mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
remove unnecessary sync point in AveragedModel update (#158017)
Summary: The test `bool(self.n_averaged == 0)` is a CPU/GPU synchronization point that is called for each update. This test is only meant to know whether the AveragedModel copy has been initialized or not. This diff introduces a CPU-based variable for that purpose. When loading from checkpoint we also make sure the parameter is refreshed. After this fix, each `update_parameter` call is reduced to 6ms from 333ms (98% reduction). Test Plan: contbuild & OSS CI Test plan from GitHub: CI Rollback Plan: Differential Revision: D78074709 Pull Request resolved: https://github.com/pytorch/pytorch/pull/158017 Approved by: https://github.com/janeyx99
This commit is contained in:
committed by
PyTorch MergeBot
parent
5937861eba
commit
cb7f45fd34
@ -116,6 +116,28 @@ def get_swa_avg_fn():
|
||||
return swa_update
|
||||
|
||||
|
||||
def _load_state_dict_pre_hook(
|
||||
module,
|
||||
state_dict,
|
||||
prefix,
|
||||
local_metadata,
|
||||
strict,
|
||||
missing_keys,
|
||||
unexpected_keys,
|
||||
error_msgs,
|
||||
):
|
||||
"""Pre-hook to handle backward compatibility with tensor n_averaged."""
|
||||
# Check if the old tensor n_averaged is present in the state dict
|
||||
n_averaged_key = prefix + "n_averaged"
|
||||
if n_averaged_key in state_dict:
|
||||
# Convert tensor n_averaged to Python int for backward compatibility
|
||||
n_averaged_tensor = state_dict[n_averaged_key]
|
||||
if isinstance(n_averaged_tensor, Tensor):
|
||||
module.n_averaged = int(n_averaged_tensor.item())
|
||||
# Remove the old tensor buffer from state_dict to avoid loading it
|
||||
del state_dict[n_averaged_key]
|
||||
|
||||
|
||||
class AveragedModel(Module):
|
||||
r"""Implements averaged model for Stochastic Weight Averaging (SWA) and Exponential Moving Average (EMA).
|
||||
|
||||
@ -215,7 +237,7 @@ class AveragedModel(Module):
|
||||
https://paperswithcode.com/method/polyak-averaging
|
||||
"""
|
||||
|
||||
n_averaged: Tensor
|
||||
n_averaged: int
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
@ -234,17 +256,25 @@ class AveragedModel(Module):
|
||||
self.module = deepcopy(model)
|
||||
if device is not None:
|
||||
self.module = self.module.to(device)
|
||||
self.register_buffer(
|
||||
"n_averaged", torch.tensor(0, dtype=torch.long, device=device)
|
||||
)
|
||||
self.n_averaged = 0
|
||||
self.avg_fn = avg_fn
|
||||
self.multi_avg_fn = multi_avg_fn
|
||||
self.use_buffers = use_buffers
|
||||
self.register_load_state_dict_pre_hook(_load_state_dict_pre_hook)
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
"""Forward pass."""
|
||||
return self.module(*args, **kwargs)
|
||||
|
||||
def get_extra_state(self) -> Any:
|
||||
"""Get extra state for serialization."""
|
||||
return {"n_averaged": self.n_averaged}
|
||||
|
||||
def set_extra_state(self, state: Any) -> None:
|
||||
"""Set extra state from deserialization."""
|
||||
if isinstance(state, dict) and "n_averaged" in state:
|
||||
self.n_averaged = state["n_averaged"]
|
||||
|
||||
def update_parameters(self, model: Module):
|
||||
"""Update model parameters."""
|
||||
self_param = (
|
||||
@ -280,28 +310,26 @@ class AveragedModel(Module):
|
||||
self.multi_avg_fn(
|
||||
self_params, # type: ignore[arg-type]
|
||||
model_params, # type: ignore[arg-type]
|
||||
self.n_averaged.to(device),
|
||||
self.n_averaged,
|
||||
)
|
||||
elif (
|
||||
device is not None
|
||||
and device.type in _get_foreach_kernels_supported_devices()
|
||||
):
|
||||
multi_avg_fn = get_swa_multi_avg_fn()
|
||||
multi_avg_fn(
|
||||
self_params, model_params, self.n_averaged.to(device)
|
||||
)
|
||||
multi_avg_fn(self_params, model_params, self.n_averaged)
|
||||
else:
|
||||
avg_fn = get_swa_avg_fn()
|
||||
n_averaged = self.n_averaged.to(device)
|
||||
for p_averaged, p_model in zip(self_params, model_params): # type: ignore[assignment]
|
||||
p_averaged.copy_(avg_fn(p_averaged, p_model, n_averaged))
|
||||
p_averaged.copy_(
|
||||
avg_fn(p_averaged, p_model, self.n_averaged)
|
||||
)
|
||||
else:
|
||||
for p_averaged, p_model in zip( # type: ignore[assignment]
|
||||
self_param_detached, model_param_detached
|
||||
):
|
||||
n_averaged = self.n_averaged.to(p_averaged.device)
|
||||
p_averaged.detach().copy_(
|
||||
self.avg_fn(p_averaged.detach(), p_model, n_averaged)
|
||||
self.avg_fn(p_averaged.detach(), p_model, self.n_averaged)
|
||||
)
|
||||
|
||||
if not self.use_buffers:
|
||||
|
Reference in New Issue
Block a user