Pass ScalarType separately from Type in python constructors

Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17786

Reviewed By: ezyang

Differential Revision: D14379075

fbshipit-source-id: 3abf066563b789a30cafe5b0c868a41326f5b833
This commit is contained in:
Roy Li
2019-04-04 02:21:09 -07:00
committed by Facebook Github Bot
parent f5741eb855
commit d70c6f23f4
9 changed files with 103 additions and 73 deletions

View File

@ -328,7 +328,7 @@ static PyObject * THPVariable_as_tensor(PyObject* self, PyObject* args, PyObject
{
HANDLE_TH_ERRORS
jit::tracer::warn("torch.as_tensor", jit::tracer::WARN_CONSTRUCTOR);
return THPVariable_Wrap(torch::utils::as_tensor(default_type(), args, kwargs));
return THPVariable_Wrap(torch::utils::as_tensor(default_type(), default_scalar_type(), args, kwargs));
END_HANDLE_TH_ERRORS
}
@ -361,7 +361,7 @@ static PyObject * THPVariable_sparse_coo_tensor(PyObject* self, PyObject* args,
{
HANDLE_TH_ERRORS
jit::tracer::warn("torch.sparse_coo_tensor", jit::tracer::WARN_CONSTRUCTOR);
return THPVariable_Wrap(torch::utils::sparse_coo_tensor_ctor(default_type(), args, kwargs));
return THPVariable_Wrap(torch::utils::sparse_coo_tensor_ctor(default_type(), default_scalar_type(), args, kwargs));
END_HANDLE_TH_ERRORS
}
@ -369,7 +369,7 @@ static PyObject * THPVariable_tensor(PyObject* self, PyObject* args, PyObject* k
{
HANDLE_TH_ERRORS
jit::tracer::warn("torch.tensor", jit::tracer::WARN_CONSTRUCTOR);
return THPVariable_Wrap(torch::utils::tensor_ctor(default_type(), args, kwargs));
return THPVariable_Wrap(torch::utils::tensor_ctor(default_type(), default_scalar_type(), args, kwargs));
END_HANDLE_TH_ERRORS
}

View File

@ -17,6 +17,7 @@ namespace torch { namespace autograd {
using at::Tensor;
using at::Scalar;
using at::ScalarType;
using at::TensorList;
using at::IntArrayRef;
using at::Generator;
@ -28,6 +29,10 @@ static at::Type& default_type() {
return torch::tensors::get_default_tensor_type();
}
static ScalarType default_scalar_type() {
return torch::tensors::get_default_scalar_type();
}
static void maybe_initialize_cuda(const at::TensorOptions& options) {
if (options.device().is_cuda()) {
torch::utils::cuda_lazy_init();

View File

@ -496,7 +496,7 @@ static PyObject * THPVariable_new(PyObject* self, PyObject* args, PyObject* kwar
HANDLE_TH_ERRORS
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
OptionalDeviceGuard device_guard(device_of(self_));
return THPVariable_Wrap(torch::utils::legacy_tensor_new(self_.dispatch_type(), args, kwargs));
return THPVariable_Wrap(torch::utils::legacy_tensor_new(self_.dispatch_type(), self_.scalar_type(), args, kwargs));
END_HANDLE_TH_ERRORS
}
@ -506,7 +506,7 @@ static PyObject * THPVariable_new_empty(PyObject* self, PyObject* args, PyObject
jit::tracer::warn("new_empty", jit::tracer::LEGACY_CONSTRUCTOR);
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
OptionalDeviceGuard device_guard(device_of(self_));
return THPVariable_Wrap(torch::utils::new_empty(self_.dispatch_type(), args, kwargs));
return THPVariable_Wrap(torch::utils::new_empty(self_.dispatch_type(), self_.scalar_type(), args, kwargs));
END_HANDLE_TH_ERRORS
}
@ -516,7 +516,7 @@ static PyObject * THPVariable_new_full(PyObject* self, PyObject* args, PyObject*
jit::tracer::warn("new_full", jit::tracer::LEGACY_CONSTRUCTOR);
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
OptionalDeviceGuard device_guard(device_of(self_));
return THPVariable_Wrap(torch::utils::new_full(self_.dispatch_type(), args, kwargs));
return THPVariable_Wrap(torch::utils::new_full(self_.dispatch_type(), self_.scalar_type(), args, kwargs));
END_HANDLE_TH_ERRORS
}
@ -526,7 +526,7 @@ static PyObject * THPVariable_new_ones(PyObject* self, PyObject* args, PyObject*
jit::tracer::warn("new_ones", jit::tracer::LEGACY_CONSTRUCTOR);
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
OptionalDeviceGuard device_guard(device_of(self_));
return THPVariable_Wrap(torch::utils::new_ones(self_.dispatch_type(), args, kwargs));
return THPVariable_Wrap(torch::utils::new_ones(self_.dispatch_type(), self_.scalar_type(), args, kwargs));
END_HANDLE_TH_ERRORS
}
@ -536,7 +536,7 @@ static PyObject * THPVariable_new_tensor(PyObject* self, PyObject* args, PyObjec
jit::tracer::warn("new_tensor", jit::tracer::LEGACY_CONSTRUCTOR);
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
OptionalDeviceGuard device_guard(device_of(self_));
return THPVariable_Wrap(torch::utils::new_tensor(self_.dispatch_type(), args, kwargs));
return THPVariable_Wrap(torch::utils::new_tensor(self_.dispatch_type(), self_.scalar_type(), args, kwargs));
END_HANDLE_TH_ERRORS
}
@ -546,7 +546,7 @@ static PyObject * THPVariable_new_zeros(PyObject* self, PyObject* args, PyObject
jit::tracer::warn("new_zeros", jit::tracer::LEGACY_CONSTRUCTOR);
auto& self_ = reinterpret_cast<THPVariable*>(self)->cdata;
OptionalDeviceGuard device_guard(device_of(self_));
return THPVariable_Wrap(torch::utils::new_zeros(self_.dispatch_type(), args, kwargs));
return THPVariable_Wrap(torch::utils::new_zeros(self_.dispatch_type(), self_.scalar_type(), args, kwargs));
END_HANDLE_TH_ERRORS
}

View File

@ -132,7 +132,8 @@ static PyObject *THPVariable_pynew(PyTypeObject *type, PyObject *args, PyObject
HANDLE_TH_ERRORS
jit::tracer::warn("torch.Tensor", jit::tracer::WARN_CONSTRUCTOR);
auto& default_type = torch::tensors::get_default_tensor_type();
auto tensor = torch::utils::legacy_tensor_ctor(default_type, args, kwargs);
auto default_scalar_type = torch::tensors::get_default_scalar_type();
auto tensor = torch::utils::legacy_tensor_ctor(default_type, default_scalar_type, args, kwargs);
return THPVariable_NewWithVar(type, std::move(tensor));
END_HANDLE_TH_ERRORS
}

View File

@ -107,7 +107,7 @@ static Variable applySelect(const Variable& self, int64_t dim, int64_t index, in
static Variable sequenceToVariable(const at::Type& type, PyObject* seq) {
auto& idx_type = type.toScalarType(kLong);
return torch::utils::indexing_tensor_from_data(idx_type, c10::nullopt, seq);
return torch::utils::indexing_tensor_from_data(idx_type, kLong, c10::nullopt, seq);
}
static Variable valueToTensor(const at::Type & type, PyObject* value) {

View File

@ -71,7 +71,8 @@ static PyObject* Tensor_new(PyTypeObject *type, PyObject *args, PyObject *kwargs
if (!aten_type) {
throw unavailable_type(tensor_type);
}
return THPVariable_Wrap(torch::utils::legacy_tensor_ctor(*aten_type, args, kwargs));
auto scalar_type = static_cast<ScalarType>(tensor_type.scalar_type);
return THPVariable_Wrap(torch::utils::legacy_tensor_ctor(*aten_type, scalar_type, args, kwargs));
END_HANDLE_TH_ERRORS
}
@ -387,4 +388,8 @@ at::Type& get_default_tensor_type() {
AT_ASSERT(default_tensor_type);
return *default_tensor_type;
}
ScalarType get_default_scalar_type() {
return typeMetaToScalarType(get_default_dtype());
}
}} // namespace torch::tensors

View File

@ -1,6 +1,7 @@
#pragma once
#include <torch/csrc/python_headers.h>
#include <c10/core/ScalarType.h>
namespace c10 {
struct Device;
@ -31,4 +32,7 @@ void py_set_default_dtype(PyObject* dtype_obj);
// returned value will be a VariableType instance.
at::Type& get_default_tensor_type();
// Gets the ScalarType for the default tensor type.
at::ScalarType get_default_scalar_type();
}} // namespace torch::tensors

View File

@ -189,6 +189,7 @@ void recursive_store(char* data, IntArrayRef sizes, IntArrayRef strides, int64_t
Tensor internal_new_from_data(
const Type& type,
ScalarType scalar_type,
c10::optional<Device> device_opt,
PyObject* data,
bool copy_variables,
@ -208,52 +209,54 @@ Tensor internal_new_from_data(
}
// infer the scalar type and device type; it's not expected to infer the layout since these constructors
// are defined per-layout-type (e.g. tensor vs sparse_coo_tensor).
const auto& scalar_type = type_inference ? var.scalar_type() : type.scalarType();
const auto& inferred_scalar_type = type_inference ? var.scalar_type() : scalar_type;
auto device = device_opt.has_value() ? *device_opt : (type_inference ? var.device() : at::Device(type.device_type()));
AutoNoGIL no_gil;
maybe_initialize_cuda(device);
return var.to(device, scalar_type, /*non_blocking=*/false, /*copy=*/copy_variables);
return var.to(device, inferred_scalar_type, /*non_blocking=*/false, /*copy=*/copy_variables);
}
#ifdef USE_NUMPY
if (PyArray_Check(data)) {
AT_CHECK(!pin_memory, "Can't pin tensor constructed from numpy");
auto tensor = autograd::make_variable(tensor_from_numpy(data), /*requires_grad=*/false);
const auto& scalar_type = type_inference ? tensor.scalar_type() : type.scalarType();
const auto& inferred_scalar_type = type_inference ? tensor.scalar_type() : scalar_type;
auto device = device_opt.has_value() ? *device_opt : at::Device(type.device_type());
AutoNoGIL no_gil;
maybe_initialize_cuda(device);
return tensor.to(device, scalar_type, /*non_blocking=*/false, /*copy=*/copy_numpy);
return tensor.to(device, inferred_scalar_type, /*non_blocking=*/false, /*copy=*/copy_numpy);
}
#endif
auto sizes = compute_sizes(data);
ScalarType scalar_type = type_inference ? infer_scalar_type(data) : type.scalarType();
auto tensor = autograd::make_variable(at::empty(sizes, at::initialTensorOptions().dtype(scalar_type).pinned_memory(pin_memory)), /*requires_grad=*/false);
ScalarType inferred_scalar_type = type_inference ? infer_scalar_type(data) : scalar_type;
auto tensor = autograd::make_variable(at::empty(sizes, at::initialTensorOptions().dtype(inferred_scalar_type).pinned_memory(pin_memory)), /*requires_grad=*/false);
recursive_store(
(char*)tensor.data_ptr(), tensor.sizes(), tensor.strides(), 0,
scalar_type, tensor.element_size(), data);
inferred_scalar_type, tensor.dtype().itemsize(), data);
auto device = device_opt.has_value() ? *device_opt : at::Device(type.device_type());
AutoNoGIL no_gil;
maybe_initialize_cuda(device);
return tensor.to(device, scalar_type, /*non_blocking=*/false, /*copy=*/false);
return tensor.to(device, inferred_scalar_type, /*non_blocking=*/false, /*copy=*/false);
}
Tensor new_from_data_copy(
const Type& type,
ScalarType scalar_type,
c10::optional<Device> device,
PyObject* data) {
return internal_new_from_data(type, std::move(device), data, true, true, false);
return internal_new_from_data(type, scalar_type, std::move(device), data, true, true, false);
}
Tensor legacy_new_from_sequence(
const Type& type,
ScalarType scalar_type,
c10::optional<Device> device,
PyObject* data) {
if (!PySequence_Check(data)) {
throw TypeError("new(): data must be a sequence (got %s)", Py_TYPE(data)->tp_name);
}
return internal_new_from_data(type, std::move(device), data, false, false, false);
return internal_new_from_data(type, scalar_type, std::move(device), data, false, false, false);
}
void check_legacy_ctor_device(const Type& type, c10::optional<Device> device) {
@ -265,7 +268,7 @@ void check_legacy_ctor_device(const Type& type, c10::optional<Device> device) {
}
}
Tensor legacy_sparse_tensor_ctor(const Type& type, PyObject* args, PyObject* kwargs) {
Tensor legacy_sparse_tensor_ctor(const Type& type, ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
static PythonArgParser parser({
"new(*, Device? device=None)",
"new(*, int64_t cdata)|hidden",
@ -299,14 +302,14 @@ Tensor legacy_sparse_tensor_ctor(const Type& type, PyObject* args, PyObject* kwa
if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 && arg == PyTuple_GET_ITEM(args, 0)) {
// new(sequence) binds to this signature but should be treated differently
// unless the sequences is a torch.Size
return legacy_new_from_sequence(type, deviceOptional, r.pyobject(0));
return legacy_new_from_sequence(type, scalar_type, deviceOptional, r.pyobject(0));
}
return new_with_sizes(type, r.deviceOptional(1), r.intlist(0));
}
throw std::runtime_error("new(): invalid arguments");
}
Tensor legacy_sparse_tensor_new(const Type& type, PyObject* args, PyObject* kwargs) {
Tensor legacy_sparse_tensor_new(const Type& type, ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
static PythonArgParser parser({
"new(*, Device? device=None)",
"new(*, int64_t cdata)|hidden",
@ -345,7 +348,7 @@ Tensor legacy_sparse_tensor_new(const Type& type, PyObject* args, PyObject* kwar
if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 && arg == PyTuple_GET_ITEM(args, 0)) {
// new(sequence) binds to this signature but should be treated differently
// unless the sequences is a torch.Size
return legacy_new_from_sequence(type, deviceOptional, r.pyobject(0));
return legacy_new_from_sequence(type, scalar_type, deviceOptional, r.pyobject(0));
}
return new_with_sizes(type, r.deviceOptional(1), r.intlist(0));
}
@ -353,15 +356,15 @@ Tensor legacy_sparse_tensor_new(const Type& type, PyObject* args, PyObject* kwar
}
// NB: device_idx here is NOT a DeviceIndex, but index into PythonArgs
const Type& typeWithDefault(PythonArgs& r, int64_t dtype_idx, int64_t device_idx, const Type& type) {
const auto scalartype = r.scalartypeWithDefault(dtype_idx, type.scalarType());
const Type& typeWithDefault(PythonArgs& r, int64_t dtype_idx, int64_t device_idx, const Type& type, ScalarType scalar_type) {
const auto scalartype = r.scalartypeWithDefault(dtype_idx, scalar_type);
const Device types_device_type(type.device_type());
const auto device_type = r.isNone(device_idx) ? types_device_type : r.device(device_idx).type();
return torch::getVariableType(scalartype, *torch::getLayout(type.backend()), device_type);
}
} // namespace
Tensor legacy_tensor_ctor(const Type& type, PyObject* args, PyObject* kwargs) {
Tensor legacy_tensor_ctor(const Type& type, ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
static PythonArgParser parser({
"new(*, Device? device=None)",
"new(Storage storage)",
@ -372,7 +375,7 @@ Tensor legacy_tensor_ctor(const Type& type, PyObject* args, PyObject* kwargs) {
});
if (type.is_sparse()) {
return legacy_sparse_tensor_ctor(type, args, kwargs);
return legacy_sparse_tensor_ctor(type, scalar_type, args, kwargs);
}
ParsedArgs<2> parsed_args;
@ -396,18 +399,18 @@ Tensor legacy_tensor_ctor(const Type& type, PyObject* args, PyObject* kwargs) {
if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 && arg == PyTuple_GET_ITEM(args, 0)) {
// new(sequence) binds to this signature but should be treated differently
// unless the sequences is a torch.Size
return legacy_new_from_sequence(type, deviceOptional, r.pyobject(0));
return legacy_new_from_sequence(type, scalar_type, deviceOptional, r.pyobject(0));
}
return new_with_sizes(type, r.deviceOptional(1), r.intlist(0));
} else if (r.idx == 5) {
auto deviceOptional = r.deviceOptional(1);
check_legacy_ctor_device(type, deviceOptional);
return legacy_new_from_sequence(type, deviceOptional, r.pyobject(0));
return legacy_new_from_sequence(type, scalar_type, deviceOptional, r.pyobject(0));
}
throw std::runtime_error("new(): invalid arguments");
}
Tensor legacy_tensor_new(const Type& type, PyObject* args, PyObject* kwargs) {
Tensor legacy_tensor_new(const Type& type, ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
static PythonArgParser parser({
"new(*, Device? device=None)",
"new(Storage storage)",
@ -418,7 +421,7 @@ Tensor legacy_tensor_new(const Type& type, PyObject* args, PyObject* kwargs) {
});
if (type.is_sparse()) {
return legacy_sparse_tensor_new(type, args, kwargs);
return legacy_sparse_tensor_new(type, scalar_type, args, kwargs);
}
ParsedArgs<3> parsed_args;
@ -442,33 +445,34 @@ Tensor legacy_tensor_new(const Type& type, PyObject* args, PyObject* kwargs) {
if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 && arg == PyTuple_GET_ITEM(args, 0)) {
// new(sequence) binds to this signature but should be treated differently
// unless the sequences is a torch.Size
return legacy_new_from_sequence(type, deviceOptional, r.pyobject(0));
return legacy_new_from_sequence(type, scalar_type, deviceOptional, r.pyobject(0));
}
return new_with_sizes(type, r.deviceOptional(1), r.intlist(0));
} else if (r.idx == 5) {
auto deviceOptional = r.deviceOptional(1);
check_legacy_ctor_device(type, deviceOptional);
return legacy_new_from_sequence(type, r.deviceOptional(1), r.pyobject(0));
return legacy_new_from_sequence(type, scalar_type, r.deviceOptional(1), r.pyobject(0));
}
throw std::runtime_error("new(): invalid arguments");
}
Tensor indexing_tensor_from_data(
const Type& type,
ScalarType scalar_type,
c10::optional<Device> device,
PyObject* data) {
// Specific to tensor indexing, converts an indexing list to an
// indexing tensor (type Byte or Long)
ScalarType scalar_type = infer_scalar_type(data);
if (scalar_type == ScalarType::Byte) {
auto& idx_type = type.toScalarType(scalar_type);
return internal_new_from_data(idx_type, std::move(device), data, false, false, false);
ScalarType inferred_scalar_type = infer_scalar_type(data);
if (inferred_scalar_type == ScalarType::Byte) {
auto& idx_type = type.toScalarType(inferred_scalar_type);
return internal_new_from_data(idx_type, inferred_scalar_type, std::move(device), data, false, false, false);
} else {
return internal_new_from_data(type, std::move(device), data, false, false, false);
return internal_new_from_data(type, scalar_type, std::move(device), data, false, false, false);
}
}
Tensor sparse_coo_tensor_ctor(const Type& default_type, PyObject* args, PyObject* kwargs) {
Tensor sparse_coo_tensor_ctor(const Type& default_type, ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
static PythonArgParser parser({
"sparse_coo_tensor(PyObject* indices, PyObject* values, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
"sparse_coo_tensor(PyObject* indices, PyObject* values, IntArrayRef size, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
@ -479,32 +483,34 @@ Tensor sparse_coo_tensor_ctor(const Type& default_type, PyObject* args, PyObject
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
bool type_inference = r.isNone(2);
const auto& type = typeWithDefault(r, 2, 3, default_type);
const auto& type = typeWithDefault(r, 2, 3, default_type, scalar_type);
const auto inferred_scalar_type = r.scalartypeWithDefault(2, scalar_type);
const auto& values_type = type.toDense();
at::OptionalDeviceGuard device_guard(r.deviceOptional(3));
// if no dtype provided, infer type based on value type.
Tensor values = internal_new_from_data(values_type, r.deviceOptional(3), r.pyobject(1), false, true, type_inference);
Tensor values = internal_new_from_data(values_type, inferred_scalar_type, r.deviceOptional(3), r.pyobject(1), false, true, type_inference);
const auto& indices_type = values.dispatch_type().toScalarType(kLong);
Tensor indices = internal_new_from_data(indices_type, r.deviceOptional(3), r.pyobject(0), false, true, false);
Tensor indices = internal_new_from_data(indices_type, kLong, r.deviceOptional(3), r.pyobject(0), false, true, false);
return at::sparse_coo_tensor(indices, values, values.options().layout(at::kSparse)).set_requires_grad(r.toBool(4));
} else if (r.idx == 1) {
bool type_inference = r.isNone(3);
const auto& type = typeWithDefault(r, 3, 4, default_type);
const auto& type = typeWithDefault(r, 3, 4, default_type, scalar_type);
const auto inferred_scalar_type = r.scalartypeWithDefault(3, scalar_type);
const auto& values_type = type.toDense();
at::OptionalDeviceGuard device_guard(r.deviceOptional(4));
Tensor values = internal_new_from_data(values_type, r.deviceOptional(4), r.pyobject(1), false, true, type_inference);
Tensor values = internal_new_from_data(values_type, inferred_scalar_type, r.deviceOptional(4), r.pyobject(1), false, true, type_inference);
const auto& indices_type = values.dispatch_type().toScalarType(kLong);
Tensor indices = internal_new_from_data(indices_type, r.deviceOptional(4), r.pyobject(0), false, true, false);
Tensor indices = internal_new_from_data(indices_type, kLong, r.deviceOptional(4), r.pyobject(0), false, true, false);
return at::sparse_coo_tensor(indices, values, r.intlist(2), values.options().layout(at::kSparse)).set_requires_grad(r.toBool(5));
} else if (r.idx == 2) {
const auto& type = typeWithDefault(r, 1, 2, default_type);
const auto& type = typeWithDefault(r, 1, 2, default_type, scalar_type);
at::OptionalDeviceGuard device_guard(r.deviceOptional(2));
return at::sparse_coo_tensor(r.intlist(0), type.options().layout(at::kSparse)).set_requires_grad(r.toBool(3));
}
throw std::runtime_error("sparse_coo_tensor(): invalid arguments");
}
Tensor tensor_ctor(const Type& type, PyObject* args, PyObject* kwargs) {
Tensor tensor_ctor(const Type& type, ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
static PythonArgParser parser({
"tensor(PyObject* data, *, ScalarType dtype=None, Device? device=None, bool pin_memory=False, bool requires_grad=False)",
});
@ -523,7 +529,8 @@ Tensor tensor_ctor(const Type& type, PyObject* args, PyObject* kwargs) {
bool pin_memory = r.toBool(3);
bool args_requires_grad = r.toBool(4);
auto new_tensor = internal_new_from_data(
typeWithDefault(r, 1, 2, type),
typeWithDefault(r, 1, 2, type, scalar_type),
r.scalartypeWithDefault(1, scalar_type),
r.deviceOptional(2),
data,
true,
@ -537,7 +544,7 @@ Tensor tensor_ctor(const Type& type, PyObject* args, PyObject* kwargs) {
throw std::runtime_error("tensor(): invalid arguments");
}
Tensor as_tensor(const Type& type, PyObject* args, PyObject* kwargs) {
Tensor as_tensor(const Type& type, ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
// TODO: add requires_grad once we decide on semantics for sharing data.
static PythonArgParser parser({
"as_tensor(PyObject* data, *, ScalarType dtype=None, Device? device=None)",
@ -548,12 +555,18 @@ Tensor as_tensor(const Type& type, PyObject* args, PyObject* kwargs) {
if (r.idx == 0) {
bool type_inference = r.isNone(1);
return internal_new_from_data(
typeWithDefault(r, 1, 2, type), r.deviceOptional(2), r.pyobject(0), false, false, type_inference);
typeWithDefault(r, 1, 2, type, scalar_type),
r.scalartypeWithDefault(1, scalar_type),
r.deviceOptional(2),
r.pyobject(0),
false,
false,
type_inference);
}
throw std::runtime_error("tensor(): invalid arguments");
}
Tensor new_tensor(const Type& type, PyObject* args, PyObject* kwargs) {
Tensor new_tensor(const Type& type, ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
static PythonArgParser parser({
"new_tensor(PyObject* data, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
});
@ -570,7 +583,8 @@ Tensor new_tensor(const Type& type, PyObject* args, PyObject* kwargs) {
bool args_requires_grad = r.toBool(3);
auto new_tensor = new_from_data_copy(
typeWithDefault(r, 1, 2, type),
typeWithDefault(r, 1, 2, type, scalar_type),
r.scalartypeWithDefault(1, scalar_type),
r.deviceOptional(2),
data);
new_tensor.detach_(); // ensure new_tensor a leaf node
@ -580,7 +594,7 @@ Tensor new_tensor(const Type& type, PyObject* args, PyObject* kwargs) {
throw std::runtime_error("new_tensor(): invalid arguments");
}
Tensor new_empty(const Type& type, PyObject* args, PyObject* kwargs) {
Tensor new_empty(const Type& type, ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
static PythonArgParser parser({
"new_empty(IntArrayRef size, *, ScalarType dtype=None, Device? device=None, bool pin_memory=False, bool requires_grad=False)",
}, /*traceable=*/true);
@ -588,13 +602,13 @@ Tensor new_empty(const Type& type, PyObject* args, PyObject* kwargs) {
ParsedArgs<5> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
const auto& actual_type = typeWithDefault(r, 1, 2, type);
const auto& actual_type = typeWithDefault(r, 1, 2, type, scalar_type);
return new_with_sizes(actual_type, r.deviceOptional(2), r.intlist(0)).set_requires_grad(r.toBool(3));
}
throw std::runtime_error("new_empty(): invalid arguments");
}
Tensor new_full(const Type& type, PyObject* args, PyObject* kwargs) {
Tensor new_full(const Type& type, ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
static PythonArgParser parser({
"new_full(IntArrayRef size, Scalar fill_value, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
}, /*traceable=*/true);
@ -602,13 +616,13 @@ Tensor new_full(const Type& type, PyObject* args, PyObject* kwargs) {
ParsedArgs<5> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
const auto& actual_type = typeWithDefault(r, 2, 3, type);
const auto& actual_type = typeWithDefault(r, 2, 3, type, scalar_type);
return dispatch_full(actual_type, r.scalar(1), r.deviceOptional(3), r.intlist(0)).set_requires_grad(r.toBool(4));
}
throw std::runtime_error("new_full(): invalid arguments");
}
Tensor new_ones(const Type& type, PyObject* args, PyObject* kwargs) {
Tensor new_ones(const Type& type, ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
static PythonArgParser parser({
"new_ones(IntArrayRef size, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
}, /*traceable=*/true);
@ -616,13 +630,13 @@ Tensor new_ones(const Type& type, PyObject* args, PyObject* kwargs) {
ParsedArgs<4> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
const auto& actual_type = typeWithDefault(r, 1, 2, type);
const auto& actual_type = typeWithDefault(r, 1, 2, type, scalar_type);
return dispatch_ones(actual_type, r.deviceOptional(2), r.intlist(0)).set_requires_grad(r.toBool(3));
}
throw std::runtime_error("new_ones(): invalid arguments");
}
Tensor new_zeros(const Type& type, PyObject* args, PyObject* kwargs) {
Tensor new_zeros(const Type& type, ScalarType scalar_type, PyObject* args, PyObject* kwargs) {
static PythonArgParser parser({
"new_zeros(IntArrayRef size, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)",
}, /*traceable=*/true);
@ -630,7 +644,7 @@ Tensor new_zeros(const Type& type, PyObject* args, PyObject* kwargs) {
ParsedArgs<4> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
const auto& actual_type = typeWithDefault(r, 1, 2, type);
const auto& actual_type = typeWithDefault(r, 1, 2, type, scalar_type);
return dispatch_zeros(actual_type, r.deviceOptional(2), r.intlist(0)).set_requires_grad(r.toBool(3));
}
throw std::runtime_error("new_zeros(): invalid arguments");

View File

@ -6,19 +6,20 @@
namespace torch { namespace utils {
at::Tensor legacy_tensor_ctor(const at::Type& type, PyObject* args, PyObject* kwargs);
at::Tensor legacy_tensor_new(const at::Type& type, PyObject* args, PyObject* kwargs);
at::Tensor legacy_tensor_ctor(const at::Type& type, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs);
at::Tensor legacy_tensor_new(const at::Type& type, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs);
at::Tensor indexing_tensor_from_data(
const at::Type& type,
at::ScalarType scalar_type,
c10::optional<at::Device> device,
PyObject* data);
at::Tensor sparse_coo_tensor_ctor(const at::Type& type, PyObject* args, PyObject* kwargs);
at::Tensor tensor_ctor(const at::Type& type, PyObject* args, PyObject* kwargs);
at::Tensor as_tensor(const at::Type& type, PyObject* args, PyObject* kwargs);
at::Tensor new_tensor(const at::Type& type, PyObject* args, PyObject* kwargs);
at::Tensor new_empty(const at::Type& type, PyObject* args, PyObject* kwargs);
at::Tensor new_full(const at::Type& type, PyObject* args, PyObject* kwargs);
at::Tensor new_ones(const at::Type& type, PyObject* args, PyObject* kwargs);
at::Tensor new_zeros(const at::Type& type, PyObject* args, PyObject* kwargs);
at::Tensor sparse_coo_tensor_ctor(const at::Type& type, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs);
at::Tensor tensor_ctor(const at::Type& type, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs);
at::Tensor as_tensor(const at::Type& type, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs);
at::Tensor new_tensor(const at::Type& type, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs);
at::Tensor new_empty(const at::Type& type, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs);
at::Tensor new_full(const at::Type& type, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs);
at::Tensor new_ones(const at::Type& type, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs);
at::Tensor new_zeros(const at::Type& type, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs);
}} // namespace torch::utils