[SymmMem] Tiled reduce (#162243)

Added op: `tile_reduce(Tensor input, Tensor(a!) out, int root, str group_name)`

For now supports only:
- NVSHMEM backed symmetric tensor;
- 2D tensor and tile;
- torch.float.

Testing on right-bottom quandrant:
```
rank 0:
tensor([[0., 0., 0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 1., 1., 1., 1.],
        [0., 0., 0., 0., 1., 1., 1., 1.],
        [0., 0., 0., 0., 1., 1., 1., 1.],
        [0., 0., 0., 0., 1., 1., 1., 1.]], device='cuda:0')
PASSED
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/162243
Approved by: https://github.com/ngimel
This commit is contained in:
Ke Wen
2025-10-07 15:20:43 -07:00
committed by PyTorch MergeBot
parent 3040a5d294
commit d444384003
5 changed files with 373 additions and 0 deletions

View File

@ -0,0 +1,191 @@
#!/usr/bin/env python3
"""
Benchmark for NVSHMEM tile reduce operations.
Usage:
python benchmarks/distributed/bench_nvshmem_tile_reduce.py
This benchmark measures the performance of tile reduce operations across different
matrix sizes and tile configurations.
"""
import time
import torch
import torch.distributed as dist
import torch.distributed._symmetric_memory as symm_mem
from torch.testing._internal.common_distributed import MultiProcContinuousTest
from torch.testing._internal.common_utils import (
requires_cuda_p2p_access,
skip_but_pass_in_sandcastle_if,
skipIfRocm,
)
# Decorator
def requires_nvshmem():
return skip_but_pass_in_sandcastle_if(
not symm_mem.is_nvshmem_available(),
"bench_nvshmem_tile_reduce requires NVSHMEM, skipping benchmark",
)
# So that benchmarks are written in device-agnostic way
device_type = "cuda"
device_module = torch.get_device_module(device_type)
@requires_nvshmem()
@requires_cuda_p2p_access()
class NVSHMEMTileReduceBenchmark(MultiProcContinuousTest):
def _init_device(self) -> None:
# TODO: relieve this (seems to hang if without)
device_module.set_device(self.device)
# Set NVSHMEM as SymmMem backend
symm_mem.set_backend("NVSHMEM")
@property
def device(self) -> torch.device:
return torch.device(device_type, self.rank)
def _benchmark_tile_reduce_single(
self,
full_size: int,
tile_size: int,
warmup_iters: int = 5,
bench_iters: int = 10,
) -> dict:
"""
Benchmark a single configuration of tile reduce.
Args:
full_size: Size of the full matrix (full_size x full_size)
warmup_iters: Number of warmup iterations
bench_iters: Number of benchmark iterations
Returns:
Dictionary with benchmark results
"""
self._init_device()
group_name = dist.group.WORLD.group_name
symm_mem.enable_symm_mem_for_group(group_name)
dtype = torch.float
# Allocate full matrices
full_inp = symm_mem.empty(
full_size, full_size, dtype=dtype, device=self.device
).fill_(self.rank)
full_out = symm_mem.empty(
full_size, full_size, dtype=dtype, device=self.device
).fill_(0)
slice_ut = slice(0, tile_size)
inp_tile = full_inp[slice_ut, slice_ut]
out_tile = full_out[slice_ut, slice_ut]
root = 0
# Warmup iterations
for _ in range(warmup_iters):
torch.ops.symm_mem.tile_reduce(inp_tile, out_tile, root, group_name)
torch.cuda.synchronize(self.device)
# Benchmark iterations
times = []
dist.barrier()
torch.cuda.synchronize(self.device)
start_time = time.perf_counter()
for _ in range(bench_iters):
torch.ops.symm_mem.tile_reduce(inp_tile, out_tile, root, group_name)
torch.cuda.synchronize(self.device)
end_time = time.perf_counter()
times.append((end_time - start_time) / bench_iters)
# Calculate statistics
times = torch.tensor(times, dtype=torch.float64)
tile_elements = tile_size * tile_size
tile_bytes = (
tile_elements * dtype.itemsize
if hasattr(dtype, "itemsize")
else tile_elements * 4
)
results = {
"full_size": full_size,
"tile_size": tile_size,
"tile_elements": tile_elements,
"tile_bytes": tile_bytes,
"world_size": self.world_size,
"mean_time_ms": times.mean().item() * 1000,
"std_time_ms": times.std().item() * 1000,
"min_time_ms": times.min().item() * 1000,
"max_time_ms": times.max().item() * 1000,
"throughput_gb_s": tile_bytes / (times.mean().item() * 1e9),
"elements_per_sec": tile_elements / times.mean().item(),
}
return results
@skipIfRocm
def test_benchmark_tile_reduce_various_sizes(self) -> None:
"""
Benchmark tile reduce across various matrix sizes.
"""
# Test various matrix sizes
tile_sizes = [512, 1024, 2048, 4096, 8192, 16384]
full_size = tile_sizes[-1]
warmup_iters = 5
bench_iters = 20
results = []
for tile_size in tile_sizes:
try:
result = self._benchmark_tile_reduce_single(
full_size, tile_size, warmup_iters, bench_iters
)
results.append(result)
if self.rank == 0:
print(
f"Matrix Size: {full_size}x{full_size}, Tile Size: {tile_size}x{tile_size}"
)
print(
f" Mean Time: {result['mean_time_ms']:.3f} ± {result['std_time_ms']:.3f} ms"
)
print(f" Throughput: {result['throughput_gb_s']:.2f} GB/s")
print(f" Bytes: {result['tile_bytes']:.0f}")
print()
except Exception as e:
if self.rank == 0:
print(f"Failed to benchmark matrix size {full_size}: {e}")
# Print summary
if self.rank == 0 and results:
print("=== BENCHMARK SUMMARY ===")
print(
f"{'Matrix Size':<12} {'Tile Size':<10} {'Time (ms)':<12} {'Throughput (GB/s)':<18} {'Bytes':<15}"
)
print("-" * 70)
for result in results:
print(
f"{result['full_size']}x{result['full_size']:<7} "
f"{result['tile_size']}x{result['tile_size']:<5} "
f"{result['mean_time_ms']:<12.3f} "
f"{result['throughput_gb_s']:<18.2f} "
f"{result['tile_bytes']:<15.0f}"
)
if __name__ == "__main__":
# For standalone usage, you'd need to set up distributed environment
# For now, this is meant to be run via the PyTorch test framework
from torch.testing._internal.common_utils import run_tests
run_tests()

View File

@ -701,5 +701,54 @@ class DispatchCombineInSubgroups(MultiProcContinuousTest):
dispatch_then_combine(self.device, align=8, group=subgroup)
@instantiate_parametrized_tests
@requires_nvshmem()
@requires_cuda_p2p_access()
class NVSHMEMTileCommTest(MultiProcContinuousTest):
def _init_device(self) -> None:
# TODO: relieve this (seems to hang if without)
device_module.set_device(self.device)
# Set NVSHMEM as SymmMem backend
symm_mem.set_backend("NVSHMEM")
@property
def device(self) -> torch.device:
return torch.device(device_type, self.rank)
@skipIfRocm
@parametrize("tile_size", [32, 128, 512])
@parametrize("dtype", [torch.float, torch.half, torch.bfloat16])
def test_tile_reduce(self, tile_size: int, dtype: torch.dtype) -> None:
full_size = 1024
assert tile_size <= full_size
self._init_device()
group_name = dist.group.WORLD.group_name
symm_mem.enable_symm_mem_for_group(group_name)
full_inp = symm_mem.empty(
full_size, full_size, dtype=dtype, device=self.device
).fill_(self.rank)
full_out = symm_mem.empty(
full_size, full_size, dtype=dtype, device=self.device
).fill_(0)
slice_ut = slice(tile_size, 2 * tile_size)
inp_tile = full_inp[slice_ut, slice_ut]
out_tile = full_out[slice_ut, slice_ut]
# Reduce the tile
root = 0
torch.ops.symm_mem.tile_reduce(inp_tile, out_tile, root, group_name)
# Check data
expected = torch.zeros_like(full_out)
expected_tile = expected[slice_ut, slice_ut]
if self.rank == root:
expected_tile.fill_(self.world_size * (self.world_size - 1) / 2)
torch.testing.assert_close(full_out, expected)
if __name__ == "__main__":
run_tests()

View File

@ -510,6 +510,8 @@ TORCH_LIBRARY_FRAGMENT(symm_mem, m) {
"all_to_all_vdev_2d(Tensor input, Tensor(a!) out, Tensor in_splits, Tensor(a!) out_splits_offsets, str group_name, int? major_align=None) -> ()");
m.def(
"all_to_all_vdev_2d_offset(Tensor input, Tensor(a!) out, Tensor in_splits_offsets, Tensor(a!) out_splits_offsets, str group_name) -> ()");
m.def(
"tile_reduce(Tensor in_tile, Tensor(a!) out_tile, int root, str group_name, str reduce_op='sum') -> ()");
}
TORCH_LIBRARY_IMPL(symm_mem, Meta, m) {

View File

@ -9,6 +9,7 @@
#include <torch/csrc/distributed/c10d/symm_mem/CUDASymmetricMemoryUtils.hpp>
#include <torch/csrc/distributed/c10d/symm_mem/SymmetricMemory.hpp>
#include <ATen/ceil_div.h>
// Use torch's cub wrapper instead of CUDA's <cub/cub.cuh>, see #55292
#include <ATen/cuda/cub.cuh>
@ -863,6 +864,128 @@ void all_to_all_vdev_2d_offset(
0,
stream);
}
/* Tiled Communication */
using Shape2D = nvshmemx::shape<int64_t, int64_t>;
using Stride2D = nvshmemx::stride<int64_t, int64_t>;
template <typename T>
__global__ void tile_reduce_kernel(
T* src_ptr, T* dst_ptr, Shape2D shape, Stride2D strides, int64_t root, nvshmem_team_t* teams) {
#ifndef _NVSHMEM_DEVICELIB_SUPPORTED
CUDA_KERNEL_ASSERT_MSG(false, "SM arch unsupported for NVSHMEM");
#else
int bid = blockIdx.x;
auto team = teams[bid];
CUDA_KERNEL_ASSERT(team != NVSHMEM_TEAM_INVALID && " invalid team\n");
// Global tile shape
auto [rows, cols] = shape;
auto [stride0, stride1] = strides;
// Divide rows among CUDA blocks
auto rows_per_block = at::ceil_div(rows, (int64_t)gridDim.x);
auto block_start_row = rows_per_block * bid;
auto block_shape = nvshmemx::make_shape(std::min(rows_per_block, rows - block_start_row), cols);
auto block_layout = nvshmemx::make_layout(block_shape, strides);
// Start pointer of each block's sub-tile
auto block_src_ptr = src_ptr + stride0 * block_start_row;
auto block_dst_ptr = dst_ptr + stride0 * block_start_row;
auto block_src_tensor = nvshmemx::Tensor(block_src_ptr, block_layout);
auto block_dst_tensor = nvshmemx::Tensor(block_dst_ptr, block_layout);
// Making these empty to avoid nvshmemx::tile_sum_reduce_block() from doing
// additional range checks
auto start_coord = nvshmemx::make_shape();
auto boundary = nvshmemx::make_shape();
// Use one-shot pull to reduce the tile
uint64_t flag = 0;
constexpr auto algo = nvshmemx::tile_coll_algo_t::NVLS_ONE_SHOT_PULL_NBI;
nvshmemx::tile_sum_reduce_block<decltype(block_src_tensor), decltype(block_dst_tensor), decltype(boundary), algo>(
team, block_src_tensor, block_dst_tensor, start_coord, boundary, root, flag /* unused */);
// Wait for the operation to complete
nvshmemx::tile_collective_wait<algo>(team, flag /* unused */);
#endif
}
#define AT_DISPATCH_CASE_CONVERT(enum_type, scalar_type, ...) \
case enum_type: { \
AT_PRIVATE_CHECK_SELECTIVE_BUILD(enum_type); \
using scalar_t = scalar_type; \
return __VA_ARGS__(); \
}
#define AT_DISPATCH_NVSHMEM_FLOATS(scalar_type, name, ...) \
AT_DISPATCH_SWITCH( \
scalar_type, name, \
AT_DISPATCH_CASE_CONVERT(at::kBFloat16, __nv_bfloat16, __VA_ARGS__); \
AT_DISPATCH_CASE_CONVERT(at::kHalf, __half, __VA_ARGS__); \
AT_DISPATCH_CASE(at::kFloat, __VA_ARGS__));
void tile_reduce(
at::Tensor& in_tile,
at::Tensor& out_tile,
int64_t root,
std::string group_name,
std::string reduce_op) {
/* Perform a tile reduce operation on the input tensor, with the root rank
* receiving the reduced tensor. */
TORCH_CHECK(reduce_op == "sum", "tile_reduce: only sum is supported for now");
TORCH_CHECK(in_tile.dim() == 2 && out_tile.dim() == 2, "Only 2D tensors are supported");
TORCH_CHECK_EQ(in_tile.dtype(), out_tile.dtype());
TORCH_CHECK_EQ(in_tile.sizes(), out_tile.sizes());
TORCH_CHECK_EQ(in_tile.strides(), out_tile.strides());
TORCH_CHECK_EQ(in_tile.device(), out_tile.device());
auto device = in_tile.device();
c10::cuda::CUDAGuard guard(device);
auto hdl = c10d::symmetric_memory::rendezvous(in_tile, group_name);
c10d::symmetric_memory::rendezvous(out_tile, group_name);
// Ideally 16 bytes per thread
int nblocks = at::ceil_div(
in_tile.numel() * in_tile.element_size(),
(int64_t)THREADS_PER_BLOCK * 16);
nblocks = std::min(nblocks, 24);
// Need one team per block
auto& team_manager = TeamManager::get(device);
auto [teams, teams_dev] = team_manager.get_n_teams(
group_name, hdl->get_rank_to_global_rank(), nblocks);
TORCH_CHECK(
root < nvshmem_team_n_pes(teams[0]),
"root must be smaller than group size");
auto stream = at::cuda::getCurrentCUDAStream();
// Prepare launch parameters
auto shape = nvshmemx::make_shape(in_tile.sizes()[0], in_tile.sizes()[1]);
auto stride = nvshmemx::make_stride(in_tile.strides()[0], in_tile.strides()[1]);
auto src_ptr = in_tile.const_data_ptr();
auto dst_ptr = out_tile.mutable_data_ptr();
void* args[] = {
&src_ptr,
&dst_ptr,
&shape,
&stride,
&root,
&teams_dev};
AT_DISPATCH_NVSHMEM_FLOATS(in_tile.scalar_type(), "tile_reduce", [&]() {
nvshmemx_collective_launch(
(const void*)tile_reduce_kernel<scalar_t>,
dim3(nblocks),
dim3(THREADS_PER_BLOCK),
args,
0,
stream);
C10_CUDA_KERNEL_LAUNCH_CHECK();
});
}
} // namespace c10d::nvshmem_extension
@ -876,4 +999,5 @@ TORCH_LIBRARY_IMPL(symm_mem, CUDA, m) {
m.impl("all_to_all_vdev", c10d::nvshmem_extension::all_to_all_vdev);
m.impl("all_to_all_vdev_2d", c10d::nvshmem_extension::all_to_all_vdev_2d);
m.impl("all_to_all_vdev_2d_offset", c10d::nvshmem_extension::all_to_all_vdev_2d_offset);
m.impl("tile_reduce", c10d::nvshmem_extension::tile_reduce);
}

View File

@ -58,4 +58,11 @@ void all_to_all_vdev_2d_offset(
at::Tensor& out_splits_offsets,
std::string group_name);
void tile_reduce(
at::Tensor& in_tile,
at::Tensor& out_tile,
int64_t root,
std::string group_name,
std::string reduce_op = "sum");
} // namespace c10d::nvshmem_extension