DiagonalVectorType the type of the vector of diagonal coefficients
*
* This class is an expression of a diagonal matrix, but not storing its own vector of diagonal coefficients,
* instead wrapping an existing vector expression. It is the return type of MatrixBase::asDiagonal()
* and most of the time this is the only way that it is used.
*
* \sa class DiagonalMatrix, class DiagonalBase, MatrixBase::asDiagonal()
*/
namespace internal {
template<typename _DiagonalVectorType>
struct traits<DiagonalWrapper<_DiagonalVectorType> >
{
typedef _DiagonalVectorType DiagonalVectorType;
typedef typename DiagonalVectorType::Scalar Scalar;
typedef typename DiagonalVectorType::StorageIndex StorageIndex;
typedef DiagonalShape StorageKind;
typedef typename traits<DiagonalVectorType>::XprKind XprKind;
enum {
RowsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
ColsAtCompileTime = DiagonalVectorType::SizeAtCompileTime,
MaxRowsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime,
MaxColsAtCompileTime = DiagonalVectorType::MaxSizeAtCompileTime,
Flags = (traits<DiagonalVectorType>::Flags & LvalueBit) | NoPreferredStorageOrderBit
};
};
}
template<typename _DiagonalVectorType>
class DiagonalWrapper
: public DiagonalBase<DiagonalWrapper<_DiagonalVectorType> >, internal::no_assignment_operator
{
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef _DiagonalVectorType DiagonalVectorType;
typedef DiagonalWrapper Nested;
#endif
/** Constructor from expression of diagonal coefficients to wrap. */
EIGEN_DEVICE_FUNC
explicit inline DiagonalWrapper(DiagonalVectorType& a_diagonal) : m_diagonal(a_diagonal) {}
/** \returns a const reference to the wrapped expression of diagonal coefficients. */
EIGEN_DEVICE_FUNC
const DiagonalVectorType& diagonal() const { return m_diagonal; }
protected:
typename DiagonalVectorType::Nested m_diagonal;
};
/** \returns a pseudo-expression of a diagonal matrix with *this as vector of diagonal coefficients
*
* \only_for_vectors
*
* Example: \include MatrixBase_asDiagonal.cpp
* Output: \verbinclude MatrixBase_asDiagonal.out
*
* \sa class DiagonalWrapper, class DiagonalMatrix, diagonal(), isDiagonal()
**/
template<typename Derived>
inline const DiagonalWrapper<const Derived>
MatrixBase<Derived>::asDiagonal() const
{
return DiagonalWrapper<const Derived>(derived());
}
/** \returns true if *this is approximately equal to a diagonal matrix,
* within the precision given by \a prec.
*
* Example: \include MatrixBase_isDiagonal.cpp
* Output: \verbinclude MatrixBase_isDiagonal.out
*
* \sa asDiagonal()
*/
template<typename Derived>
bool MatrixBase<Derived>::isDiagonal(const RealScalar& prec) const
{
using std::abs;
if(cols() != rows()) return false;
RealScalar maxAbsOnDiagonal = static_cast<RealScalar>(-1);
for(Index j = 0; j < cols(); ++j)
{
RealScalar absOnDiagonal = abs(coeff(j,j));
if(absOnDiagonal > maxAbsOnDiagonal) maxAbsOnDiagonal = absOnDiagonal;
}
for(Index j = 0; j < cols(); ++j)
for(Index i = 0; i < j; ++i)
{
if(!internal::isMuchSmallerThan(coeff(i, j), maxAbsOnDiagonal, prec)) return false;
if(!internal::isMuchSmallerThan(coeff(j, i), maxAbsOnDiagonal, prec)) return false;
}
return true;
}
namespace internal {
template<> struct storage_kind_to_shape<DiagonalShape> { typedef DiagonalShape Shape; };
struct Diagonal2Dense {};
template<> struct AssignmentKind<DenseShape,DiagonalShape> { typedef Diagonal2Dense Kind; };
// Diagonal matrix to Dense assignment
template< typename DstXprType, typename SrcXprType, typename Functor, typename Scalar>
struct Assignment<DstXprType, SrcXprType, Functor, Diagonal2Dense, Scalar>
{
static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar> &/*func*/)
{
dst.setZero();
dst.diagonal() = src.diagonal();
}
static void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op<typename DstXprType::Scalar> &/*func*/)
{ dst.diagonal() += src.diagonal(); }
static void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op<typename DstXprType::Scalar> &/*func*/)
{ dst.diagonal() -= src.diagonal(); }
};
} // namespace internal
} // end namespace Eigen
#endif // EIGEN_DIAGONALMATRIX_H

View File

@ -0,0 +1,28 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2007-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_DIAGONALPRODUCT_H
#define EIGEN_DIAGONALPRODUCT_H
namespace Eigen {
/** \returns the diagonal matrix product of \c *this by the diagonal matrix \a diagonal.
*/
template<typename Derived>
template<typename DiagonalDerived>
inline const Product<Derived, DiagonalDerived, LazyProduct>
MatrixBase<Derived>::operator*(const DiagonalBase<DiagonalDerived> &a_diagonal) const
{
return Product<Derived, DiagonalDerived, LazyProduct>(derived(),a_diagonal.derived());
}
} // end namespace Eigen
#endif // EIGEN_DIAGONALPRODUCT_H

241
third_party/eigen3/Eigen/src/Core/Dot.h vendored Normal file
View File

@ -0,0 +1,241 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008, 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_DOT_H
#define EIGEN_DOT_H
namespace Eigen {
namespace internal {
// helper function for dot(). The problem is that if we put that in the body of dot(), then upon calling dot
// with mismatched types, the compiler emits errors about failing to instantiate cwiseProduct BEFORE
// looking at the static assertions. Thus this is a trick to get better compile errors.
template<typename T, typename U,
// the NeedToTranspose condition here is taken straight from Assign.h
bool NeedToTranspose = T::IsVectorAtCompileTime
&& U::IsVectorAtCompileTime
&& ((int(T::RowsAtCompileTime) == 1 && int(U::ColsAtCompileTime) == 1)
| // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&".
// revert to || as soon as not needed anymore.
(int(T::ColsAtCompileTime) == 1 && int(U::RowsAtCompileTime) == 1))
>
struct dot_nocheck
{
typedef typename scalar_product_traits<typename traits<T>::Scalar,typename traits<U>::Scalar>::ReturnType ResScalar;
EIGEN_DEVICE_FUNC
static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
{
return a.template binaryExpr<scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> >(b).sum();
}
};
template<typename T, typename U>
struct dot_nocheck<T, U, true>
{
typedef typename scalar_product_traits<typename traits<T>::Scalar,typename traits<U>::Scalar>::ReturnType ResScalar;
EIGEN_DEVICE_FUNC
static inline ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b)
{
return a.transpose().template binaryExpr<scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> >(b).sum();
}
};
} // end namespace internal
/** \returns the dot product of *this with other.
*
* \only_for_vectors
*
* \note If the scalar type is complex numbers, then this function returns the hermitian
* (sesquilinear) dot product, conjugate-linear in the first variable and linear in the
* second variable.
*
* \sa squaredNorm(), norm()
*/
template<typename Derived>
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
typename internal::scalar_product_traits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType
MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
typedef internal::scalar_conj_product_op<Scalar,typename OtherDerived::Scalar> func;
EIGEN_CHECK_BINARY_COMPATIBILIY(func,Scalar,typename OtherDerived::Scalar);
eigen_assert(size() == other.size());
return internal::dot_nocheck<Derived,OtherDerived>::run(*this, other);
}
//---------- implementation of L2 norm and related functions ----------
/** \returns, for vectors, the squared \em l2 norm of \c *this, and for matrices the Frobenius norm.
* In both cases, it consists in the sum of the square of all the matrix entries.
* For vectors, this is also equals to the dot product of \c *this with itself.
*
* \sa dot(), norm()
*/
template<typename Derived>
EIGEN_STRONG_INLINE typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::squaredNorm() const
{
return numext::real((*this).cwiseAbs2().sum());
}
/** \returns, for vectors, the \em l2 norm of \c *this, and for matrices the Frobenius norm.
* In both cases, it consists in the square root of the sum of the square of all the matrix entries.
* For vectors, this is also equals to the square root of the dot product of \c *this with itself.
*
* \sa dot(), squaredNorm()
*/
template<typename Derived>
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::norm() const
{
EIGEN_USING_STD_MATH(sqrt)
return sqrt(squaredNorm());
}
/** \returns an expression of the quotient of *this by its own norm.
*
* \only_for_vectors
*
* \sa norm(), normalize()
*/
template<typename Derived>
inline const typename MatrixBase<Derived>::PlainObject
MatrixBase<Derived>::normalized() const
{
typedef typename internal::nested_eval<Derived,2>::type _Nested;
_Nested n(derived());
return n / n.norm();
}
/** Normalizes the vector, i.e. divides it by its own norm.
*
* \only_for_vectors
*
* \sa norm(), normalized()
*/
template<typename Derived>
inline void MatrixBase<Derived>::normalize()
{
*this /= norm();
}
//---------- implementation of other norms ----------
namespace internal {
template<typename Derived, int p>
struct lpNorm_selector
{
typedef typename NumTraits<typename traits<Derived>::Scalar>::Real RealScalar;
EIGEN_DEVICE_FUNC
static inline RealScalar run(const MatrixBase<Derived>& m)
{
EIGEN_USING_STD_MATH(pow)
return pow(m.cwiseAbs().array().pow(p).sum(), RealScalar(1)/p);
}
};
template<typename Derived>
struct lpNorm_selector<Derived, 1>
{
EIGEN_DEVICE_FUNC
static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
{
return m.cwiseAbs().sum();
}
};
template<typename Derived>
struct lpNorm_selector<Derived, 2>
{
EIGEN_DEVICE_FUNC
static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
{
return m.norm();
}
};
template<typename Derived>
struct lpNorm_selector<Derived, Infinity>
{
EIGEN_DEVICE_FUNC
static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m)
{
return m.cwiseAbs().maxCoeff();
}
};
} // end namespace internal
/** \returns the \f$ \ell^p \f$ norm of *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values
* of the coefficients of *this. If \a p is the special value \a Eigen::Infinity, this function returns the \f$ \ell^\infty \f$
* norm, that is the maximum of the absolute values of the coefficients of *this.
*
* \sa norm()
*/
template<typename Derived>
template<int p>
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
MatrixBase<Derived>::lpNorm() const
{
return internal::lpNorm_selector<Derived, p>::run(*this);
}
//---------- implementation of isOrthogonal / isUnitary ----------
/** \returns true if *this is approximately orthogonal to \a other,
* within the precision given by \a prec.
*
* Example: \include MatrixBase_isOrthogonal.cpp
* Output: \verbinclude MatrixBase_isOrthogonal.out
*/
template<typename Derived>
template<typename OtherDerived>
bool MatrixBase<Derived>::isOrthogonal
(const MatrixBase<OtherDerived>& other, const RealScalar& prec) const
{
typename internal::nested_eval<Derived,2>::type nested(derived());
typename internal::nested_eval<OtherDerived,2>::type otherNested(other.derived());
return numext::abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm();
}
/** \returns true if *this is approximately an unitary matrix,
* within the precision given by \a prec. In the case where the \a Scalar
* type is real numbers, a unitary matrix is an orthogonal matrix, whence the name.
*
* \note This can be used to check whether a family of vectors forms an orthonormal basis.
* Indeed, \c m.isUnitary() returns true if and only if the columns (equivalently, the rows) of m form an
* orthonormal basis.
*
* Example: \include MatrixBase_isUnitary.cpp
* Output: \verbinclude MatrixBase_isUnitary.out
*/
template<typename Derived>
bool MatrixBase<Derived>::isUnitary(const RealScalar& prec) const
{
typename internal::nested_eval<Derived,1>::type self(derived());
for(Index i = 0; i < cols(); ++i)
{
if(!internal::isApprox(self.col(i).squaredNorm(), static_cast<RealScalar>(1), prec))
return false;
for(Index j = 0; j < i; ++j)
if(!internal::isMuchSmallerThan(self.col(i).dot(self.col(j)), static_cast<Scalar>(1), prec))
return false;
}
return true;
}
} // end namespace Eigen
#endif // EIGEN_DOT_H

View File

@ -0,0 +1,155 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_EIGENBASE_H
#define EIGEN_EIGENBASE_H
namespace Eigen {
/** \class EigenBase
*
* Common base class for all classes T such that MatrixBase has an operator=(T) and a constructor MatrixBase(T).
*
* In other words, an EigenBase object is an object that can be copied into a MatrixBase.
*
* Besides MatrixBase-derived classes, this also includes special matrix classes such as diagonal matrices, etc.
*
* Notice that this class is trivial, it is only used to disambiguate overloaded functions.
*
* \sa \ref TopicClassHierarchy
*/
template<typename Derived> struct EigenBase
{
// typedef typename internal::plain_matrix_type<Derived>::type PlainObject;
/** \brief The interface type of indices
* \details To change this, \c \#define the preprocessor symbol \c EIGEN_DEFAULT_DENSE_INDEX_TYPE.
* \deprecated Since Eigen 3.3, its usage is deprecated. Use Eigen::Index instead.
* \sa StorageIndex, \ref TopicPreprocessorDirectives.
*/
typedef Eigen::Index Index;
// FIXME is it needed?
typedef typename internal::traits<Derived>::StorageKind StorageKind;
/** \returns a reference to the derived object */
EIGEN_DEVICE_FUNC
Derived& derived() { return *static_cast<Derived*>(this); }
/** \returns a const reference to the derived object */
EIGEN_DEVICE_FUNC
const Derived& derived() const { return *static_cast<const Derived*>(this); }
EIGEN_DEVICE_FUNC
inline Derived& const_cast_derived() const
{ return *static_cast<Derived*>(const_cast<EigenBase*>(this)); }
EIGEN_DEVICE_FUNC
inline const Derived& const_derived() const
{ return *static_cast<const Derived*>(this); }
/** \returns the number of rows. \sa cols(), RowsAtCompileTime */
EIGEN_DEVICE_FUNC
inline Index rows() const { return derived().rows(); }
/** \returns the number of columns. \sa rows(), ColsAtCompileTime*/
EIGEN_DEVICE_FUNC
inline Index cols() const { return derived().cols(); }
/** \returns the number of coefficients, which is rows()*cols().
* \sa rows(), cols(), SizeAtCompileTime. */
EIGEN_DEVICE_FUNC
inline Index size() const { return rows() * cols(); }
/** \internal Don't use it, but do the equivalent: \code dst = *this; \endcode */
template<typename Dest>
EIGEN_DEVICE_FUNC
inline void evalTo(Dest& dst) const
{ derived().evalTo(dst); }
/** \internal Don't use it, but do the equivalent: \code dst += *this; \endcode */
template<typename Dest>
EIGEN_DEVICE_FUNC
inline void addTo(Dest& dst) const
{
// This is the default implementation,
// derived class can reimplement it in a more optimized way.
typename Dest::PlainObject res(rows(),cols());
evalTo(res);
dst += res;
}
/** \internal Don't use it, but do the equivalent: \code dst -= *this; \endcode */
template<typename Dest>
EIGEN_DEVICE_FUNC
inline void subTo(Dest& dst) const
{
// This is the default implementation,
// derived class can reimplement it in a more optimized way.
typename Dest::PlainObject res(rows(),cols());
evalTo(res);
dst -= res;
}
/** \internal Don't use it, but do the equivalent: \code dst.applyOnTheRight(*this); \endcode */
template<typename Dest>
EIGEN_DEVICE_FUNC inline void applyThisOnTheRight(Dest& dst) const
{
// This is the default implementation,
// derived class can reimplement it in a more optimized way.
dst = dst * this->derived();
}
/** \internal Don't use it, but do the equivalent: \code dst.applyOnTheLeft(*this); \endcode */
template<typename Dest>
EIGEN_DEVICE_FUNC inline void applyThisOnTheLeft(Dest& dst) const
{
// This is the default implementation,
// derived class can reimplement it in a more optimized way.
dst = this->derived() * dst;
}
};
/***************************************************************************
* Implementation of matrix base methods
***************************************************************************/
/** \brief Copies the generic expression \a other into *this.
*
* \details The expression must provide a (templated) evalTo(Derived& dst) const
* function which does the actual job. In practice, this allows any user to write
* its own special matrix without having to modify MatrixBase
*
* \returns a reference to *this.
*/
template<typename Derived>
template<typename OtherDerived>
Derived& DenseBase<Derived>::operator=(const EigenBase<OtherDerived> &other)
{
call_assignment(derived(), other.derived());
return derived();
}
template<typename Derived>
template<typename OtherDerived>
Derived& DenseBase<Derived>::operator+=(const EigenBase<OtherDerived> &other)
{
call_assignment(derived(), other.derived(), internal::add_assign_op<Scalar>());
return derived();
}
template<typename Derived>
template<typename OtherDerived>
Derived& DenseBase<Derived>::operator-=(const EigenBase<OtherDerived> &other)
{
call_assignment(derived(), other.derived(), internal::sub_assign_op<Scalar>());
return derived();
}
} // end namespace Eigen
#endif // EIGEN_EIGENBASE_H

View File

@ -0,0 +1,146 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_FORCEALIGNEDACCESS_H
#define EIGEN_FORCEALIGNEDACCESS_H
namespace Eigen {
/** \class ForceAlignedAccess
* \ingroup Core_Module
*
* \brief Enforce aligned packet loads and stores regardless of what is requested
*
* \param ExpressionType the type of the object of which we are forcing aligned packet access
*
* This class is the return type of MatrixBase::forceAlignedAccess()
* and most of the time this is the only way it is used.
*
* \sa MatrixBase::forceAlignedAccess()
*/
namespace internal {
template<typename ExpressionType>
struct traits<ForceAlignedAccess<ExpressionType> > : public traits<ExpressionType>
{};
}
template<typename ExpressionType> class ForceAlignedAccess
: public internal::dense_xpr_base< ForceAlignedAccess<ExpressionType> >::type
{
public:
typedef typename internal::dense_xpr_base<ForceAlignedAccess>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(ForceAlignedAccess)
EIGEN_DEVICE_FUNC explicit inline ForceAlignedAccess(const ExpressionType& matrix) : m_expression(matrix) {}
EIGEN_DEVICE_FUNC inline Index rows() const { return m_expression.rows(); }
EIGEN_DEVICE_FUNC inline Index cols() const { return m_expression.cols(); }
EIGEN_DEVICE_FUNC inline Index outerStride() const { return m_expression.outerStride(); }
EIGEN_DEVICE_FUNC inline Index innerStride() const { return m_expression.innerStride(); }
EIGEN_DEVICE_FUNC inline const CoeffReturnType coeff(Index row, Index col) const
{
return m_expression.coeff(row, col);
}
EIGEN_DEVICE_FUNC inline Scalar& coeffRef(Index row, Index col)
{
return m_expression.const_cast_derived().coeffRef(row, col);
}
EIGEN_DEVICE_FUNC inline const CoeffReturnType coeff(Index index) const
{
return m_expression.coeff(index);
}
EIGEN_DEVICE_FUNC inline Scalar& coeffRef(Index index)
{
return m_expression.const_cast_derived().coeffRef(index);
}
template<int LoadMode>
inline const PacketScalar packet(Index row, Index col) const
{
return m_expression.template packet<Aligned>(row, col);
}
template<int LoadMode>
inline void writePacket(Index row, Index col, const PacketScalar& x)
{
m_expression.const_cast_derived().template writePacket<Aligned>(row, col, x);
}
template<int LoadMode>
inline const PacketScalar packet(Index index) const
{
return m_expression.template packet<Aligned>(index);
}
template<int LoadMode>
inline void writePacket(Index index, const PacketScalar& x)
{
m_expression.const_cast_derived().template writePacket<Aligned>(index, x);
}
EIGEN_DEVICE_FUNC operator const ExpressionType&() const { return m_expression; }
protected:
const ExpressionType& m_expression;
private:
ForceAlignedAccess& operator=(const ForceAlignedAccess&);
};
/** \returns an expression of *this with forced aligned access
* \sa forceAlignedAccessIf(),class ForceAlignedAccess
*/
template<typename Derived>
inline const ForceAlignedAccess<Derived>
MatrixBase<Derived>::forceAlignedAccess() const
{
return ForceAlignedAccess<Derived>(derived());
}
/** \returns an expression of *this with forced aligned access
* \sa forceAlignedAccessIf(), class ForceAlignedAccess
*/
template<typename Derived>
inline ForceAlignedAccess<Derived>
MatrixBase<Derived>::forceAlignedAccess()
{
return ForceAlignedAccess<Derived>(derived());
}
/** \returns an expression of *this with forced aligned access if \a Enable is true.
* \sa forceAlignedAccess(), class ForceAlignedAccess
*/
template<typename Derived>
template<bool Enable>
inline typename internal::add_const_on_value_type<typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type>::type
MatrixBase<Derived>::forceAlignedAccessIf() const
{
return derived(); // FIXME This should not work but apparently is never used
}
/** \returns an expression of *this with forced aligned access if \a Enable is true.
* \sa forceAlignedAccess(), class ForceAlignedAccess
*/
template<typename Derived>
template<bool Enable>
inline typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type
MatrixBase<Derived>::forceAlignedAccessIf()
{
return derived(); // FIXME This should not work but apparently is never used
}
} // end namespace Eigen
#endif // EIGEN_FORCEALIGNEDACCESS_H

View File

@ -0,0 +1,155 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_FUZZY_H
#define EIGEN_FUZZY_H
namespace Eigen {
namespace internal
{
template<typename Derived, typename OtherDerived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
struct isApprox_selector
{
EIGEN_DEVICE_FUNC
static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar& prec)
{
typename internal::nested_eval<Derived,2>::type nested(x);
typename internal::nested_eval<OtherDerived,2>::type otherNested(y);
return (nested - otherNested).cwiseAbs2().sum() <= prec * prec * numext::mini(nested.cwiseAbs2().sum(), otherNested.cwiseAbs2().sum());
}
};
template<typename Derived, typename OtherDerived>
struct isApprox_selector<Derived, OtherDerived, true>
{
EIGEN_DEVICE_FUNC
static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar&)
{
return x.matrix() == y.matrix();
}
};
template<typename Derived, typename OtherDerived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
struct isMuchSmallerThan_object_selector
{
EIGEN_DEVICE_FUNC
static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar& prec)
{
return x.cwiseAbs2().sum() <= numext::abs2(prec) * y.cwiseAbs2().sum();
}
};
template<typename Derived, typename OtherDerived>
struct isMuchSmallerThan_object_selector<Derived, OtherDerived, true>
{
EIGEN_DEVICE_FUNC
static bool run(const Derived& x, const OtherDerived&, const typename Derived::RealScalar&)
{
return x.matrix() == Derived::Zero(x.rows(), x.cols()).matrix();
}
};
template<typename Derived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
struct isMuchSmallerThan_scalar_selector
{
EIGEN_DEVICE_FUNC
static bool run(const Derived& x, const typename Derived::RealScalar& y, const typename Derived::RealScalar& prec)
{
return x.cwiseAbs2().sum() <= numext::abs2(prec * y);
}
};
template<typename Derived>
struct isMuchSmallerThan_scalar_selector<Derived, true>
{
EIGEN_DEVICE_FUNC
static bool run(const Derived& x, const typename Derived::RealScalar&, const typename Derived::RealScalar&)
{
return x.matrix() == Derived::Zero(x.rows(), x.cols()).matrix();
}
};
} // end namespace internal
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \note The fuzzy compares are done multiplicatively. Two vectors \f$ v \f$ and \f$ w \f$
* are considered to be approximately equal within precision \f$ p \f$ if
* \f[ \Vert v - w \Vert \leqslant p\,\min(\Vert v\Vert, \Vert w\Vert). \f]
* For matrices, the comparison is done using the Hilbert-Schmidt norm (aka Frobenius norm
* L2 norm).
*
* \note Because of the multiplicativeness of this comparison, one can't use this function
* to check whether \c *this is approximately equal to the zero matrix or vector.
* Indeed, \c isApprox(zero) returns false unless \c *this itself is exactly the zero matrix
* or vector. If you want to test whether \c *this is zero, use internal::isMuchSmallerThan(const
* RealScalar&, RealScalar) instead.
*
* \sa internal::isMuchSmallerThan(const RealScalar&, RealScalar) const
*/
template<typename Derived>
template<typename OtherDerived>
bool DenseBase<Derived>::isApprox(
const DenseBase<OtherDerived>& other,
const RealScalar& prec
) const
{
return internal::isApprox_selector<Derived, OtherDerived>::run(derived(), other.derived(), prec);
}
/** \returns \c true if the norm of \c *this is much smaller than \a other,
* within the precision determined by \a prec.
*
* \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is
* considered to be much smaller than \f$ x \f$ within precision \f$ p \f$ if
* \f[ \Vert v \Vert \leqslant p\,\vert x\vert. \f]
*
* For matrices, the comparison is done using the Hilbert-Schmidt norm. For this reason,
* the value of the reference scalar \a other should come from the Hilbert-Schmidt norm
* of a reference matrix of same dimensions.
*
* \sa isApprox(), isMuchSmallerThan(const DenseBase<OtherDerived>&, RealScalar) const
*/
template<typename Derived>
bool DenseBase<Derived>::isMuchSmallerThan(
const typename NumTraits<Scalar>::Real& other,
const RealScalar& prec
) const
{
return internal::isMuchSmallerThan_scalar_selector<Derived>::run(derived(), other, prec);
}
/** \returns \c true if the norm of \c *this is much smaller than the norm of \a other,
* within the precision determined by \a prec.
*
* \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is
* considered to be much smaller than a vector \f$ w \f$ within precision \f$ p \f$ if
* \f[ \Vert v \Vert \leqslant p\,\Vert w\Vert. \f]
* For matrices, the comparison is done using the Hilbert-Schmidt norm.
*
* \sa isApprox(), isMuchSmallerThan(const RealScalar&, RealScalar) const
*/
template<typename Derived>
template<typename OtherDerived>
bool DenseBase<Derived>::isMuchSmallerThan(
const DenseBase<OtherDerived>& other,
const RealScalar& prec
) const
{
return internal::isMuchSmallerThan_object_selector<Derived, OtherDerived>::run(derived(), other.derived(), prec);
}
} // end namespace Eigen
#endif // EIGEN_FUZZY_H

View File

@ -0,0 +1,456 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_GENERAL_PRODUCT_H
#define EIGEN_GENERAL_PRODUCT_H
namespace Eigen {
enum {
Large = 2,
Small = 3
};
namespace internal {
template<int Rows, int Cols, int Depth> struct product_type_selector;
template<int Size, int MaxSize> struct product_size_category
{
enum { is_large = MaxSize == Dynamic ||
Size >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD,
value = is_large ? Large
: Size == 1 ? 1
: Small
};
};
template<typename Lhs, typename Rhs> struct product_type
{
typedef typename remove_all<Lhs>::type _Lhs;
typedef typename remove_all<Rhs>::type _Rhs;
enum {
MaxRows = traits<_Lhs>::MaxRowsAtCompileTime,
Rows = traits<_Lhs>::RowsAtCompileTime,
MaxCols = traits<_Rhs>::MaxColsAtCompileTime,
Cols = traits<_Rhs>::ColsAtCompileTime,
MaxDepth = EIGEN_SIZE_MIN_PREFER_FIXED(traits<_Lhs>::MaxColsAtCompileTime,
traits<_Rhs>::MaxRowsAtCompileTime),
Depth = EIGEN_SIZE_MIN_PREFER_FIXED(traits<_Lhs>::ColsAtCompileTime,
traits<_Rhs>::RowsAtCompileTime)
};
// the splitting into different lines of code here, introducing the _select enums and the typedef below,
// is to work around an internal compiler error with gcc 4.1 and 4.2.
private:
enum {
rows_select = product_size_category<Rows,MaxRows>::value,
cols_select = product_size_category<Cols,MaxCols>::value,
depth_select = product_size_category<Depth,MaxDepth>::value
};
typedef product_type_selector<rows_select, cols_select, depth_select> selector;
public:
enum {
value = selector::ret,
ret = selector::ret
};
#ifdef EIGEN_DEBUG_PRODUCT
static void debug()
{
EIGEN_DEBUG_VAR(Rows);
EIGEN_DEBUG_VAR(Cols);
EIGEN_DEBUG_VAR(Depth);
EIGEN_DEBUG_VAR(rows_select);
EIGEN_DEBUG_VAR(cols_select);
EIGEN_DEBUG_VAR(depth_select);
EIGEN_DEBUG_VAR(value);
}
#endif
};
// template<typename Lhs, typename Rhs> struct product_tag
// {
// private:
//
// typedef typename remove_all<Lhs>::type _Lhs;
// typedef typename remove_all<Rhs>::type _Rhs;
// enum {
// Rows = _Lhs::RowsAtCompileTime,
// Cols = _Rhs::ColsAtCompileTime,
// Depth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::ColsAtCompileTime, _Rhs::RowsAtCompileTime)
// };
//
// enum {
// rows_select = Rows==1 ? int(Rows) : int(Large),
// cols_select = Cols==1 ? int(Cols) : int(Large),
// depth_select = Depth==1 ? int(Depth) : int(Large)
// };
// typedef product_type_selector<rows_select, cols_select, depth_select> selector;
//
// public:
// enum {
// ret = selector::ret
// };
//
// };
/* The following allows to select the kind of product at compile time
* based on the three dimensions of the product.
* This is a compile time mapping from {1,Small,Large}^3 -> {product types} */
// FIXME I'm not sure the current mapping is the ideal one.
template<int M, int N> struct product_type_selector<M,N,1> { enum { ret = OuterProduct }; };
template<int Depth> struct product_type_selector<1, 1, Depth> { enum { ret = InnerProduct }; };
template<> struct product_type_selector<1, 1, 1> { enum { ret = InnerProduct }; };
template<> struct product_type_selector<Small,1, Small> { enum { ret = CoeffBasedProductMode }; };
template<> struct product_type_selector<1, Small,Small> { enum { ret = CoeffBasedProductMode }; };
template<> struct product_type_selector<Small,Small,Small> { enum { ret = CoeffBasedProductMode }; };
template<> struct product_type_selector<Small, Small, 1> { enum { ret = LazyCoeffBasedProductMode }; };
template<> struct product_type_selector<Small, Large, 1> { enum { ret = LazyCoeffBasedProductMode }; };
template<> struct product_type_selector<Large, Small, 1> { enum { ret = LazyCoeffBasedProductMode }; };
template<> struct product_type_selector<1, Large,Small> { enum { ret = CoeffBasedProductMode }; };
template<> struct product_type_selector<1, Large,Large> { enum { ret = GemvProduct }; };
template<> struct product_type_selector<1, Small,Large> { enum { ret = CoeffBasedProductMode }; };
template<> struct product_type_selector<Large,1, Small> { enum { ret = CoeffBasedProductMode }; };
template<> struct product_type_selector<Large,1, Large> { enum { ret = GemvProduct }; };
template<> struct product_type_selector<Small,1, Large> { enum { ret = CoeffBasedProductMode }; };
template<> struct product_type_selector<Small,Small,Large> { enum { ret = GemmProduct }; };
template<> struct product_type_selector<Large,Small,Large> { enum { ret = GemmProduct }; };
template<> struct product_type_selector<Small,Large,Large> { enum { ret = GemmProduct }; };
template<> struct product_type_selector<Large,Large,Large> { enum { ret = GemmProduct }; };
template<> struct product_type_selector<Large,Small,Small> { enum { ret = GemmProduct }; };
template<> struct product_type_selector<Small,Large,Small> { enum { ret = GemmProduct }; };
template<> struct product_type_selector<Large,Large,Small> { enum { ret = GemmProduct }; };
} // end namespace internal
/***********************************************************************
* Implementation of Inner Vector Vector Product
***********************************************************************/
// FIXME : maybe the "inner product" could return a Scalar
// instead of a 1x1 matrix ??
// Pro: more natural for the user
// Cons: this could be a problem if in a meta unrolled algorithm a matrix-matrix
// product ends up to a row-vector times col-vector product... To tackle this use
// case, we could have a specialization for Block<MatrixType,1,1> with: operator=(Scalar x);
/***********************************************************************
* Implementation of Outer Vector Vector Product
***********************************************************************/
/***********************************************************************
* Implementation of General Matrix Vector Product
***********************************************************************/
/* According to the shape/flags of the matrix we have to distinghish 3 different cases:
* 1 - the matrix is col-major, BLAS compatible and M is large => call fast BLAS-like colmajor routine
* 2 - the matrix is row-major, BLAS compatible and N is large => call fast BLAS-like rowmajor routine
* 3 - all other cases are handled using a simple loop along the outer-storage direction.
* Therefore we need a lower level meta selector.
* Furthermore, if the matrix is the rhs, then the product has to be transposed.
*/
namespace internal {
template<int Side, int StorageOrder, bool BlasCompatible>
struct gemv_dense_sense_selector;
} // end namespace internal
namespace internal {
template<typename Scalar,int Size,int MaxSize,bool Cond> struct gemv_static_vector_if;
template<typename Scalar,int Size,int MaxSize>
struct gemv_static_vector_if<Scalar,Size,MaxSize,false>
{
EIGEN_STRONG_INLINE Scalar* data() { eigen_internal_assert(false && "should never be called"); return 0; }
};
template<typename Scalar,int Size>
struct gemv_static_vector_if<Scalar,Size,Dynamic,true>
{
EIGEN_STRONG_INLINE Scalar* data() { return 0; }
};
template<typename Scalar,int Size,int MaxSize>
struct gemv_static_vector_if<Scalar,Size,MaxSize,true>
{
#if EIGEN_MAX_STATIC_ALIGN_BYTES!=0
internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize),0> m_data;
EIGEN_STRONG_INLINE Scalar* data() { return m_data.array; }
#else
// Some architectures cannot align on the stack,
// => let's manually enforce alignment by allocating more data and return the address of the first aligned element.
enum {
ForceAlignment = internal::packet_traits<Scalar>::Vectorizable,
PacketSize = internal::packet_traits<Scalar>::size
};
internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize)+(ForceAlignment?PacketSize:0),0> m_data;
EIGEN_STRONG_INLINE Scalar* data() {
return ForceAlignment
? reinterpret_cast<Scalar*>((reinterpret_cast<size_t>(m_data.array) & ~(size_t(EIGEN_MAX_ALIGN_BYTES-1))) + EIGEN_MAX_ALIGN_BYTES)
: m_data.array;
}
#endif
};
// The vector is on the left => transposition
template<int StorageOrder, bool BlasCompatible>
struct gemv_dense_sense_selector<OnTheLeft,StorageOrder,BlasCompatible>
{
template<typename Lhs, typename Rhs, typename Dest>
static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
{
Transpose<Dest> destT(dest);
enum { OtherStorageOrder = StorageOrder == RowMajor ? ColMajor : RowMajor };
gemv_dense_sense_selector<OnTheRight,OtherStorageOrder,BlasCompatible>
::run(rhs.transpose(), lhs.transpose(), destT, alpha);
}
};
template<> struct gemv_dense_sense_selector<OnTheRight,ColMajor,true>
{
template<typename Lhs, typename Rhs, typename Dest>
static inline void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
{
typedef typename Lhs::Scalar LhsScalar;
typedef typename Rhs::Scalar RhsScalar;
typedef typename Dest::Scalar ResScalar;
typedef typename Dest::RealScalar RealScalar;
typedef internal::blas_traits<Lhs> LhsBlasTraits;
typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
typedef internal::blas_traits<Rhs> RhsBlasTraits;
typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
typedef Map<Matrix<ResScalar,Dynamic,1>, Aligned> MappedDest;
ActualLhsType actualLhs = LhsBlasTraits::extract(lhs);
ActualRhsType actualRhs = RhsBlasTraits::extract(rhs);
ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(lhs)
* RhsBlasTraits::extractScalarFactor(rhs);
enum {
// FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
// on, the other hand it is good for the cache to pack the vector anyways...
EvalToDestAtCompileTime = Dest::InnerStrideAtCompileTime==1,
ComplexByReal = (NumTraits<LhsScalar>::IsComplex) && (!NumTraits<RhsScalar>::IsComplex),
MightCannotUseDest = (Dest::InnerStrideAtCompileTime!=1) || ComplexByReal
};
gemv_static_vector_if<ResScalar,Dest::SizeAtCompileTime,Dest::MaxSizeAtCompileTime,MightCannotUseDest> static_dest;
const bool alphaIsCompatible = (!ComplexByReal) || (numext::imag(actualAlpha)==RealScalar(0));
const bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible;
RhsScalar compatibleAlpha = get_factor<ResScalar,RhsScalar>::run(actualAlpha);
ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(),
evalToDest ? dest.data() : static_dest.data());
if(!evalToDest)
{
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
Index size = dest.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
if(!alphaIsCompatible)
{
MappedDest(actualDestPtr, dest.size()).setZero();
compatibleAlpha = RhsScalar(1);
}
else
MappedDest(actualDestPtr, dest.size()) = dest;
}
typedef const_blas_data_mapper<LhsScalar,Index,ColMajor> LhsMapper;
typedef const_blas_data_mapper<RhsScalar,Index,RowMajor> RhsMapper;
general_matrix_vector_product
<Index,LhsScalar,LhsMapper,ColMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsMapper,RhsBlasTraits::NeedToConjugate>::run(
actualLhs.rows(), actualLhs.cols(),
LhsMapper(actualLhs.data(), actualLhs.outerStride()),
RhsMapper(actualRhs.data(), actualRhs.innerStride()),
actualDestPtr, 1,
compatibleAlpha);
if (!evalToDest)
{
if(!alphaIsCompatible)
dest += actualAlpha * MappedDest(actualDestPtr, dest.size());
else
dest = MappedDest(actualDestPtr, dest.size());
}
}
};
template<> struct gemv_dense_sense_selector<OnTheRight,RowMajor,true>
{
template<typename Lhs, typename Rhs, typename Dest>
static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
{
typedef typename Lhs::Scalar LhsScalar;
typedef typename Rhs::Scalar RhsScalar;
typedef typename Dest::Scalar ResScalar;
typedef internal::blas_traits<Lhs> LhsBlasTraits;
typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
typedef internal::blas_traits<Rhs> RhsBlasTraits;
typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
typedef typename internal::remove_all<ActualRhsType>::type ActualRhsTypeCleaned;
typename add_const<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(lhs);
typename add_const<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(rhs);
ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(lhs)
* RhsBlasTraits::extractScalarFactor(rhs);
enum {
// FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
// on, the other hand it is good for the cache to pack the vector anyways...
DirectlyUseRhs = ActualRhsTypeCleaned::InnerStrideAtCompileTime==1
};
gemv_static_vector_if<RhsScalar,ActualRhsTypeCleaned::SizeAtCompileTime,ActualRhsTypeCleaned::MaxSizeAtCompileTime,!DirectlyUseRhs> static_rhs;
ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,actualRhs.size(),
DirectlyUseRhs ? const_cast<RhsScalar*>(actualRhs.data()) : static_rhs.data());
if(!DirectlyUseRhs)
{
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
Index size = actualRhs.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
Map<typename ActualRhsTypeCleaned::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
}
typedef const_blas_data_mapper<LhsScalar,Index,RowMajor> LhsMapper;
typedef const_blas_data_mapper<RhsScalar,Index,ColMajor> RhsMapper;
general_matrix_vector_product
<Index,LhsScalar,LhsMapper,RowMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsMapper,RhsBlasTraits::NeedToConjugate>::run(
actualLhs.rows(), actualLhs.cols(),
LhsMapper(actualLhs.data(), actualLhs.outerStride()),
RhsMapper(actualRhsPtr, 1),
dest.data(), dest.innerStride(),
actualAlpha);
}
};
template<> struct gemv_dense_sense_selector<OnTheRight,ColMajor,false>
{
template<typename Lhs, typename Rhs, typename Dest>
static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
{
// TODO makes sure dest is sequentially stored in memory, otherwise use a temp
const Index size = rhs.rows();
for(Index k=0; k<size; ++k)
dest += (alpha*rhs.coeff(k)) * lhs.col(k);
}
};
template<> struct gemv_dense_sense_selector<OnTheRight,RowMajor,false>
{
template<typename Lhs, typename Rhs, typename Dest>
static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
{
// TODO makes sure rhs is sequentially stored in memory, otherwise use a temp
const Index rows = dest.rows();
for(Index i=0; i<rows; ++i)
dest.coeffRef(i) += alpha * (lhs.row(i).cwiseProduct(rhs.transpose())).sum();
}
};
} // end namespace internal
/***************************************************************************
* Implementation of matrix base methods
***************************************************************************/
/** \returns the matrix product of \c *this and \a other.
*
* \note If instead of the matrix product you want the coefficient-wise product, see Cwise::operator*().
*
* \sa lazyProduct(), operator*=(const MatrixBase&), Cwise::operator*()
*/
#ifndef __CUDACC__
template<typename Derived>
template<typename OtherDerived>
inline const Product<Derived, OtherDerived>
MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
{
// A note regarding the function declaration: In MSVC, this function will sometimes
// not be inlined since DenseStorage is an unwindable object for dynamic
// matrices and product types are holding a member to store the result.
// Thus it does not help tagging this function with EIGEN_STRONG_INLINE.
enum {
ProductIsValid = Derived::ColsAtCompileTime==Dynamic
|| OtherDerived::RowsAtCompileTime==Dynamic
|| int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime),
AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime,
SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived)
};
// note to the lost user:
// * for a dot product use: v1.dot(v2)
// * for a coeff-wise product use: v1.cwiseProduct(v2)
EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
#ifdef EIGEN_DEBUG_PRODUCT
internal::product_type<Derived,OtherDerived>::debug();
#endif
return Product<Derived, OtherDerived>(derived(), other.derived());
}
#endif // __CUDACC__
/** \returns an expression of the matrix product of \c *this and \a other without implicit evaluation.
*
* The returned product will behave like any other expressions: the coefficients of the product will be
* computed once at a time as requested. This might be useful in some extremely rare cases when only
* a small and no coherent fraction of the result's coefficients have to be computed.
*
* \warning This version of the matrix product can be much much slower. So use it only if you know
* what you are doing and that you measured a true speed improvement.
*
* \sa operator*(const MatrixBase&)
*/
template<typename Derived>
template<typename OtherDerived>
const Product<Derived,OtherDerived,LazyProduct>
MatrixBase<Derived>::lazyProduct(const MatrixBase<OtherDerived> &other) const
{
enum {
ProductIsValid = Derived::ColsAtCompileTime==Dynamic
|| OtherDerived::RowsAtCompileTime==Dynamic
|| int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime),
AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime,
SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived)
};
// note to the lost user:
// * for a dot product use: v1.dot(v2)
// * for a coeff-wise product use: v1.cwiseProduct(v2)
EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
return Product<Derived,OtherDerived,LazyProduct>(derived(), other.derived());
}
} // end namespace Eigen
#endif // EIGEN_PRODUCT_H

View File

@ -0,0 +1,560 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_GENERIC_PACKET_MATH_H
#define EIGEN_GENERIC_PACKET_MATH_H
namespace Eigen {
namespace internal {
/** \internal
* \file GenericPacketMath.h
*
* Default implementation for types not supported by the vectorization.
* In practice these functions are provided to make easier the writing
* of generic vectorized code.
*/
#ifndef EIGEN_DEBUG_ALIGNED_LOAD
#define EIGEN_DEBUG_ALIGNED_LOAD
#endif
#ifndef EIGEN_DEBUG_UNALIGNED_LOAD
#define EIGEN_DEBUG_UNALIGNED_LOAD
#endif
#ifndef EIGEN_DEBUG_ALIGNED_STORE
#define EIGEN_DEBUG_ALIGNED_STORE
#endif
#ifndef EIGEN_DEBUG_UNALIGNED_STORE
#define EIGEN_DEBUG_UNALIGNED_STORE
#endif
struct default_packet_traits
{
enum {
HasHalfPacket = 0,
HasAdd = 1,
HasSub = 1,
HasMul = 1,
HasNegate = 1,
HasAbs = 1,
HasArg = 0,
HasAbs2 = 1,
HasMin = 1,
HasMax = 1,
HasConj = 1,
HasSetLinear = 1,
HasBlend = 0,
HasDiv = 0,
HasSqrt = 0,
HasRsqrt = 0,
HasExp = 0,
HasLog = 0,
HasLog10 = 0,
HasPow = 0,
HasSin = 0,
HasCos = 0,
HasTan = 0,
HasASin = 0,
HasACos = 0,
HasATan = 0,
HasSinh = 0,
HasCosh = 0,
HasTanh = 0,
HasRound = 0,
HasFloor = 0,
HasCeil = 0
};
};
template<typename T> struct packet_traits : default_packet_traits
{
typedef T type;
typedef T half;
enum {
Vectorizable = 0,
size = 1,
AlignedOnScalar = 0,
HasHalfPacket = 0
};
enum {
HasAdd = 0,
HasSub = 0,
HasMul = 0,
HasNegate = 0,
HasAbs = 0,
HasAbs2 = 0,
HasMin = 0,
HasMax = 0,
HasConj = 0,
HasSetLinear = 0
};
};
template<typename T> struct packet_traits<const T> : packet_traits<T> { };
template <typename Src, typename Tgt> struct type_casting_traits {
enum {
VectorizedCast = 0,
SrcCoeffRatio = 1,
TgtCoeffRatio = 1
};
};
/** \internal \returns static_cast<TgtType>(a) (coeff-wise) */
template <typename SrcPacket, typename TgtPacket>
EIGEN_DEVICE_FUNC inline TgtPacket
pcast(const SrcPacket& a) {
return static_cast<TgtPacket>(a);
}
template <typename SrcPacket, typename TgtPacket>
EIGEN_DEVICE_FUNC inline TgtPacket
pcast(const SrcPacket& a, const SrcPacket& /*b*/) {
return static_cast<TgtPacket>(a);
}
/** \internal \returns a + b (coeff-wise) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
padd(const Packet& a,
const Packet& b) { return a+b; }
/** \internal \returns a - b (coeff-wise) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
psub(const Packet& a,
const Packet& b) { return a-b; }
/** \internal \returns -a (coeff-wise) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pnegate(const Packet& a) { return -a; }
/** \internal \returns conj(a) (coeff-wise) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pconj(const Packet& a) { return numext::conj(a); }
/** \internal \returns a * b (coeff-wise) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pmul(const Packet& a,
const Packet& b) { return a*b; }
/** \internal \returns a / b (coeff-wise) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pdiv(const Packet& a,
const Packet& b) { return a/b; }
/** \internal \returns the min of \a a and \a b (coeff-wise) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pmin(const Packet& a,
const Packet& b) { return numext::mini(a, b); }
/** \internal \returns the max of \a a and \a b (coeff-wise) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pmax(const Packet& a,
const Packet& b) { return numext::maxi(a, b); }
/** \internal \returns the absolute value of \a a */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pabs(const Packet& a) { using std::abs; return abs(a); }
/** \internal \returns the phase angle of \a a */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
parg(const Packet& a) { using numext::arg; return arg(a); }
/** \internal \returns the bitwise and of \a a and \a b */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pand(const Packet& a, const Packet& b) { return a & b; }
/** \internal \returns the bitwise or of \a a and \a b */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
por(const Packet& a, const Packet& b) { return a | b; }
/** \internal \returns the bitwise xor of \a a and \a b */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pxor(const Packet& a, const Packet& b) { return a ^ b; }
/** \internal \returns the bitwise andnot of \a a and \a b */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pandnot(const Packet& a, const Packet& b) { return a & (!b); }
/** \internal \returns a packet version of \a *from, from must be 16 bytes aligned */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pload(const typename unpacket_traits<Packet>::type* from) { return *from; }
/** \internal \returns a packet version of \a *from, (un-aligned load) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
ploadu(const typename unpacket_traits<Packet>::type* from) { return *from; }
/** \internal \returns a packet with constant coefficients \a a, e.g.: (a,a,a,a) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pset1(const typename unpacket_traits<Packet>::type& a) { return a; }
/** \internal \returns a packet with constant coefficients \a a[0], e.g.: (a[0],a[0],a[0],a[0]) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pload1(const typename unpacket_traits<Packet>::type *a) { return pset1<Packet>(*a); }
/** \internal \returns a packet with elements of \a *from duplicated.
* For instance, for a packet of 8 elements, 4 scalars will be read from \a *from and
* duplicated to form: {from[0],from[0],from[1],from[1],from[2],from[2],from[3],from[3]}
* Currently, this function is only used for scalar * complex products.
*/
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
ploaddup(const typename unpacket_traits<Packet>::type* from) { return *from; }
/** \internal \returns a packet with elements of \a *from quadrupled.
* For instance, for a packet of 8 elements, 2 scalars will be read from \a *from and
* replicated to form: {from[0],from[0],from[0],from[0],from[1],from[1],from[1],from[1]}
* Currently, this function is only used in matrix products.
* For packet-size smaller or equal to 4, this function is equivalent to pload1
*/
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
ploadquad(const typename unpacket_traits<Packet>::type* from)
{ return pload1<Packet>(from); }
/** \internal equivalent to
* \code
* a0 = pload1(a+0);
* a1 = pload1(a+1);
* a2 = pload1(a+2);
* a3 = pload1(a+3);
* \endcode
* \sa pset1, pload1, ploaddup, pbroadcast2
*/
template<typename Packet> EIGEN_DEVICE_FUNC
inline void pbroadcast4(const typename unpacket_traits<Packet>::type *a,
Packet& a0, Packet& a1, Packet& a2, Packet& a3)
{
a0 = pload1<Packet>(a+0);
a1 = pload1<Packet>(a+1);
a2 = pload1<Packet>(a+2);
a3 = pload1<Packet>(a+3);
}
/** \internal equivalent to
* \code
* a0 = pload1(a+0);
* a1 = pload1(a+1);
* \endcode
* \sa pset1, pload1, ploaddup, pbroadcast4
*/
template<typename Packet> EIGEN_DEVICE_FUNC
inline void pbroadcast2(const typename unpacket_traits<Packet>::type *a,
Packet& a0, Packet& a1)
{
a0 = pload1<Packet>(a+0);
a1 = pload1<Packet>(a+1);
}
/** \internal \brief Returns a packet with coefficients (a,a+1,...,a+packet_size-1). */
template<typename Packet> inline Packet
plset(const typename unpacket_traits<Packet>::type& a) { return a; }
/** \internal copy the packet \a from to \a *to, \a to must be 16 bytes aligned */
template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline void pstore(Scalar* to, const Packet& from)
{ (*to) = from; }
/** \internal copy the packet \a from to \a *to, (un-aligned store) */
template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline void pstoreu(Scalar* to, const Packet& from)
{ (*to) = from; }
template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline Packet pgather(const Scalar* from, Index /*stride*/)
{ return ploadu<Packet>(from); }
template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline void pscatter(Scalar* to, const Packet& from, Index /*stride*/)
{ pstore(to, from); }
/** \internal tries to do cache prefetching of \a addr */
template<typename Scalar> inline void prefetch(const Scalar* addr)
{
#ifdef __CUDA_ARCH__
#if defined(__LP64__)
// 64-bit pointer operand constraint for inlined asm
asm(" prefetch.L1 [ %1 ];" : "=l"(addr) : "l"(addr));
#else
// 32-bit pointer operand constraint for inlined asm
asm(" prefetch.L1 [ %1 ];" : "=r"(addr) : "r"(addr));
#endif
#elif !EIGEN_COMP_MSVC
__builtin_prefetch(addr);
#endif
}
/** \internal \returns the first element of a packet */
template<typename Packet> EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type pfirst(const Packet& a)
{ return a; }
/** \internal \returns a packet where the element i contains the sum of the packet of \a vec[i] */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
preduxp(const Packet* vecs) { return vecs[0]; }
/** \internal \returns the sum of the elements of \a a*/
template<typename Packet> EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux(const Packet& a)
{ return a; }
/** \internal \returns the sum of the elements of \a a by block of 4 elements.
* For a packet {a0, a1, a2, a3, a4, a5, a6, a7}, it returns a half packet {a0+a4, a1+a5, a2+a6, a3+a7}
* For packet-size smaller or equal to 4, this boils down to a noop.
*/
template<typename Packet> EIGEN_DEVICE_FUNC inline
typename conditional<(unpacket_traits<Packet>::size%8)==0,typename unpacket_traits<Packet>::half,Packet>::type
predux4(const Packet& a)
{ return a; }
/** \internal \returns the product of the elements of \a a*/
template<typename Packet> EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_mul(const Packet& a)
{ return a; }
/** \internal \returns the min of the elements of \a a*/
template<typename Packet> EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_min(const Packet& a)
{ return a; }
/** \internal \returns the max of the elements of \a a*/
template<typename Packet> EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_max(const Packet& a)
{ return a; }
/** \internal \returns the reversed elements of \a a*/
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet preverse(const Packet& a)
{ return a; }
template<size_t offset, typename Packet>
struct protate_impl
{
// Empty so attempts to use this unimplemented path will fail to compile.
// Only specializations of this template should be used.
};
/** \internal \returns a packet with the coefficients rotated to the right in little-endian convention,
* by the given offset, e.g. for offset == 1:
* (packet[3], packet[2], packet[1], packet[0]) becomes (packet[0], packet[3], packet[2], packet[1])
*/
template<size_t offset, typename Packet> EIGEN_DEVICE_FUNC inline Packet protate(const Packet& a)
{
return offset ? protate_impl<offset, Packet>::run(a) : a;
}
/** \internal \returns \a a with real and imaginary part flipped (for complex type only) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet pcplxflip(const Packet& a)
{
// FIXME: uncomment the following in case we drop the internal imag and real functions.
// using std::imag;
// using std::real;
return Packet(imag(a),real(a));
}
/**************************
* Special math functions
***************************/
/** \internal \returns the sine of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet psin(const Packet& a) { using std::sin; return sin(a); }
/** \internal \returns the cosine of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pcos(const Packet& a) { using std::cos; return cos(a); }
/** \internal \returns the tan of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet ptan(const Packet& a) { using std::tan; return tan(a); }
/** \internal \returns the arc sine of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pasin(const Packet& a) { using std::asin; return asin(a); }
/** \internal \returns the arc cosine of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pacos(const Packet& a) { using std::acos; return acos(a); }
/** \internal \returns the arc tangent of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet patan(const Packet& a) { using std::atan; return atan(a); }
/** \internal \returns the hyperbolic sine of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet psinh(const Packet& a) { using std::sinh; return sinh(a); }
/** \internal \returns the hyperbolic cosine of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pcosh(const Packet& a) { using std::cosh; return cosh(a); }
/** \internal \returns the hyperbolic tan of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet ptanh(const Packet& a) { using std::tanh; return tanh(a); }
/** \internal \returns the exp of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pexp(const Packet& a) { using std::exp; return exp(a); }
/** \internal \returns the log of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet plog(const Packet& a) { using std::log; return log(a); }
/** \internal \returns the log10 of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet plog10(const Packet& a) { using std::log10; return log10(a); }
/** \internal \returns the square-root of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet psqrt(const Packet& a) { using std::sqrt; return sqrt(a); }
/** \internal \returns the reciprocal square-root of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet prsqrt(const Packet& a) {
return pdiv(pset1<Packet>(1), psqrt(a));
}
/** \internal \returns the rounded value of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pround(const Packet& a) { using numext::round; return round(a); }
/** \internal \returns the floor of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pfloor(const Packet& a) { using numext::floor; return floor(a); }
/** \internal \returns the ceil of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pceil(const Packet& a) { using numext::ceil; return ceil(a); }
/***************************************************************************
* The following functions might not have to be overwritten for vectorized types
***************************************************************************/
/** \internal copy a packet with constant coeficient \a a (e.g., [a,a,a,a]) to \a *to. \a to must be 16 bytes aligned */
// NOTE: this function must really be templated on the packet type (think about different packet types for the same scalar type)
template<typename Packet>
inline void pstore1(typename unpacket_traits<Packet>::type* to, const typename unpacket_traits<Packet>::type& a)
{
pstore(to, pset1<Packet>(a));
}
/** \internal \returns a * b + c (coeff-wise) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pmadd(const Packet& a,
const Packet& b,
const Packet& c)
{ return padd(pmul(a, b),c); }
/** \internal \returns a packet version of \a *from.
* The pointer \a from must be aligned on a \a Alignment bytes boundary. */
template<typename Packet, int Alignment>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet ploadt(const typename unpacket_traits<Packet>::type* from)
{
if(Alignment >= unpacket_traits<Packet>::alignment)
return pload<Packet>(from);
else
return ploadu<Packet>(from);
}
/** \internal copy the packet \a from to \a *to.
* The pointer \a from must be aligned on a \a Alignment bytes boundary. */
template<typename Scalar, typename Packet, int Alignment>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pstoret(Scalar* to, const Packet& from)
{
if(Alignment >= unpacket_traits<Packet>::alignment)
pstore(to, from);
else
pstoreu(to, from);
}
/** \internal \returns a packet version of \a *from.
* Unlike ploadt, ploadt_ro takes advantage of the read-only memory path on the
* hardware if available to speedup the loading of data that won't be modified
* by the current computation.
*/
template<typename Packet, int LoadMode>
inline Packet ploadt_ro(const typename unpacket_traits<Packet>::type* from)
{
return ploadt<Packet, LoadMode>(from);
}
/** \internal default implementation of palign() allowing partial specialization */
template<int Offset,typename PacketType>
struct palign_impl
{
// by default data are aligned, so there is nothing to be done :)
static inline void run(PacketType&, const PacketType&) {}
};
/** \internal update \a first using the concatenation of the packet_size minus \a Offset last elements
* of \a first and \a Offset first elements of \a second.
*
* This function is currently only used to optimize matrix-vector products on unligned matrices.
* It takes 2 packets that represent a contiguous memory array, and returns a packet starting
* at the position \a Offset. For instance, for packets of 4 elements, we have:
* Input:
* - first = {f0,f1,f2,f3}
* - second = {s0,s1,s2,s3}
* Output:
* - if Offset==0 then {f0,f1,f2,f3}
* - if Offset==1 then {f1,f2,f3,s0}
* - if Offset==2 then {f2,f3,s0,s1}
* - if Offset==3 then {f3,s0,s1,s3}
*/
template<int Offset,typename PacketType>
inline void palign(PacketType& first, const PacketType& second)
{
palign_impl<Offset,PacketType>::run(first,second);
}
/***************************************************************************
* Fast complex products (GCC generates a function call which is very slow)
***************************************************************************/
// Eigen+CUDA does not support complexes.
#ifndef __CUDACC__
template<> inline std::complex<float> pmul(const std::complex<float>& a, const std::complex<float>& b)
{ return std::complex<float>(real(a)*real(b) - imag(a)*imag(b), imag(a)*real(b) + real(a)*imag(b)); }
template<> inline std::complex<double> pmul(const std::complex<double>& a, const std::complex<double>& b)
{ return std::complex<double>(real(a)*real(b) - imag(a)*imag(b), imag(a)*real(b) + real(a)*imag(b)); }
#endif
/***************************************************************************
* PacketBlock, that is a collection of N packets where the number of words
* in the packet is a multiple of N.
***************************************************************************/
template <typename Packet,int N=unpacket_traits<Packet>::size> struct PacketBlock {
Packet packet[N];
};
template<typename Packet> EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet,1>& /*kernel*/) {
// Nothing to do in the scalar case, i.e. a 1x1 matrix.
}
/***************************************************************************
* Selector, i.e. vector of N boolean values used to select (i.e. blend)
* words from 2 packets.
***************************************************************************/
template <size_t N> struct Selector {
bool select[N];
};
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pblend(const Selector<unpacket_traits<Packet>::size>& ifPacket, const Packet& thenPacket, const Packet& elsePacket) {
return ifPacket.select[0] ? thenPacket : elsePacket;
}
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_GENERIC_PACKET_MATH_H

View File

@ -0,0 +1,137 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010-2012 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_GLOBAL_FUNCTIONS_H
#define EIGEN_GLOBAL_FUNCTIONS_H
#define EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(NAME,FUNCTOR) \
template<typename Derived> \
inline const Eigen::CwiseUnaryOp<Eigen::internal::FUNCTOR<typename Derived::Scalar>, const Derived> \
(NAME)(const Eigen::ArrayBase<Derived>& x) { \
return Eigen::CwiseUnaryOp<Eigen::internal::FUNCTOR<typename Derived::Scalar>, const Derived>(x.derived()); \
}
#define EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(NAME,FUNCTOR) \
\
template<typename Derived> \
struct NAME##_retval<ArrayBase<Derived> > \
{ \
typedef const Eigen::CwiseUnaryOp<Eigen::internal::FUNCTOR<typename Derived::Scalar>, const Derived> type; \
}; \
template<typename Derived> \
struct NAME##_impl<ArrayBase<Derived> > \
{ \
static inline typename NAME##_retval<ArrayBase<Derived> >::type run(const Eigen::ArrayBase<Derived>& x) \
{ \
return typename NAME##_retval<ArrayBase<Derived> >::type(x.derived()); \
} \
};
namespace Eigen
{
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(real,scalar_real_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(imag,scalar_imag_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(conj,scalar_conjugate_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(inverse,scalar_inverse_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(sin,scalar_sin_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(cos,scalar_cos_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(tan,scalar_tan_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(atan,scalar_atan_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(asin,scalar_asin_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(acos,scalar_acos_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(sinh,scalar_sinh_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(cosh,scalar_cosh_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(tanh,scalar_tanh_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(exp,scalar_exp_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(log,scalar_log_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(log10,scalar_log10_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(abs,scalar_abs_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(abs2,scalar_abs2_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(arg,scalar_arg_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(sqrt,scalar_sqrt_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(square,scalar_square_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(cube,scalar_cube_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(round,scalar_round_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(floor,scalar_floor_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(ceil,scalar_ceil_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(isnan,scalar_isnan_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(isinf,scalar_isinf_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(isfinite,scalar_isfinite_op)
template<typename Derived>
inline const Eigen::CwiseUnaryOp<Eigen::internal::scalar_pow_op<typename Derived::Scalar>, const Derived>
pow(const Eigen::ArrayBase<Derived>& x, const typename Derived::Scalar& exponent) {
return x.derived().pow(exponent);
}
/** \returns an expression of the coefficient-wise power of \a x to the given array of \a exponents.
*
* This function computes the coefficient-wise power.
*
* Example: \include Cwise_array_power_array.cpp
* Output: \verbinclude Cwise_array_power_array.out
*
* \sa ArrayBase::pow()
*/
template<typename Derived,typename ExponentDerived>
inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_binary_pow_op<typename Derived::Scalar, typename ExponentDerived::Scalar>, const Derived, const ExponentDerived>
pow(const Eigen::ArrayBase<Derived>& x, const Eigen::ArrayBase<ExponentDerived>& exponents)
{
return Eigen::CwiseBinaryOp<Eigen::internal::scalar_binary_pow_op<typename Derived::Scalar, typename ExponentDerived::Scalar>, const Derived, const ExponentDerived>(
x.derived(),
exponents.derived()
);
}
/** \returns an expression of the coefficient-wise power of the scalar \a x to the given array of \a exponents.
*
* This function computes the coefficient-wise power between a scalar and an array of exponents.
* Beaware that the scalar type of the input scalar \a x and the exponents \a exponents must be the same.
*
* Example: \include Cwise_scalar_power_array.cpp
* Output: \verbinclude Cwise_scalar_power_array.out
*
* \sa ArrayBase::pow()
*/
template<typename Derived>
inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_binary_pow_op<typename Derived::Scalar, typename Derived::Scalar>, const typename Derived::ConstantReturnType, const Derived>
pow(const typename Derived::Scalar& x, const Eigen::ArrayBase<Derived>& exponents)
{
typename Derived::ConstantReturnType constant_x(exponents.rows(), exponents.cols(), x);
return Eigen::CwiseBinaryOp<Eigen::internal::scalar_binary_pow_op<typename Derived::Scalar, typename Derived::Scalar>, const typename Derived::ConstantReturnType, const Derived>(
constant_x,
exponents.derived()
);
}
/**
* \brief Component-wise division of a scalar by array elements.
**/
template <typename Derived>
inline const Eigen::CwiseUnaryOp<Eigen::internal::scalar_inverse_mult_op<typename Derived::Scalar>, const Derived>
operator/(const typename Derived::Scalar& s, const Eigen::ArrayBase<Derived>& a)
{
return Eigen::CwiseUnaryOp<Eigen::internal::scalar_inverse_mult_op<typename Derived::Scalar>, const Derived>(
a.derived(),
Eigen::internal::scalar_inverse_mult_op<typename Derived::Scalar>(s)
);
}
namespace internal
{
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(real,scalar_real_op)
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(imag,scalar_imag_op)
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(abs2,scalar_abs2_op)
}
}
// TODO: cleanly disable those functions that are not supported on Array (numext::real_ref, internal::random, internal::isApprox...)
#endif // EIGEN_GLOBAL_FUNCTIONS_H

253
third_party/eigen3/Eigen/src/Core/IO.h vendored Normal file
View File

@ -0,0 +1,253 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_IO_H
#define EIGEN_IO_H
namespace Eigen {
enum { DontAlignCols = 1 };
enum { StreamPrecision = -1,
FullPrecision = -2 };
namespace internal {
template<typename Derived>
std::ostream & print_matrix(std::ostream & s, const Derived& _m, const IOFormat& fmt);
}
/** \class IOFormat
* \ingroup Core_Module
*
* \brief Stores a set of parameters controlling the way matrices are printed
*
* List of available parameters:
* - \b precision number of digits for floating point values, or one of the special constants \c StreamPrecision and \c FullPrecision.
* The default is the special value \c StreamPrecision which means to use the
* stream's own precision setting, as set for instance using \c cout.precision(3). The other special value
* \c FullPrecision means that the number of digits will be computed to match the full precision of each floating-point
* type.
* - \b flags an OR-ed combination of flags, the default value is 0, the only currently available flag is \c DontAlignCols which
* allows to disable the alignment of columns, resulting in faster code.
* - \b coeffSeparator string printed between two coefficients of the same row
* - \b rowSeparator string printed between two rows
* - \b rowPrefix string printed at the beginning of each row
* - \b rowSuffix string printed at the end of each row
* - \b matPrefix string printed at the beginning of the matrix
* - \b matSuffix string printed at the end of the matrix
*
* Example: \include IOFormat.cpp
* Output: \verbinclude IOFormat.out
*
* \sa DenseBase::format(), class WithFormat
*/
struct IOFormat
{
/** Default constructor, see class IOFormat for the meaning of the parameters */
IOFormat(int _precision = StreamPrecision, int _flags = 0,
const std::string& _coeffSeparator = " ",
const std::string& _rowSeparator = "\n", const std::string& _rowPrefix="", const std::string& _rowSuffix="",
const std::string& _matPrefix="", const std::string& _matSuffix="")
: matPrefix(_matPrefix), matSuffix(_matSuffix), rowPrefix(_rowPrefix), rowSuffix(_rowSuffix), rowSeparator(_rowSeparator),
rowSpacer(""), coeffSeparator(_coeffSeparator), precision(_precision), flags(_flags)
{
// TODO check if rowPrefix, rowSuffix or rowSeparator contains a newline
// don't add rowSpacer if columns are not to be aligned
if((flags & DontAlignCols))
return;
int i = int(matSuffix.length())-1;
while (i>=0 && matSuffix[i]!='\n')
{
rowSpacer += ' ';
i--;
}
}
std::string matPrefix, matSuffix;
std::string rowPrefix, rowSuffix, rowSeparator, rowSpacer;
std::string coeffSeparator;
int precision;
int flags;
};
/** \class WithFormat
* \ingroup Core_Module
*
* \brief Pseudo expression providing matrix output with given format
*
* \param ExpressionType the type of the object on which IO stream operations are performed
*
* This class represents an expression with stream operators controlled by a given IOFormat.
* It is the return type of DenseBase::format()
* and most of the time this is the only way it is used.
*
* See class IOFormat for some examples.
*
* \sa DenseBase::format(), class IOFormat
*/
template<typename ExpressionType>
class WithFormat
{
public:
WithFormat(const ExpressionType& matrix, const IOFormat& format)
: m_matrix(matrix), m_format(format)
{}
friend std::ostream & operator << (std::ostream & s, const WithFormat& wf)
{
return internal::print_matrix(s, wf.m_matrix.eval(), wf.m_format);
}
protected:
const typename ExpressionType::Nested m_matrix;
IOFormat m_format;
};
/** \returns a WithFormat proxy object allowing to print a matrix the with given
* format \a fmt.
*
* See class IOFormat for some examples.
*
* \sa class IOFormat, class WithFormat
*/
template<typename Derived>
inline const WithFormat<Derived>
DenseBase<Derived>::format(const IOFormat& fmt) const
{
return WithFormat<Derived>(derived(), fmt);
}
namespace internal {
template<typename Scalar, bool IsInteger>
struct significant_decimals_default_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
static inline int run()
{
using std::ceil;
using std::log;
return cast<RealScalar,int>(ceil(-log(NumTraits<RealScalar>::epsilon())/log(RealScalar(10))));
}
};
template<typename Scalar>
struct significant_decimals_default_impl<Scalar, true>
{
static inline int run()
{
return 0;
}
};
template<typename Scalar>
struct significant_decimals_impl
: significant_decimals_default_impl<Scalar, NumTraits<Scalar>::IsInteger>
{};
/** \internal
* print the matrix \a _m to the output stream \a s using the output format \a fmt */
template<typename Derived>
std::ostream & print_matrix(std::ostream & s, const Derived& _m, const IOFormat& fmt)
{
if(_m.size() == 0)
{
s << fmt.matPrefix << fmt.matSuffix;
return s;
}
typename Derived::Nested m = _m;
typedef typename Derived::Scalar Scalar;
Index width = 0;
std::streamsize explicit_precision;
if(fmt.precision == StreamPrecision)
{
explicit_precision = 0;
}
else if(fmt.precision == FullPrecision)
{
if (NumTraits<Scalar>::IsInteger)
{
explicit_precision = 0;
}
else
{
explicit_precision = significant_decimals_impl<Scalar>::run();
}
}
else
{
explicit_precision = fmt.precision;
}
std::streamsize old_precision = 0;
if(explicit_precision) old_precision = s.precision(explicit_precision);
bool align_cols = !(fmt.flags & DontAlignCols);
if(align_cols)
{
// compute the largest width
for(Index j = 0; j < m.cols(); ++j)
for(Index i = 0; i < m.rows(); ++i)
{
std::stringstream sstr;
sstr.copyfmt(s);
sstr << m.coeff(i,j);
width = std::max<Index>(width, Index(sstr.str().length()));
}
}
s << fmt.matPrefix;
for(Index i = 0; i < m.rows(); ++i)
{
if (i)
s << fmt.rowSpacer;
s << fmt.rowPrefix;
if(width) s.width(width);
s << m.coeff(i, 0);
for(Index j = 1; j < m.cols(); ++j)
{
s << fmt.coeffSeparator;
if (width) s.width(width);
s << m.coeff(i, j);
}
s << fmt.rowSuffix;
if( i < m.rows() - 1)
s << fmt.rowSeparator;
}
s << fmt.matSuffix;
if(explicit_precision) s.precision(old_precision);
return s;
}
} // end namespace internal
/** \relates DenseBase
*
* Outputs the matrix, to the given stream.
*
* If you wish to print the matrix with a format different than the default, use DenseBase::format().
*
* It is also possible to change the default format by defining EIGEN_DEFAULT_IO_FORMAT before including Eigen headers.
* If not defined, this will automatically be defined to Eigen::IOFormat(), that is the Eigen::IOFormat with default parameters.
*
* \sa DenseBase::format()
*/
template<typename Derived>
std::ostream & operator <<
(std::ostream & s,
const DenseBase<Derived> & m)
{
return internal::print_matrix(s, m.eval(), EIGEN_DEFAULT_IO_FORMAT);
}
} // end namespace Eigen
#endif // EIGEN_IO_H

View File

@ -0,0 +1,126 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_INVERSE_H
#define EIGEN_INVERSE_H
namespace Eigen {
// TODO move the general declaration in Core, and rename this file DenseInverseImpl.h, or something like this...
template<typename XprType,typename StorageKind> class InverseImpl;
namespace internal {
template<typename XprType>
struct traits<Inverse<XprType> >
: traits<typename XprType::PlainObject>
{
typedef typename XprType::PlainObject PlainObject;
typedef traits<PlainObject> BaseTraits;
enum {
Flags = BaseTraits::Flags & RowMajorBit
};
};
} // end namespace internal
/** \class Inverse
*
* \brief Expression of the inverse of another expression
*
* \tparam XprType the type of the expression we are taking the inverse
*
* This class represents an abstract expression of A.inverse()
* and most of the time this is the only way it is used.
*
*/
template<typename XprType>
class Inverse : public InverseImpl<XprType,typename internal::traits<XprType>::StorageKind>
{
public:
typedef typename XprType::StorageIndex StorageIndex;
typedef typename XprType::PlainObject PlainObject;
typedef typename internal::ref_selector<XprType>::type XprTypeNested;
typedef typename internal::remove_all<XprTypeNested>::type XprTypeNestedCleaned;
explicit Inverse(const XprType &xpr)
: m_xpr(xpr)
{}
EIGEN_DEVICE_FUNC Index rows() const { return m_xpr.rows(); }
EIGEN_DEVICE_FUNC Index cols() const { return m_xpr.cols(); }
EIGEN_DEVICE_FUNC const XprTypeNestedCleaned& nestedExpression() const { return m_xpr; }
protected:
XprTypeNested m_xpr;
};
/** \internal
* Specialization of the Inverse expression for dense expressions.
* Direct access to the coefficients are discared.
* FIXME this intermediate class is probably not needed anymore.
*/
template<typename XprType>
class InverseImpl<XprType,Dense>
: public MatrixBase<Inverse<XprType> >
{
typedef Inverse<XprType> Derived;
public:
typedef MatrixBase<Derived> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Derived)
typedef typename internal::remove_all<XprType>::type NestedExpression;
private:
Scalar coeff(Index row, Index col) const;
Scalar coeff(Index i) const;
};
namespace internal {
/** \internal
* \brief Default evaluator for Inverse expression.
*
* This default evaluator for Inverse expression simply evaluate the inverse into a temporary
* by a call to internal::call_assignment_no_alias.
* Therefore, inverse implementers only have to specialize Assignment<Dst,Inverse<...>, ...> for
* there own nested expression.
*
* \sa class Inverse
*/
template<typename ArgType>
struct unary_evaluator<Inverse<ArgType> >
: public evaluator<typename Inverse<ArgType>::PlainObject>
{
typedef Inverse<ArgType> InverseType;
typedef typename InverseType::PlainObject PlainObject;
typedef evaluator<PlainObject> Base;
enum { Flags = Base::Flags | EvalBeforeNestingBit };
unary_evaluator(const InverseType& inv_xpr)
: m_result(inv_xpr.rows(), inv_xpr.cols())
{
::new (static_cast<Base*>(this)) Base(m_result);
internal::call_assignment_no_alias(m_result, inv_xpr);
}
protected:
PlainObject m_result;
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_INVERSE_H

165
third_party/eigen3/Eigen/src/Core/Map.h vendored Normal file
View File

@ -0,0 +1,165 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2007-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MAP_H
#define EIGEN_MAP_H
namespace Eigen {
/** \class Map
* \ingroup Core_Module
*
* \brief A matrix or vector expression mapping an existing array of data.
*
* \tparam PlainObjectType the equivalent matrix type of the mapped data
* \tparam MapOptions specifies the pointer alignment in bytes. It can be: \c #Aligned128, , \c #Aligned64, \c #Aligned32, \c #Aligned16, \c #Aligned8 or \c #Unaligned.
* The default is \c #Unaligned.
* \tparam StrideType optionally specifies strides. By default, Map assumes the memory layout
* of an ordinary, contiguous array. This can be overridden by specifying strides.
* The type passed here must be a specialization of the Stride template, see examples below.
*
* This class represents a matrix or vector expression mapping an existing array of data.
* It can be used to let Eigen interface without any overhead with non-Eigen data structures,
* such as plain C arrays or structures from other libraries. By default, it assumes that the
* data is laid out contiguously in memory. You can however override this by explicitly specifying
* inner and outer strides.
*
* Here's an example of simply mapping a contiguous array as a \ref TopicStorageOrders "column-major" matrix:
* \include Map_simple.cpp
* Output: \verbinclude Map_simple.out
*
* If you need to map non-contiguous arrays, you can do so by specifying strides:
*
* Here's an example of mapping an array as a vector, specifying an inner stride, that is, the pointer
* increment between two consecutive coefficients. Here, we're specifying the inner stride as a compile-time
* fixed value.
* \include Map_inner_stride.cpp
* Output: \verbinclude Map_inner_stride.out
*
* Here's an example of mapping an array while specifying an outer stride. Here, since we're mapping
* as a column-major matrix, 'outer stride' means the pointer increment between two consecutive columns.
* Here, we're specifying the outer stride as a runtime parameter. Note that here \c OuterStride<> is
* a short version of \c OuterStride<Dynamic> because the default template parameter of OuterStride
* is \c Dynamic
* \include Map_outer_stride.cpp
* Output: \verbinclude Map_outer_stride.out
*
* For more details and for an example of specifying both an inner and an outer stride, see class Stride.
*
* \b Tip: to change the array of data mapped by a Map object, you can use the C++
* placement new syntax:
*
* Example: \include Map_placement_new.cpp
* Output: \verbinclude Map_placement_new.out
*
* This class is the return type of PlainObjectBase::Map() but can also be used directly.
*
* \sa PlainObjectBase::Map(), \ref TopicStorageOrders
*/
namespace internal {
template<typename PlainObjectType, int MapOptions, typename StrideType>
struct traits<Map<PlainObjectType, MapOptions, StrideType> >
: public traits<PlainObjectType>
{
typedef traits<PlainObjectType> TraitsBase;
enum {
InnerStrideAtCompileTime = StrideType::InnerStrideAtCompileTime == 0
? int(PlainObjectType::InnerStrideAtCompileTime)
: int(StrideType::InnerStrideAtCompileTime),
OuterStrideAtCompileTime = StrideType::OuterStrideAtCompileTime == 0
? int(PlainObjectType::OuterStrideAtCompileTime)
: int(StrideType::OuterStrideAtCompileTime),
Alignment = int(MapOptions)&int(AlignedMask),
Flags0 = TraitsBase::Flags & (~NestByRefBit),
Flags = is_lvalue<PlainObjectType>::value ? int(Flags0) : (int(Flags0) & ~LvalueBit)
};
private:
enum { Options }; // Expressions don't have Options
};
}
template<typename PlainObjectType, int MapOptions, typename StrideType> class Map
: public MapBase<Map<PlainObjectType, MapOptions, StrideType> >
{
public:
typedef MapBase<Map> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Map)
typedef typename Base::PointerType PointerType;
typedef PointerType PointerArgType;
EIGEN_DEVICE_FUNC
inline PointerType cast_to_pointer_type(PointerArgType ptr) { return ptr; }
EIGEN_DEVICE_FUNC
inline Index innerStride() const
{
return StrideType::InnerStrideAtCompileTime != 0 ? m_stride.inner() : 1;
}
EIGEN_DEVICE_FUNC
inline Index outerStride() const
{
return StrideType::OuterStrideAtCompileTime != 0 ? m_stride.outer()
: IsVectorAtCompileTime ? this->size()
: int(Flags)&RowMajorBit ? this->cols()
: this->rows();
}
/** Constructor in the fixed-size case.
*
* \param dataPtr pointer to the array to map
* \param stride optional Stride object, passing the strides.
*/
EIGEN_DEVICE_FUNC
explicit inline Map(PointerArgType dataPtr, const StrideType& stride = StrideType())
: Base(cast_to_pointer_type(dataPtr)), m_stride(stride)
{
PlainObjectType::Base::_check_template_params();
}
/** Constructor in the dynamic-size vector case.
*
* \param dataPtr pointer to the array to map
* \param size the size of the vector expression
* \param stride optional Stride object, passing the strides.
*/
EIGEN_DEVICE_FUNC
inline Map(PointerArgType dataPtr, Index size, const StrideType& stride = StrideType())
: Base(cast_to_pointer_type(dataPtr), size), m_stride(stride)
{
PlainObjectType::Base::_check_template_params();
}
/** Constructor in the dynamic-size matrix case.
*
* \param dataPtr pointer to the array to map
* \param rows the number of rows of the matrix expression
* \param cols the number of columns of the matrix expression
* \param stride optional Stride object, passing the strides.
*/
EIGEN_DEVICE_FUNC
inline Map(PointerArgType dataPtr, Index rows, Index cols, const StrideType& stride = StrideType())
: Base(cast_to_pointer_type(dataPtr), rows, cols), m_stride(stride)
{
PlainObjectType::Base::_check_template_params();
}
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
protected:
StrideType m_stride;
};
} // end namespace Eigen
#endif // EIGEN_MAP_H

View File

@ -0,0 +1,257 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2007-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MAPBASE_H
#define EIGEN_MAPBASE_H
#define EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived) \
EIGEN_STATIC_ASSERT((int(internal::evaluator<Derived>::Flags) & LinearAccessBit) || Derived::IsVectorAtCompileTime, \
YOU_ARE_TRYING_TO_USE_AN_INDEX_BASED_ACCESSOR_ON_AN_EXPRESSION_THAT_DOES_NOT_SUPPORT_THAT)
namespace Eigen {
/** \class MapBase
* \ingroup Core_Module
*
* \brief Base class for Map and Block expression with direct access
*
* \sa class Map, class Block
*/
template<typename Derived> class MapBase<Derived, ReadOnlyAccessors>
: public internal::dense_xpr_base<Derived>::type
{
public:
typedef typename internal::dense_xpr_base<Derived>::type Base;
enum {
RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
SizeAtCompileTime = Base::SizeAtCompileTime
};
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef typename internal::conditional<
bool(internal::is_lvalue<Derived>::value),
Scalar *,
const Scalar *>::type
PointerType;
using Base::derived;
// using Base::RowsAtCompileTime;
// using Base::ColsAtCompileTime;
// using Base::SizeAtCompileTime;
using Base::MaxRowsAtCompileTime;
using Base::MaxColsAtCompileTime;
using Base::MaxSizeAtCompileTime;
using Base::IsVectorAtCompileTime;
using Base::Flags;
using Base::IsRowMajor;
using Base::rows;
using Base::cols;
using Base::size;
using Base::coeff;
using Base::coeffRef;
using Base::lazyAssign;
using Base::eval;
using Base::innerStride;
using Base::outerStride;
using Base::rowStride;
using Base::colStride;
// bug 217 - compile error on ICC 11.1
using Base::operator=;
typedef typename Base::CoeffReturnType CoeffReturnType;
EIGEN_DEVICE_FUNC inline Index rows() const { return m_rows.value(); }
EIGEN_DEVICE_FUNC inline Index cols() const { return m_cols.value(); }
/** Returns a pointer to the first coefficient of the matrix or vector.
*
* \note When addressing this data, make sure to honor the strides returned by innerStride() and outerStride().
*
* \sa innerStride(), outerStride()
*/
EIGEN_DEVICE_FUNC inline const Scalar* data() const { return m_data; }
EIGEN_DEVICE_FUNC
inline const Scalar& coeff(Index rowId, Index colId) const
{
return m_data[colId * colStride() + rowId * rowStride()];
}
EIGEN_DEVICE_FUNC
inline const Scalar& coeff(Index index) const
{
EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived)
return m_data[index * innerStride()];
}
EIGEN_DEVICE_FUNC
inline const Scalar& coeffRef(Index rowId, Index colId) const
{
return this->m_data[colId * colStride() + rowId * rowStride()];
}
EIGEN_DEVICE_FUNC
inline const Scalar& coeffRef(Index index) const
{
EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived)
return this->m_data[index * innerStride()];
}
template<int LoadMode>
inline PacketScalar packet(Index rowId, Index colId) const
{
return internal::ploadt<PacketScalar, LoadMode>
(m_data + (colId * colStride() + rowId * rowStride()));
}
template<int LoadMode>
inline PacketScalar packet(Index index) const
{
EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived)
return internal::ploadt<PacketScalar, LoadMode>(m_data + index * innerStride());
}
EIGEN_DEVICE_FUNC
explicit inline MapBase(PointerType dataPtr) : m_data(dataPtr), m_rows(RowsAtCompileTime), m_cols(ColsAtCompileTime)
{
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
checkSanity();
}
EIGEN_DEVICE_FUNC
inline MapBase(PointerType dataPtr, Index vecSize)
: m_data(dataPtr),
m_rows(RowsAtCompileTime == Dynamic ? vecSize : Index(RowsAtCompileTime)),
m_cols(ColsAtCompileTime == Dynamic ? vecSize : Index(ColsAtCompileTime))
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
eigen_assert(vecSize >= 0);
eigen_assert(dataPtr == 0 || SizeAtCompileTime == Dynamic || SizeAtCompileTime == vecSize);
checkSanity();
}
EIGEN_DEVICE_FUNC
inline MapBase(PointerType dataPtr, Index rows, Index cols)
: m_data(dataPtr), m_rows(rows), m_cols(cols)
{
eigen_assert( (dataPtr == 0)
|| ( rows >= 0 && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows)
&& cols >= 0 && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols)));
checkSanity();
}
protected:
EIGEN_DEVICE_FUNC
void checkSanity() const
{
#if EIGEN_MAX_ALIGN_BYTES>0
eigen_assert(((size_t(m_data) % EIGEN_PLAIN_ENUM_MAX(1,internal::traits<Derived>::Alignment)) == 0) && "data is not aligned");
#endif
}
PointerType m_data;
const internal::variable_if_dynamic<Index, RowsAtCompileTime> m_rows;
const internal::variable_if_dynamic<Index, ColsAtCompileTime> m_cols;
};
template<typename Derived> class MapBase<Derived, WriteAccessors>
: public MapBase<Derived, ReadOnlyAccessors>
{
typedef MapBase<Derived, ReadOnlyAccessors> ReadOnlyMapBase;
public:
typedef MapBase<Derived, ReadOnlyAccessors> Base;
typedef typename Base::Scalar Scalar;
typedef typename Base::PacketScalar PacketScalar;
typedef typename Base::StorageIndex StorageIndex;
typedef typename Base::PointerType PointerType;
using Base::derived;
using Base::rows;
using Base::cols;
using Base::size;
using Base::coeff;
using Base::coeffRef;
using Base::innerStride;
using Base::outerStride;
using Base::rowStride;
using Base::colStride;
typedef typename internal::conditional<
internal::is_lvalue<Derived>::value,
Scalar,
const Scalar
>::type ScalarWithConstIfNotLvalue;
EIGEN_DEVICE_FUNC
inline const Scalar* data() const { return this->m_data; }
EIGEN_DEVICE_FUNC
inline ScalarWithConstIfNotLvalue* data() { return this->m_data; } // no const-cast here so non-const-correct code will give a compile error
EIGEN_DEVICE_FUNC
inline ScalarWithConstIfNotLvalue& coeffRef(Index row, Index col)
{
return this->m_data[col * colStride() + row * rowStride()];
}
EIGEN_DEVICE_FUNC
inline ScalarWithConstIfNotLvalue& coeffRef(Index index)
{
EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived)
return this->m_data[index * innerStride()];
}
template<int StoreMode>
inline void writePacket(Index row, Index col, const PacketScalar& val)
{
internal::pstoret<Scalar, PacketScalar, StoreMode>
(this->m_data + (col * colStride() + row * rowStride()), val);
}
template<int StoreMode>
inline void writePacket(Index index, const PacketScalar& val)
{
EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived)
internal::pstoret<Scalar, PacketScalar, StoreMode>
(this->m_data + index * innerStride(), val);
}
EIGEN_DEVICE_FUNC explicit inline MapBase(PointerType dataPtr) : Base(dataPtr) {}
EIGEN_DEVICE_FUNC inline MapBase(PointerType dataPtr, Index vecSize) : Base(dataPtr, vecSize) {}
EIGEN_DEVICE_FUNC inline MapBase(PointerType dataPtr, Index rows, Index cols) : Base(dataPtr, rows, cols) {}
EIGEN_DEVICE_FUNC
Derived& operator=(const MapBase& other)
{
ReadOnlyMapBase::Base::operator=(other);
return derived();
}
// In theory we could simply refer to Base:Base::operator=, but MSVC does not like Base::Base,
// see bugs 821 and 920.
using ReadOnlyMapBase::Base::operator=;
};
#undef EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS
} // end namespace Eigen
#endif // EIGEN_MAPBASE_H

File diff suppressed because it is too large Load Diff

Some files were not shown because too many files have changed in this diff Show More