Revert "Add __init__.pyi to torch/linalg (#160750)"

This reverts commit 9a665ca3c472384e9d722bddba79e5a7680f1abd.

Reverted https://github.com/pytorch/pytorch/pull/160750 on behalf of https://github.com/jeanschmidt due to Seems that those errors are legitimate, and there is no test plan. I'll be proceeding with a revert ([comment](https://github.com/pytorch/pytorch/pull/160750#issuecomment-3246095383))
This commit is contained in:
PyTorch MergeBot
2025-09-02 16:53:55 +00:00
parent d33840c542
commit d6b74568e2
2 changed files with 2 additions and 210 deletions

View File

@ -12,5 +12,5 @@ reveal_type(t_sort) # E: torch.return_types.sort
t_qr = torch.linalg.qr(t) t_qr = torch.linalg.qr(t)
t_qr[0].shape == [2, 2] # noqa: B015 t_qr[0].shape == [2, 2] # noqa: B015
t_qr.Q.shape == [2, 2] # noqa: B015 t_qr.Q.shape == [2, 2] # noqa: B015
# Fixed: Now properly typed as torch.return_types.qr thanks to stub file # TODO: Fixme, should be Tuple[{Tensor}, {Tensor}, fallback=torch.return_types.qr]
reveal_type(t_qr) # E: torch.return_types.qr reveal_type(t_qr) # E: Any

View File

@ -1,208 +0,0 @@
# Stub file for torch.linalg module
# Type annotations for PyTorch Linear Algebra functions
from collections.abc import Sequence
from typing import Literal, Optional, Union
import torch.return_types
from torch import SymInt, Tensor
from torch._C import dtype
from torch.types import _float, _int
# Exception class
class LinAlgError(RuntimeError): ...
# Common notes dictionary
common_notes: dict[str, str]
# Core linear algebra functions
def cross(
input: Tensor, other: Tensor, *, dim: int = -1, out: Optional[Tensor] = None
) -> Tensor: ...
def cholesky(
A: Tensor, *, upper: bool = False, out: Optional[Tensor] = None
) -> Tensor: ...
def cholesky_ex(
A: Tensor,
*,
upper: bool = False,
check_errors: bool = False,
out: Optional[tuple[Tensor, Tensor]] = None,
) -> torch.return_types._lu_with_info: ...
def cond(
A: Tensor,
p: Optional[Union[_int, _float, str]] = None,
*,
out: Optional[Tensor] = None,
) -> Tensor: ...
def det(A: Tensor, *, out: Optional[Tensor] = None) -> Tensor: ...
def diagonal(
A: Tensor, *, offset: int = 0, dim1: int = -2, dim2: int = -1
) -> Tensor: ...
def eig(
A: Tensor, *, out: Optional[tuple[Tensor, Tensor]] = None
) -> tuple[Tensor, Tensor]: ...
def eigh(
A: Tensor, UPLO: str = "L", *, out: Optional[tuple[Tensor, Tensor]] = None
) -> tuple[Tensor, Tensor]: ...
def eigvals(A: Tensor, *, out: Optional[Tensor] = None) -> Tensor: ...
def eigvalsh(A: Tensor, UPLO: str = "L", *, out: Optional[Tensor] = None) -> Tensor: ...
def householder_product(
A: Tensor, tau: Tensor, *, out: Optional[Tensor] = None
) -> Tensor: ...
def inv(A: Tensor, *, out: Optional[Tensor] = None) -> Tensor: ...
def inv_ex(
A: Tensor,
*,
check_errors: bool = False,
out: Optional[tuple[Tensor, Tensor]] = None,
) -> tuple[Tensor, Tensor]: ...
def ldl_factor(
A: Tensor, *, hermitian: bool = False, out: Optional[tuple[Tensor, Tensor]] = None
) -> tuple[Tensor, Tensor]: ...
def ldl_factor_ex(
A: Tensor,
*,
hermitian: bool = False,
check_errors: bool = False,
out: Optional[tuple[Tensor, Tensor, Tensor]] = None,
) -> tuple[Tensor, Tensor, Tensor]: ...
def ldl_solve(
LD: Tensor,
pivots: Tensor,
B: Tensor,
*,
hermitian: bool = False,
out: Optional[Tensor] = None,
) -> Tensor: ...
def lstsq(
A: Tensor,
B: Tensor,
rcond: Optional[_float] = None,
*,
driver: Optional[str] = None,
out: Optional[tuple[Tensor, Tensor, Tensor, Tensor]] = None,
) -> tuple[Tensor, Tensor, Tensor, Tensor]: ...
def lu(
A: Tensor,
*,
pivot: bool = True,
out: Optional[tuple[Tensor, Tensor, Tensor]] = None,
) -> tuple[Tensor, Tensor, Tensor]: ...
def lu_factor(
A: Tensor, *, pivot: bool = True, out: Optional[tuple[Tensor, Tensor]] = None
) -> tuple[Tensor, Tensor]: ...
def lu_factor_ex(
A: Tensor,
*,
pivot: bool = True,
check_errors: bool = False,
out: Optional[tuple[Tensor, Tensor, Tensor]] = None,
) -> tuple[Tensor, Tensor, Tensor]: ...
def lu_solve(
LU: Tensor,
pivots: Tensor,
B: Tensor,
*,
left: bool = True,
adjoint: bool = False,
out: Optional[Tensor] = None,
) -> Tensor: ...
def matmul(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: ...
def matrix_exp(A: Tensor, *, out: Optional[Tensor] = None) -> Tensor: ...
def matrix_norm(
A: Tensor,
ord: Union[_int, _float, str] = "fro",
dim: Union[int, tuple[int, int], Sequence[Union[int, SymInt]]] = (-2, -1),
keepdim: bool = False,
*,
dtype: Optional[dtype] = None,
out: Optional[Tensor] = None,
) -> Tensor: ...
def matrix_power(A: Tensor, n: int, *, out: Optional[Tensor] = None) -> Tensor: ...
def matrix_rank(
A: Tensor,
tol: Optional[_float] = None,
hermitian: bool = False,
*,
out: Optional[Tensor] = None,
) -> Tensor: ...
def multi_dot(tensors: list[Tensor], *, out: Optional[Tensor] = None) -> Tensor: ...
def norm(
A: Tensor,
ord: Optional[Union[_int, _float, str]] = None,
dim: Optional[Union[int, Sequence[Union[int, SymInt]]]] = None,
keepdim: bool = False,
*,
dtype: Optional[dtype] = None,
out: Optional[Tensor] = None,
) -> Tensor: ...
def pinv(
A: Tensor,
rcond: Optional[_float] = None,
hermitian: bool = False,
*,
out: Optional[Tensor] = None,
) -> Tensor: ...
def qr(
A: Tensor,
mode: Literal["reduced", "complete", "r"] = "reduced",
*,
out: Optional[tuple[Tensor, Tensor]] = None,
) -> torch.return_types.qr: ...
def slogdet(
A: Tensor, *, out: Optional[tuple[Tensor, Tensor]] = None
) -> torch.return_types.slogdet: ...
def solve(
A: Tensor, B: Tensor, *, left: bool = True, out: Optional[Tensor] = None
) -> Tensor: ...
def solve_ex(
A: Tensor,
B: Tensor,
*,
left: bool = True,
check_errors: bool = False,
out: Optional[tuple[Tensor, Tensor]] = None,
) -> tuple[Tensor, Tensor]: ...
def solve_triangular(
A: Tensor,
B: Tensor,
*,
upper: bool,
left: bool = True,
unitriangular: bool = False,
out: Optional[Tensor] = None,
) -> Tensor: ...
def svd(
A: Tensor,
full_matrices: bool = True,
*,
driver: Optional[str] = None,
out: Optional[tuple[Tensor, Tensor, Tensor]] = None,
) -> tuple[Tensor, Tensor, Tensor]: ...
def svdvals(
A: Tensor, *, driver: Optional[str] = None, out: Optional[Tensor] = None
) -> Tensor: ...
def tensorinv(A: Tensor, ind: int = 2, *, out: Optional[Tensor] = None) -> Tensor: ...
def tensorsolve(
A: Tensor,
B: Tensor,
dims: Optional[Sequence[int]] = None,
*,
out: Optional[Tensor] = None,
) -> Tensor: ...
def vander(
x: Tensor, N: Optional[int] = None, *, out: Optional[Tensor] = None
) -> Tensor: ...
def vecdot(
x: Tensor, y: Tensor, *, dim: int = -1, out: Optional[Tensor] = None
) -> Tensor: ...
def vector_norm(
x: Tensor,
ord: Optional[Union[_int, _float, complex]] = 2,
dim: Optional[Union[int, Sequence[Union[int, SymInt]]]] = None,
keepdim: bool = False,
*,
dtype: Optional[dtype] = None,
out: Optional[Tensor] = None,
) -> Tensor: ...