Port NumPy typing testing style to PyTorch (#52408)

Summary:
ref: https://github.com/pytorch/pytorch/issues/16574

Pull Request resolved: https://github.com/pytorch/pytorch/pull/52408

Reviewed By: anjali411

Differential Revision: D26654687

Pulled By: malfet

fbshipit-source-id: 6feb603d8fb03c2ba2a01468bfde1a9901e889fd
This commit is contained in:
Guilherme Leobas
2021-03-10 12:06:36 -08:00
committed by Facebook GitHub Bot
parent 17bc70e6f7
commit cb68039363
3 changed files with 264 additions and 0 deletions

View File

@ -172,6 +172,7 @@ USE_PYTEST_LIST = [
'distributions/test_constraints',
'distributions/test_transforms',
'distributions/test_utils',
'test_typing',
]
WINDOWS_BLOCKLIST = [

149
test/test_typing.py Normal file
View File

@ -0,0 +1,149 @@
# based on NumPy numpy/typing/tests/test_typing.py
import itertools
import os
import re
import shutil
from typing import IO, Dict, List
import pytest
try:
from mypy import api
except ImportError:
NO_MYPY = True
else:
NO_MYPY = False
DATA_DIR = os.path.join(os.path.dirname(__file__), "typing")
REVEAL_DIR = os.path.join(DATA_DIR, "reveal")
MYPY_INI = os.path.join(DATA_DIR, os.pardir, os.pardir, "mypy.ini")
CACHE_DIR = os.path.join(DATA_DIR, ".mypy_cache")
#: A dictionary with file names as keys and lists of the mypy stdout as values.
#: To-be populated by `run_mypy`.
OUTPUT_MYPY: Dict[str, List[str]] = {}
def _key_func(key: str) -> str:
"""Split at the first occurance of the ``:`` character.
Windows drive-letters (*e.g.* ``C:``) are ignored herein.
"""
drive, tail = os.path.splitdrive(key)
return os.path.join(drive, tail.split(":", 1)[0])
@pytest.mark.skipif(NO_MYPY, reason="Mypy is not installed")
@pytest.fixture(scope="module", autouse=True)
def run_mypy() -> None:
"""Clears the cache and run mypy before running any of the typing tests.
The mypy results are cached in `OUTPUT_MYPY` for further use.
"""
if os.path.isdir(CACHE_DIR):
shutil.rmtree(CACHE_DIR)
for directory in (REVEAL_DIR,):
# Run mypy
stdout, stderr, _ = api.run(
[
"--show-absolute-path",
"--config-file",
MYPY_INI,
"--cache-dir",
CACHE_DIR,
directory,
]
)
assert not stderr, directory
stdout = stdout.replace("*", "")
# Parse the output
iterator = itertools.groupby(stdout.split("\n"), key=_key_func)
OUTPUT_MYPY.update((k, list(v)) for k, v in iterator if k)
def get_test_cases(directory):
for root, _, files in os.walk(directory):
for fname in files:
if os.path.splitext(fname)[-1] == ".py":
fullpath = os.path.join(root, fname)
# Use relative path for nice py.test name
relpath = os.path.relpath(fullpath, start=directory)
yield pytest.param(
fullpath,
# Manually specify a name for the test
id=relpath,
)
#: A dictionary with all supported format keys (as keys)
#: and matching values
FORMAT_DICT: Dict[str, str] = {}
def _parse_reveals(file: IO[str]) -> List[str]:
"""Extract and parse all ``" # E: "`` comments from the passed file-like object.
All format keys will be substituted for their respective value from `FORMAT_DICT`,
*e.g.* ``"{float64}"`` becomes ``"numpy.floating[numpy.typing._64Bit]"``.
"""
string = file.read().replace("*", "")
# Grab all `# E:`-based comments
comments_array = list(map(lambda str: str.partition(" # E: ")[2], string.split("\n")))
comments = "/n".join(comments_array)
# Only search for the `{*}` pattern within comments,
# otherwise there is the risk of accidently grabbing dictionaries and sets
key_set = set(re.findall(r"\{(.*?)\}", comments))
kwargs = {
k: FORMAT_DICT.get(k, f"<UNRECOGNIZED FORMAT KEY {k!r}>") for k in key_set
}
fmt_str = comments.format(**kwargs)
return fmt_str.split("/n")
@pytest.mark.skipif(NO_MYPY, reason="Mypy is not installed")
@pytest.mark.parametrize("path", get_test_cases(REVEAL_DIR))
def test_reveal(path):
__tracebackhide__ = True
with open(path) as fin:
lines = _parse_reveals(fin)
output_mypy = OUTPUT_MYPY
assert path in output_mypy
for error_line in output_mypy[path]:
match = re.match(
r"^.+\.py:(?P<lineno>\d+): note: .+$",
error_line,
)
if match is None:
raise ValueError(f"Unexpected reveal line format: {error_line}")
lineno = int(match.group("lineno")) - 1
assert "Revealed type is" in error_line
marker = lines[lineno]
_test_reveal(path, marker, error_line, 1 + lineno)
_REVEAL_MSG = """Reveal mismatch at line {}
Expected reveal: {!r}
Observed reveal: {!r}
"""
def _test_reveal(path: str, reveal: str, expected_reveal: str, lineno: int) -> None:
if reveal not in expected_reveal:
raise AssertionError(_REVEAL_MSG.format(lineno, expected_reveal, reveal))
if __name__ == '__main__':
pytest.main([__file__])

View File

@ -0,0 +1,114 @@
import torch
from torch.testing._internal.common_utils import TEST_NUMPY
if TEST_NUMPY:
import numpy as np
# From the docs, there are quite a few ways to create a tensor:
# https://pytorch.org/docs/stable/tensors.html
# torch.tensor()
reveal_type(torch.tensor([[0.1, 1.2], [2.2, 3.1], [4.9, 5.2]])) # E: torch.tensor.Tensor
reveal_type(torch.tensor([0, 1])) # E: torch.tensor.Tensor
reveal_type(torch.tensor([[0.11111, 0.222222, 0.3333333]],
dtype=torch.float64,
device=torch.device('cuda:0'))) # E: torch.tensor.Tensor
reveal_type(torch.tensor(3.14159)) # E: torch.tensor.Tensor
# torch.sparse_coo_tensor
i = torch.tensor([[0, 1, 1],
[2, 0, 2]]) # E: torch.tensor.Tensor
v = torch.tensor([3, 4, 5], dtype=torch.float32) # E: torch.tensor.Tensor
reveal_type(torch.sparse_coo_tensor(i, v, [2, 4])) # E: torch.tensor.Tensor
reveal_type(torch.sparse_coo_tensor(i, v)) # E: torch.tensor.Tensor
reveal_type(torch.sparse_coo_tensor(i, v, [2, 4],
dtype=torch.float64,
device=torch.device('cuda:0'))) # E: torch.tensor.Tensor
reveal_type(torch.sparse_coo_tensor(torch.empty([1, 0]), [], [1])) # E: torch.tensor.Tensor
reveal_type(torch.sparse_coo_tensor(torch.empty([1, 0]),
torch.empty([0, 2]), [1, 2])) # E: torch.tensor.Tensor
# torch.as_tensor
if TEST_NUMPY:
a = np.array([1, 2, 3])
reveal_type(torch.as_tensor(a)) # E: torch.tensor.Tensor
reveal_type(torch.as_tensor(a, device=torch.device('cuda'))) # E: torch.tensor.Tensor
# torch.as_strided
x = torch.randn(3, 3)
reveal_type(torch.as_strided(x, (2, 2), (1, 2))) # E: torch.tensor.Tensor
reveal_type(torch.as_strided(x, (2, 2), (1, 2), 1)) # E: torch.tensor.Tensor
# torch.from_numpy
if TEST_NUMPY:
a = np.array([1, 2, 3])
reveal_type(torch.from_numpy(a)) # E: torch.tensor.Tensor
# torch.zeros/zeros_like
reveal_type(torch.zeros(2, 3)) # E: torch.tensor.Tensor
reveal_type(torch.zeros(5)) # E: torch.tensor.Tensor
reveal_type(torch.zeros_like(torch.empty(2, 3))) # E: torch.tensor.Tensor
# torch.ones/ones_like
reveal_type(torch.ones(2, 3)) # E: torch.tensor.Tensor
reveal_type(torch.ones(5)) # E: torch.tensor.Tensor
reveal_type(torch.ones_like(torch.empty(2, 3))) # E: torch.tensor.Tensor
# torch.arange
reveal_type(torch.arange(5)) # E: torch.tensor.Tensor
reveal_type(torch.arange(1, 4)) # E: torch.tensor.Tensor
reveal_type(torch.arange(1, 2.5, 0.5)) # E: torch.tensor.Tensor
# torch.range
reveal_type(torch.range(1, 4)) # E: torch.tensor.Tensor
reveal_type(torch.range(1, 4, 0.5)) # E: torch.tensor.Tensor
# torch.linspace
reveal_type(torch.linspace(3, 10, steps=5)) # E: torch.tensor.Tensor
reveal_type(torch.linspace(-10, 10, steps=5)) # E: torch.tensor.Tensor
reveal_type(torch.linspace(start=-10, end=10, steps=5)) # E: torch.tensor.Tensor
reveal_type(torch.linspace(start=-10, end=10, steps=1)) # E: torch.tensor.Tensor
# torch.logspace
reveal_type(torch.logspace(start=-10, end=10, steps=5)) # E: torch.tensor.Tensor
reveal_type(torch.logspace(start=0.1, end=1.0, steps=5)) # E: torch.tensor.Tensor
reveal_type(torch.logspace(start=0.1, end=1.0, steps=1)) # E: torch.tensor.Tensor
reveal_type(torch.logspace(start=2, end=2, steps=1, base=2)) # E: torch.tensor.Tensor
# torch.eye
reveal_type(torch.eye(3)) # E: torch.tensor.Tensor
# torch.empty/empty_like/empty_strided
reveal_type(torch.empty(2, 3)) # E: torch.tensor.Tensor
reveal_type(torch.empty_like(torch.empty(2, 3), dtype=torch.int64)) # E: torch.tensor.Tensor
reveal_type(torch.empty_strided((2, 3), (1, 2))) # E: torch.tensor.Tensor
# torch.full/full_like
reveal_type(torch.full((2, 3), 3.141592)) # E: torch.tensor.Tensor
reveal_type(torch.full_like(torch.full((2, 3), 3.141592), 2.71828)) # E: torch.tensor.Tensor
# torch.quantize_per_tensor
reveal_type(torch.quantize_per_tensor(torch.tensor([-1.0, 0.0, 1.0, 2.0]), 0.1, 10, torch.quint8)) # E: torch.tensor.Tensor
# torch.quantize_per_channel
x = torch.tensor([[-1.0, 0.0], [1.0, 2.0]])
quant = torch.quantize_per_channel(x, torch.tensor([0.1, 0.01]), torch.tensor([10, 0]), 0, torch.quint8)
reveal_type(x) # E: torch.tensor.Tensor
# torch.dequantize
reveal_type(torch.dequantize(x)) # E: torch.tensor.Tensor
# torch.complex
real = torch.tensor([1, 2], dtype=torch.float32)
imag = torch.tensor([3, 4], dtype=torch.float32)
reveal_type(torch.complex(real, imag)) # E: torch.tensor.Tensor
# torch.polar
abs = torch.tensor([1, 2], dtype=torch.float64)
pi = torch.acos(torch.zeros(1)).item() * 2
angle = torch.tensor([pi / 2, 5 * pi / 4], dtype=torch.float64)
reveal_type(torch.polar(abs, angle)) # E: torch.tensor.Tensor
# torch.heaviside
inp = torch.tensor([-1.5, 0, 2.0])
values = torch.tensor([0.5])
reveal_type(torch.heaviside(inp, values)) # E: torch.tensor.Tensor