mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
[ONNX] Remove unused logic from internal verification module (#161449)
Signed-off-by: Justin Chu <justinchuby@users.noreply.github.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/161449 Approved by: https://github.com/xadupre, https://github.com/titaiwangms ghstack dependencies: #161323
This commit is contained in:
committed by
PyTorch MergeBot
parent
9a1c5c0a07
commit
d11720efdb
@ -1,299 +0,0 @@
|
||||
# Owner(s): ["module: onnx"]
|
||||
|
||||
import contextlib
|
||||
import io
|
||||
import tempfile
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
|
||||
import onnx
|
||||
import parameterized
|
||||
import pytorch_test_common
|
||||
from packaging import version
|
||||
|
||||
import torch
|
||||
from torch.onnx import _constants
|
||||
from torch.onnx._internal.torchscript_exporter import _experimental, verification
|
||||
from torch.testing._internal import common_utils
|
||||
|
||||
|
||||
class TestVerification(pytorch_test_common.ExportTestCase):
|
||||
def test_check_export_model_diff_returns_diff_when_constant_mismatch(self):
|
||||
class UnexportableModel(torch.nn.Module):
|
||||
def forward(self, x, y):
|
||||
# tensor.data() will be exported as a constant,
|
||||
# leading to wrong model output under different inputs.
|
||||
return x + y.data
|
||||
|
||||
test_input_groups = [
|
||||
((torch.randn(2, 3), torch.randn(2, 3)), {}),
|
||||
((torch.randn(2, 3), torch.randn(2, 3)), {}),
|
||||
]
|
||||
|
||||
results = verification.check_export_model_diff(
|
||||
UnexportableModel(), test_input_groups
|
||||
)
|
||||
self.assertRegex(
|
||||
results,
|
||||
r"Graph diff:(.|\n)*"
|
||||
r"First diverging operator:(.|\n)*"
|
||||
r"prim::Constant(.|\n)*"
|
||||
r"Former source location:(.|\n)*"
|
||||
r"Latter source location:",
|
||||
)
|
||||
|
||||
def test_check_export_model_diff_returns_diff_when_dynamic_controlflow_mismatch(
|
||||
self,
|
||||
):
|
||||
class UnexportableModel(torch.nn.Module):
|
||||
def forward(self, x, y):
|
||||
for i in range(x.size(0)):
|
||||
y = x[i] + y
|
||||
return y
|
||||
|
||||
test_input_groups = [
|
||||
((torch.randn(2, 3), torch.randn(2, 3)), {}),
|
||||
((torch.randn(4, 3), torch.randn(2, 3)), {}),
|
||||
]
|
||||
|
||||
export_options = _experimental.ExportOptions(
|
||||
input_names=["x", "y"], dynamic_axes={"x": [0]}
|
||||
)
|
||||
results = verification.check_export_model_diff(
|
||||
UnexportableModel(), test_input_groups, export_options
|
||||
)
|
||||
self.assertRegex(
|
||||
results,
|
||||
r"Graph diff:(.|\n)*"
|
||||
r"First diverging operator:(.|\n)*"
|
||||
r"prim::Constant(.|\n)*"
|
||||
r"Latter source location:(.|\n)*",
|
||||
)
|
||||
|
||||
def test_check_export_model_diff_returns_empty_when_correct_export(self):
|
||||
class SupportedModel(torch.nn.Module):
|
||||
def forward(self, x, y):
|
||||
return x + y
|
||||
|
||||
test_input_groups = [
|
||||
((torch.randn(2, 3), torch.randn(2, 3)), {}),
|
||||
((torch.randn(2, 3), torch.randn(2, 3)), {}),
|
||||
]
|
||||
|
||||
results = verification.check_export_model_diff(
|
||||
SupportedModel(), test_input_groups
|
||||
)
|
||||
self.assertEqual(results, "")
|
||||
|
||||
def test_compare_ort_pytorch_outputs_no_raise_with_acceptable_error_percentage(
|
||||
self,
|
||||
):
|
||||
ort_outs = [np.array([[1.0, 2.0], [3.0, 4.0]])]
|
||||
pytorch_outs = [torch.tensor([[1.0, 2.0], [3.0, 1.0]])]
|
||||
options = verification.VerificationOptions(
|
||||
rtol=1e-5,
|
||||
atol=1e-6,
|
||||
check_shape=True,
|
||||
check_dtype=False,
|
||||
ignore_none=True,
|
||||
acceptable_error_percentage=0.3,
|
||||
)
|
||||
verification._compare_onnx_pytorch_outputs(
|
||||
ort_outs,
|
||||
pytorch_outs,
|
||||
options,
|
||||
)
|
||||
|
||||
def test_compare_ort_pytorch_outputs_raise_without_acceptable_error_percentage(
|
||||
self,
|
||||
):
|
||||
ort_outs = [np.array([[1.0, 2.0], [3.0, 4.0]])]
|
||||
pytorch_outs = [torch.tensor([[1.0, 2.0], [3.0, 1.0]])]
|
||||
options = verification.VerificationOptions(
|
||||
rtol=1e-5,
|
||||
atol=1e-6,
|
||||
check_shape=True,
|
||||
check_dtype=False,
|
||||
ignore_none=True,
|
||||
acceptable_error_percentage=None,
|
||||
)
|
||||
with self.assertRaises(AssertionError):
|
||||
verification._compare_onnx_pytorch_outputs(
|
||||
ort_outs,
|
||||
pytorch_outs,
|
||||
options,
|
||||
)
|
||||
|
||||
|
||||
@common_utils.instantiate_parametrized_tests
|
||||
class TestVerificationOnWrongExport(pytorch_test_common.ExportTestCase):
|
||||
opset_version: int
|
||||
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
|
||||
def incorrect_add_symbolic_function(g, self, other, alpha):
|
||||
return self
|
||||
|
||||
self.opset_version = _constants.ONNX_DEFAULT_OPSET
|
||||
torch.onnx.register_custom_op_symbolic(
|
||||
"aten::add",
|
||||
incorrect_add_symbolic_function,
|
||||
opset_version=self.opset_version,
|
||||
)
|
||||
|
||||
def tearDown(self):
|
||||
super().tearDown()
|
||||
torch.onnx.unregister_custom_op_symbolic(
|
||||
"aten::add", opset_version=self.opset_version
|
||||
)
|
||||
|
||||
@common_utils.parametrize(
|
||||
"onnx_backend",
|
||||
[
|
||||
common_utils.subtest(
|
||||
verification.OnnxBackend.REFERENCE,
|
||||
decorators=[
|
||||
unittest.skipIf(
|
||||
version.Version(onnx.__version__) < version.Version("1.13"),
|
||||
reason="Reference Python runtime was introduced in 'onnx' 1.13.",
|
||||
)
|
||||
],
|
||||
),
|
||||
verification.OnnxBackend.ONNX_RUNTIME_CPU,
|
||||
],
|
||||
)
|
||||
def test_verify_found_mismatch_when_export_is_wrong(
|
||||
self, onnx_backend: verification.OnnxBackend
|
||||
):
|
||||
class Model(torch.nn.Module):
|
||||
def forward(self, x):
|
||||
return x + 1
|
||||
|
||||
with self.assertRaisesRegex(AssertionError, ".*Tensor-likes are not close!.*"):
|
||||
verification.verify(
|
||||
Model(),
|
||||
(torch.randn(2, 3),),
|
||||
opset_version=self.opset_version,
|
||||
options=verification.VerificationOptions(backend=onnx_backend),
|
||||
)
|
||||
|
||||
|
||||
@parameterized.parameterized_class(
|
||||
[
|
||||
# TODO: enable this when ONNX submodule catches up to >= 1.13.
|
||||
# {"onnx_backend": verification.OnnxBackend.ONNX},
|
||||
{"onnx_backend": verification.OnnxBackend.ONNX_RUNTIME_CPU},
|
||||
],
|
||||
class_name_func=lambda cls,
|
||||
idx,
|
||||
input_dicts: f"{cls.__name__}_{input_dicts['onnx_backend'].name}",
|
||||
)
|
||||
class TestFindMismatch(pytorch_test_common.ExportTestCase):
|
||||
onnx_backend: verification.OnnxBackend
|
||||
opset_version: int
|
||||
graph_info: verification.GraphInfo
|
||||
|
||||
def setUp(self):
|
||||
super().setUp()
|
||||
self.opset_version = _constants.ONNX_DEFAULT_OPSET
|
||||
|
||||
def incorrect_relu_symbolic_function(g, self):
|
||||
return g.op("Add", self, g.op("Constant", value_t=torch.tensor(1.0)))
|
||||
|
||||
torch.onnx.register_custom_op_symbolic(
|
||||
"aten::relu",
|
||||
incorrect_relu_symbolic_function,
|
||||
opset_version=self.opset_version,
|
||||
)
|
||||
|
||||
class Model(torch.nn.Module):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self.layers = torch.nn.Sequential(
|
||||
torch.nn.Linear(3, 4),
|
||||
torch.nn.ReLU(),
|
||||
torch.nn.Linear(4, 5),
|
||||
torch.nn.ReLU(),
|
||||
torch.nn.Linear(5, 6),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.layers(x)
|
||||
|
||||
self.graph_info = verification.find_mismatch(
|
||||
Model(),
|
||||
(torch.randn(2, 3),),
|
||||
opset_version=self.opset_version,
|
||||
options=verification.VerificationOptions(backend=self.onnx_backend),
|
||||
)
|
||||
|
||||
def tearDown(self):
|
||||
super().tearDown()
|
||||
torch.onnx.unregister_custom_op_symbolic(
|
||||
"aten::relu", opset_version=self.opset_version
|
||||
)
|
||||
delattr(self, "opset_version")
|
||||
delattr(self, "graph_info")
|
||||
|
||||
def test_pretty_print_tree_visualizes_mismatch(self):
|
||||
f = io.StringIO()
|
||||
with contextlib.redirect_stdout(f):
|
||||
self.graph_info.pretty_print_tree()
|
||||
self.assertExpected(f.getvalue())
|
||||
|
||||
def test_preserve_mismatch_source_location(self):
|
||||
mismatch_leaves = self.graph_info.all_mismatch_leaf_graph_info()
|
||||
|
||||
self.assertTrue(len(mismatch_leaves) > 0)
|
||||
|
||||
for leaf_info in mismatch_leaves:
|
||||
f = io.StringIO()
|
||||
with contextlib.redirect_stdout(f):
|
||||
leaf_info.pretty_print_mismatch(graph=True)
|
||||
self.assertRegex(
|
||||
f.getvalue(),
|
||||
r"(.|\n)*aten::relu.*/torch/nn/functional.py:[0-9]+(.|\n)*",
|
||||
)
|
||||
|
||||
def test_find_all_mismatch_operators(self):
|
||||
mismatch_leaves = self.graph_info.all_mismatch_leaf_graph_info()
|
||||
|
||||
self.assertEqual(len(mismatch_leaves), 2)
|
||||
|
||||
for leaf_info in mismatch_leaves:
|
||||
self.assertEqual(leaf_info.essential_node_count(), 1)
|
||||
self.assertEqual(leaf_info.essential_node_kinds(), {"aten::relu"})
|
||||
|
||||
def test_find_mismatch_prints_correct_info_when_no_mismatch(self):
|
||||
self.maxDiff = None
|
||||
|
||||
class Model(torch.nn.Module):
|
||||
def forward(self, x):
|
||||
return x + 1
|
||||
|
||||
f = io.StringIO()
|
||||
with contextlib.redirect_stdout(f):
|
||||
verification.find_mismatch(
|
||||
Model(),
|
||||
(torch.randn(2, 3),),
|
||||
opset_version=self.opset_version,
|
||||
options=verification.VerificationOptions(backend=self.onnx_backend),
|
||||
)
|
||||
self.assertExpected(f.getvalue())
|
||||
|
||||
def test_export_repro_for_mismatch(self):
|
||||
mismatch_leaves = self.graph_info.all_mismatch_leaf_graph_info()
|
||||
self.assertTrue(len(mismatch_leaves) > 0)
|
||||
leaf_info = mismatch_leaves[0]
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
repro_dir = leaf_info.export_repro(temp_dir)
|
||||
|
||||
with self.assertRaisesRegex(AssertionError, "Tensor-likes are not close!"):
|
||||
options = verification.VerificationOptions(backend=self.onnx_backend)
|
||||
verification.OnnxTestCaseRepro(repro_dir).validate(options)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
common_utils.run_tests()
|
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user