[Pytorch Backend delegation] Add api for backend lowering to query debug (#55462)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/55462

handles and symbolicate exception callstack thrown from backend.

Objective of this diff is to achieve improve error reporting when
exceptions are raised from lowered backend. We would effectively like to
get the same model level stack trace that you would get without having
lowered some module to backend.

For example:
```
class AA(nn.Module):
  def forward(self, x, y):
    return x + y

class A(nn.Module):
  def __init__(...):
    self.AA0 = AA()
  def forward(self, x, y):
    return self.AA0.forward(x, y) + 3

class B(nn.Module):
  def forward(self, x):
    return x + 2

class C(nn.Module):
  def __init__(...):
    self.A0 = A()
    self.B0 = B()
  def forward(self, x, y):
    return self.A0.forward(x, y) + self.B0.forward(x)
```
If the we then do C().forward(torch.rand((2,3)), torch.rand(14,2))) we
will likely see error stack like:
```
C++ exception with description "The following operation failed in the TorchScript interpreter.
Traceback of TorchScript (most recent call last):
  File "<string>", line 3, in forward

    def forward(self, x, y):
      return self.A0.forward(x, y) + self.B0.forward(x)
             ~~~~~~~~~~~~~~~ <--- HERE

  File "<string>", line 3, in forward

    def forward(self, x, y):
      return self.AA0.forward(x, y) + 3
             ~~~~~~~~~~~~~~~~ <--- HERE

  File "<string>", line 3, in forward

    def forward(self, x, y):
      return x + y
             ~~~~~ <--- HERE
```

We would like to see the same error stack if we lowered C.A0 to some
backend.

With this diff we get something like:
```
  Module hierarchy:top(C).A0(backend_with_compiler_demoLoweredModule).AA0(AA)
Traceback of TorchScript (most recent call last):
  File "<string>", line 3, in FunctionName_UNKNOWN

    def forward(self, x, y):
      return self.A0.forward(x, y) + self.B0.forward(x)
             ~~~~~~~~~~~~~~~ <--- HERE

  File "<string>", line 5, in FunctionName_UNKNOWN
                typed_inputs: List[Any] = [x, y, ]
                if self.__backend.is_available() :
                  _0, = self.__backend.execute(self.__handles["forward"], typed_inputs)
                        ~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
                  assert isinstance(_0, Tensor)
                  return _0
  File "<string>", line 3, in FunctionName_UNKNOWN

    def forward(self, x, y):
      return self.AA0.forward(x, y) + 3
             ~~~~~~~~~~~~~~~~ <--- HERE

  File "<string>", line 3, in FunctionName_UNKNOWN

    def forward(self, x, y):
      return x + y
             ~~~~~ <--- HERE
```
This is achieved in 3 parts:
Part 1:
A. BackendDebugInfoRecorder:
   During backend lowering, in `to_backend`, before calling the preprocess
   function corresponding to the backend. This will facilitate recording of
   debug info (such as source range + inlined callstack) for the lowered module.
B. Instantiate WithBackendDebugInfoRecorder with BackendDebugInfoRecorder.
   This initializes thread local pointer to BackendDebugInfoRecorder.
C. generate_debug_handles:
   In preprocess function, the backend will call generate_debug_handles
   for each method being lowered separately. generate_debug_handles
   takes `Graph` of the method being lowered and returns a map
   of Node*-to-debug_handles. Backend is responsible for storing debug
   handles appropriately so as to raise exception (and later profiling)
   using debug handles when the exception being raised corresponds to
   particular Node that was lowered.
   Inside generate_debug_handles, we will query the current
   BackendDebugHandleInfoRecorder, that is issuing debug handles. This debug
   handle manager will issue debug handles as well as record
   debug_handles-to-<source range, inlined callstack> map.
D. Back in `to_backend`, once the preprocess function is has finished
   lowering the module, we will call `stopRecord` on
   BackendDebugInfoRecorder. This will return the debug info map. This
   debug info is then stored inside the lowered module.

Part 2:
Serialization:
During serialization for bytecode (lite interpreter), we will do two
things:
1. Extract all the source ranges that are contained inside
debug_handles-to-<source range, inlined callstack> map for lowered
module. This will be source range corresponding to debug handles,
including what is there is inlined callstack. Since we replaced original
module with lowered module, we wont be serializing code for the original
module and thus no source range. That is why the source range will have
to be stored separately. We will lump all the source ranges for all the
lowered modules in one single debug_pkl file.
2. Then we will serialize debug_handles-to-<source range, inlined
callstack> map.

Now during deserialization we will be able to reconstruct
debug_handles-to-<source range, inlined callstack> map. Given all
debug_handles are unique we would not need any module information.

Test Plan:
Tests are added in test_backend.cpp

Tests are added in test_backend.cpp

Imported from OSS

Differential Revision:
D27621330
D27621330

Reviewed By: raziel

Pulled By: kimishpatel

fbshipit-source-id: 0650ec68cda0df0a945864658cab226a97ba1890
This commit is contained in:
Kimish Patel
2021-05-22 08:31:46 -07:00
committed by Facebook GitHub Bot
parent e7c35a3363
commit d6d726f781
22 changed files with 1247 additions and 144 deletions

View File

@ -1,4 +1,5 @@
#include <torch/csrc/jit/backends/backend.h>
#include <torch/csrc/jit/backends/backend_exception.h>
namespace torch {
namespace jit {
@ -31,13 +32,22 @@ namespace jit {
// (handle).
namespace {
std::vector<std::string> parseMethodHandle(const std::string& blob) {
std::vector<std::string> result;
std::vector<std::tuple<std::string, int64_t>> parseMethodHandle(
const std::string& blob) {
std::vector<std::tuple<std::string, int64_t>> result;
std::stringstream s_stream(blob);
constexpr char debug_handle_token[] = "<debug_handle>";
while (s_stream.good()) {
std::string substr;
getline(s_stream, substr, ',');
result.push_back(substr);
auto debug_handle_pos = substr.find(debug_handle_token);
int64_t debug_handle{-1};
auto instruction = substr.substr(0);
if (debug_handle_pos != std::string::npos) {
instruction = substr.substr(0, debug_handle_pos);
debug_handle = stoi(substr.substr(debug_handle_pos + 14));
}
result.push_back(std::make_tuple(instruction, debug_handle));
}
return result;
}
@ -60,7 +70,8 @@ class BackendWithCompiler : public PyTorchBackendInterface {
c10::IValue processed,
c10::impl::GenericDict method_compile_spec) override {
auto dict = processed.toGenericDict();
auto handles = c10::Dict<std::string, std::vector<std::string>>();
auto handles =
c10::Dict<std::string, std::vector<std::tuple<std::string, int64_t>>>();
for (const auto& kv : dict) {
auto tokens = parseMethodHandle(kv.value().toStringRef());
handles.insert(kv.key().toStringRef(), tokens);
@ -81,27 +92,33 @@ class BackendWithCompiler : public PyTorchBackendInterface {
double scalar_val = 1.0;
for (const auto& token : handle.toList()) {
IValue val = token;
auto instruction = std::string(IValue(token).toStringRef());
auto instruction = val.toTuple()->elements()[0].toStringRef();
auto debug_handle = val.toTuple()->elements()[1].toInt();
double const_val = 1.0;
if (instruction.rfind("prim::Constant", 0) == 0) {
TORCH_CHECK(
instruction.size() > 15,
"Constant value is expected in ",
instruction);
auto sub = instruction.substr(15);
// NOLINTNEXTLINE(clang-analyzer-deadcode.DeadStores)
const_val = stod(sub);
} else if (token == "aten::add") {
output_list.emplace_back(x.add(h, const_val));
} else if (token == "aten::sub") {
output_list.emplace_back(x.sub(h, const_val));
} else {
TORCH_CHECK(
false,
"Instruction, ",
instruction,
" is not supported. ",
"Contact the backend POC for details. ");
try {
if (instruction.rfind("prim::Constant", 0) == 0) {
TORCH_CHECK(
instruction.size() > 15,
"Constant value is expected in ",
instruction);
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
auto sub = instruction.substr(15);
// NOLINTNEXTLINE(clang-analyzer-deadcode.DeadStores)
const_val = stod(sub);
} else if (instruction == "aten::add") {
output_list.emplace_back(x.add(h, const_val));
} else if (instruction == "aten::sub") {
output_list.emplace_back(x.sub(h, const_val));
} else {
TORCH_CHECK(
false,
"Instruction, ",
instruction,
" is not supported. ",
"Contact the backend POC for details. ");
}
} catch (c10::Error& e) {
TORCH_DELEGATED_BACKEND_THROW(false, e.what(), debug_handle);
}
}
return c10::impl::toList(output_list);