extract TestAutogradComplex into its own test file (#63400)

Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63400

This is the first step to break up test_autograd.py for #63205.

Test Plan: Imported from OSS

Reviewed By: albanD

Differential Revision: D30541499

Pulled By: dagitses

fbshipit-source-id: 8d9d32007938b9eade0e88f95a6a3190e7e2ef01
This commit is contained in:
Michael Dagitses
2021-09-02 04:04:59 -07:00
committed by Facebook GitHub Bot
parent be5b05c1dc
commit cdb46f4c6e
3 changed files with 112 additions and 102 deletions

View File

@ -0,0 +1,103 @@
import torch
from torch.testing._internal.common_utils import TestCase, run_tests, gradcheck
class TestAutogradComplex(TestCase):
def test_view_func_for_complex_views(self):
# case 1: both parent and child have view_func
x = torch.randn(2, 2, 2, dtype=torch.double, requires_grad=True)
y = x.detach().requires_grad_(True)
x0 = x.clone()
x1 = torch.view_as_complex(x0)
x2 = torch.view_as_real(x1)
x2.mul_(2)
x2.sum().backward()
y0 = y.clone()
y0.mul_(2)
y0.sum().backward()
self.assertEqual(x.grad, y.grad)
# case 2: parent has view_func but child does not
x = torch.randn(2, 2, 2, dtype=torch.double, requires_grad=True)
y = x.detach().requires_grad_(True)
def fn(a):
b = a.clone()
b1 = torch.view_as_complex(b)
b2 = b1.reshape(b1.numel())
return b2
x0 = fn(x)
x0.mul_(2)
x0.sum().backward()
y0 = fn(y)
y1 = y0.mul(2)
y1.sum().backward()
self.assertEqual(x.grad, y.grad)
# case 3: parent does not have a view_func but child does
x = torch.randn(10, dtype=torch.cdouble, requires_grad=True)
y = x.detach().requires_grad_(True)
def fn(a, dim0_size=5):
b = a.clone()
b1 = b.reshape(dim0_size, 2)
b2 = torch.view_as_real(b1)
return b2
x0 = fn(x)
x0.mul_(2)
x0.sum().backward()
y0 = fn(y)
y1 = y0.mul(2)
y1.sum().backward()
self.assertEqual(x.grad, y.grad)
def test_view_with_multi_output(self):
x = torch.randn(2, 2, 2, dtype=torch.double)
x1 = torch.view_as_complex(x)
# Taking an invalid view should always be allowed as long as it is not
# modified inplace
res = x1.unbind(0)
with self.assertRaisesRegex(RuntimeError, "output of a function that returns multiple views"):
res[0] += torch.rand(2, requires_grad=True)
x.requires_grad_(True)
x1 = torch.view_as_complex(x)
# Taking an invalid view should always be allowed as long as it is not
# modified inplace
res = x1.unbind(0)
with self.assertRaisesRegex(RuntimeError, "output of a function that returns multiple views"):
res[0] += torch.rand(2, requires_grad=True)
def as_identity(self):
# view_as_real and view_as_complex behavior should be like an identity
def func(z):
z_ = torch.view_as_complex(z)
z_select = torch.select(z_, z_.dim() - 1, 0)
z_select_real = torch.view_as_real(z_select)
return z_select_real.sum()
z = torch.randn(10, 2, 2, dtype=torch.double, requires_grad=True)
gradcheck(func, [z])
func(z).backward()
z1 = z.clone().detach().requires_grad_(True)
torch.select(z1, z1.dim() - 2, 0).sum().backward()
self.assertEqual(z.grad, z1.grad)
if __name__ == '__main__':
run_tests()

View File

@ -28,7 +28,6 @@ from torch.testing import make_tensor
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import (TestCase, run_tests, skipIfNoLapack,
suppress_warnings, slowTest,
load_tests,
IS_WINDOWS, IS_MACOS, CudaMemoryLeakCheck,
TEST_WITH_ROCM, disable_gc,
gradcheck, gradgradcheck)
@ -44,11 +43,6 @@ from torch.testing._internal.common_device_type import (instantiate_device_type_
deviceCountAtLeast, skipCUDAIfCudnnVersionLessThan,
skipCUDAIf, skipMeta)
# load_tests from common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings
load_tests = load_tests
import pickle
PRECISION = 1e-4
@ -6173,101 +6167,6 @@ def run_functional_checks(test_case, test_name, name, apply_fn, run_grad_checks,
test_case.assertEqual(self_variable.size(), self_variable.grad.size())
class TestAutogradComplex(TestCase):
def test_view_func_for_complex_views(self):
# case 1: both parent and child have view_func
x = torch.randn(2, 2, 2, dtype=torch.double, requires_grad=True)
y = x.detach().requires_grad_(True)
x0 = x.clone()
x1 = torch.view_as_complex(x0)
x2 = torch.view_as_real(x1)
x2.mul_(2)
x2.sum().backward()
y0 = y.clone()
y0.mul_(2)
y0.sum().backward()
self.assertEqual(x.grad, y.grad)
# case 2: parent has view_func but child does not
x = torch.randn(2, 2, 2, dtype=torch.double, requires_grad=True)
y = x.detach().requires_grad_(True)
def fn(a):
b = a.clone()
b1 = torch.view_as_complex(b)
b2 = b1.reshape(b1.numel())
return b2
x0 = fn(x)
x0.mul_(2)
x0.sum().backward()
y0 = fn(y)
y1 = y0.mul(2)
y1.sum().backward()
self.assertEqual(x.grad, y.grad)
# case 3: parent does not have a view_func but child does
x = torch.randn(10, dtype=torch.cdouble, requires_grad=True)
y = x.detach().requires_grad_(True)
def fn(a, dim0_size=5):
b = a.clone()
b1 = b.reshape(dim0_size, 2)
b2 = torch.view_as_real(b1)
return b2
x0 = fn(x)
x0.mul_(2)
x0.sum().backward()
y0 = fn(y)
y1 = y0.mul(2)
y1.sum().backward()
self.assertEqual(x.grad, y.grad)
def test_view_with_multi_output(self):
x = torch.randn(2, 2, 2, dtype=torch.double)
x1 = torch.view_as_complex(x)
# Taking an invalid view should always be allowed as long as it is not
# modified inplace
res = x1.unbind(0)
with self.assertRaisesRegex(RuntimeError, "output of a function that returns multiple views"):
res[0] += torch.rand(2, requires_grad=True)
x.requires_grad_(True)
x1 = torch.view_as_complex(x)
# Taking an invalid view should always be allowed as long as it is not
# modified inplace
res = x1.unbind(0)
with self.assertRaisesRegex(RuntimeError, "output of a function that returns multiple views"):
res[0] += torch.rand(2, requires_grad=True)
def as_identity(self):
# view_as_real and view_as_complex behavior should be like an identity
def func(z):
z_ = torch.view_as_complex(z)
z_select = torch.select(z_, z_.dim() - 1, 0)
z_select_real = torch.view_as_real(z_select)
return z_select_real.sum()
z = torch.randn(10, 2, 2, dtype=torch.double, requires_grad=True)
gradcheck(func, [z])
func(z).backward()
z1 = z.clone().detach().requires_grad_(True)
torch.select(z1, z1.dim() - 2, 0).sum().backward()
self.assertEqual(z.grad, z1.grad)
class TestAutogradFunctional(TestCase):
def _assert_same_struct(self, res, base):
# base and res should be Tensors or tuple of Tensors with the same size
@ -9640,6 +9539,11 @@ class TestMultithreadAutograd(TestCase):
torch.autograd.gradcheck(fn, [inp_r, inp_c], check_forward_ad=True)
torch.autograd.gradcheck(fn, [inp_c, inp_r], check_forward_ad=True)
# Import test cases from below autograd/ here. These are found
# implicitly by the loader, so Flake8 thinks they are unused, hence
# the suppressions.
from autograd.test_complex import TestAutogradComplex # noqa: F401
# e.g., TestAutogradDeviceTypeCPU and TestAutogradDeviceTypeCUDA
instantiate_device_type_tests(

View File

@ -48,7 +48,10 @@ TARGET_DET_LIST = [
"distributed/test_pg_wrapper",
"distributed/test_store",
"distributions/test_distributions",
"test_autograd",
# test_autograd.py is not slow, so it does not belong here. But
# note that if you try to add it back it will run into
# https://bugs.python.org/issue40350 because it imports files
# under test/autograd/.
"test_binary_ufuncs",
"test_cpp_extensions_aot_ninja",
"test_cpp_extensions_aot_no_ninja",