mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-20 21:14:14 +08:00
Add __all__ for torch.optim and torch.nn.modules modules (#80237)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80237 Approved by: https://github.com/albanD
This commit is contained in:
committed by
PyTorch MergeBot
parent
84c0a308a1
commit
bda04e9f5e
@ -2022,60 +2022,6 @@
|
||||
"torch.nn.intrinsic.quantized.modules.conv_relu": [
|
||||
"fuse_conv_bn_weights"
|
||||
],
|
||||
"torch.nn.modules.activation": [
|
||||
"Module",
|
||||
"NonDynamicallyQuantizableLinear",
|
||||
"Optional",
|
||||
"Parameter",
|
||||
"Tensor",
|
||||
"Tuple",
|
||||
"constant_",
|
||||
"xavier_normal_",
|
||||
"xavier_uniform_"
|
||||
],
|
||||
"torch.nn.modules.adaptive": [
|
||||
"Linear",
|
||||
"List",
|
||||
"Module",
|
||||
"ModuleList",
|
||||
"Sequence",
|
||||
"Sequential",
|
||||
"Tensor",
|
||||
"log_softmax",
|
||||
"namedtuple"
|
||||
],
|
||||
"torch.nn.modules.batchnorm": [
|
||||
"Any",
|
||||
"LazyModuleMixin",
|
||||
"Module",
|
||||
"Optional",
|
||||
"Parameter",
|
||||
"Tensor",
|
||||
"UninitializedBuffer",
|
||||
"UninitializedParameter",
|
||||
"sync_batch_norm"
|
||||
],
|
||||
"torch.nn.modules.channelshuffle": [
|
||||
"Module",
|
||||
"Tensor"
|
||||
],
|
||||
"torch.nn.modules.container": [
|
||||
"Any",
|
||||
"Dict",
|
||||
"Iterable",
|
||||
"Iterator",
|
||||
"Mapping",
|
||||
"Module",
|
||||
"Optional",
|
||||
"OrderedDict",
|
||||
"Parameter",
|
||||
"Tuple",
|
||||
"TypeVar",
|
||||
"Union",
|
||||
"chain",
|
||||
"islice",
|
||||
"overload"
|
||||
],
|
||||
"torch.nn.modules.conv": [
|
||||
"LazyModuleMixin",
|
||||
"List",
|
||||
@ -2405,94 +2351,6 @@
|
||||
"TensorProtoDataType",
|
||||
"TrainingMode"
|
||||
],
|
||||
"torch.optim.adadelta": [
|
||||
"List",
|
||||
"Optimizer",
|
||||
"Optional",
|
||||
"Tensor"
|
||||
],
|
||||
"torch.optim.adagrad": [
|
||||
"List",
|
||||
"Optimizer",
|
||||
"Optional",
|
||||
"Tensor"
|
||||
],
|
||||
"torch.optim.adam": [
|
||||
"List",
|
||||
"Optimizer",
|
||||
"Optional",
|
||||
"Tensor"
|
||||
],
|
||||
"torch.optim.adamax": [
|
||||
"List",
|
||||
"Optimizer",
|
||||
"Optional",
|
||||
"Tensor"
|
||||
],
|
||||
"torch.optim.adamw": [
|
||||
"List",
|
||||
"Optimizer",
|
||||
"Optional",
|
||||
"Tensor"
|
||||
],
|
||||
"torch.optim.asgd": [
|
||||
"List",
|
||||
"Optimizer",
|
||||
"Optional",
|
||||
"Tensor"
|
||||
],
|
||||
"torch.optim.lbfgs": [
|
||||
"Optimizer",
|
||||
"reduce"
|
||||
],
|
||||
"torch.optim.lr_scheduler": [
|
||||
"Counter",
|
||||
"Optimizer",
|
||||
"bisect_right",
|
||||
"wraps"
|
||||
],
|
||||
"torch.optim.nadam": [
|
||||
"List",
|
||||
"Optimizer",
|
||||
"Optional",
|
||||
"Tensor"
|
||||
],
|
||||
"torch.optim.optimizer": [
|
||||
"chain",
|
||||
"deepcopy",
|
||||
"defaultdict"
|
||||
],
|
||||
"torch.optim.radam": [
|
||||
"List",
|
||||
"Optimizer",
|
||||
"Optional",
|
||||
"Tensor"
|
||||
],
|
||||
"torch.optim.rmsprop": [
|
||||
"List",
|
||||
"Optimizer",
|
||||
"Optional",
|
||||
"Tensor"
|
||||
],
|
||||
"torch.optim.rprop": [
|
||||
"List",
|
||||
"Optimizer",
|
||||
"Optional",
|
||||
"Tensor"
|
||||
],
|
||||
"torch.optim.sgd": [
|
||||
"List",
|
||||
"Optimizer",
|
||||
"Optional",
|
||||
"Tensor"
|
||||
],
|
||||
"torch.optim.sparse_adam": [
|
||||
"Optimizer"
|
||||
],
|
||||
"torch.optim.swa_utils": [
|
||||
"Module",
|
||||
"deepcopy"
|
||||
],
|
||||
"torch.overrides": [
|
||||
"BaseTorchFunctionMode",
|
||||
"TorchFunctionMode",
|
||||
|
@ -9,6 +9,10 @@ from torch.nn.parameter import Parameter
|
||||
from .module import Module
|
||||
from .. import functional as F
|
||||
|
||||
__all__ = ['Threshold', 'ReLU', 'RReLU', 'Hardtanh', 'ReLU6', 'Sigmoid', 'Hardsigmoid', 'Tanh',
|
||||
'SiLU', 'Mish', 'Hardswish', 'ELU', 'CELU', 'SELU', 'GLU', 'GELU', 'Hardshrink', 'LeakyReLU',
|
||||
'LogSigmoid', 'Softplus', 'Softshrink', 'MultiheadAttention', 'PReLU', 'Softsign', 'Tanhshrink',
|
||||
'Softmin', 'Softmax', 'Softmax2d', 'LogSoftmax']
|
||||
|
||||
class Threshold(Module):
|
||||
r"""Thresholds each element of the input Tensor.
|
||||
|
@ -11,6 +11,7 @@ from . import Sequential, ModuleList, Linear
|
||||
from .module import Module
|
||||
from ..functional import log_softmax
|
||||
|
||||
__all__ = ['AdaptiveLogSoftmaxWithLoss']
|
||||
|
||||
_ASMoutput = namedtuple('_ASMoutput', ['output', 'loss'])
|
||||
|
||||
|
@ -10,6 +10,8 @@ from ._functions import SyncBatchNorm as sync_batch_norm
|
||||
from .lazy import LazyModuleMixin
|
||||
from .module import Module
|
||||
|
||||
__all__ = ['BatchNorm1d', 'LazyBatchNorm1d', 'BatchNorm2d', 'LazyBatchNorm2d', 'BatchNorm3d',
|
||||
'LazyBatchNorm3d', 'SyncBatchNorm']
|
||||
|
||||
class _NormBase(Module):
|
||||
"""Common base of _InstanceNorm and _BatchNorm"""
|
||||
|
@ -3,6 +3,7 @@ from .. import functional as F
|
||||
|
||||
from torch import Tensor
|
||||
|
||||
__all__ = ['ChannelShuffle']
|
||||
|
||||
class ChannelShuffle(Module):
|
||||
r"""Divide the channels in a tensor of shape :math:`(*, C , H, W)`
|
||||
|
@ -10,6 +10,8 @@ from torch._jit_internal import _copy_to_script_wrapper
|
||||
|
||||
from typing import Any, Dict, Iterable, Iterator, Mapping, Optional, overload, Tuple, TypeVar, Union
|
||||
|
||||
__all__ = ['Container', 'Sequential', 'ModuleList', 'ModuleDict', 'ParameterList', 'ParameterDict']
|
||||
|
||||
T = TypeVar('T', bound=Module)
|
||||
|
||||
|
||||
|
@ -4,6 +4,7 @@ from torch import Tensor
|
||||
from .optimizer import Optimizer
|
||||
from typing import List, Optional
|
||||
|
||||
__all__ = ['Adadelta', 'adadelta']
|
||||
|
||||
class Adadelta(Optimizer):
|
||||
r"""Implements Adadelta algorithm.
|
||||
|
@ -4,6 +4,7 @@ from torch import Tensor
|
||||
from .optimizer import Optimizer
|
||||
from typing import List, Optional
|
||||
|
||||
__all__ = ['Adagrad', 'adagrad']
|
||||
|
||||
class Adagrad(Optimizer):
|
||||
r"""Implements Adagrad algorithm.
|
||||
|
@ -4,6 +4,7 @@ from torch import Tensor
|
||||
from .optimizer import Optimizer
|
||||
from typing import List, Optional
|
||||
|
||||
__all__ = ['Adam', 'adam']
|
||||
|
||||
class Adam(Optimizer):
|
||||
r"""Implements Adam algorithm.
|
||||
|
@ -4,6 +4,7 @@ from torch import Tensor
|
||||
from .optimizer import Optimizer
|
||||
from typing import List, Optional
|
||||
|
||||
__all__ = ['Adamax', 'adamax']
|
||||
|
||||
class Adamax(Optimizer):
|
||||
r"""Implements Adamax algorithm (a variant of Adam based on infinity norm).
|
||||
|
@ -4,6 +4,7 @@ from torch import Tensor
|
||||
from .optimizer import Optimizer
|
||||
from typing import List, Optional
|
||||
|
||||
__all__ = ['AdamW', 'adamw']
|
||||
|
||||
class AdamW(Optimizer):
|
||||
r"""Implements AdamW algorithm.
|
||||
|
@ -5,6 +5,7 @@ from torch import Tensor
|
||||
from .optimizer import Optimizer
|
||||
from typing import List, Optional
|
||||
|
||||
__all__ = ['ASGD', 'asgd']
|
||||
|
||||
class ASGD(Optimizer):
|
||||
"""Implements Averaged Stochastic Gradient Descent.
|
||||
|
@ -2,6 +2,7 @@ import torch
|
||||
from functools import reduce
|
||||
from .optimizer import Optimizer
|
||||
|
||||
__all__ = ['LBFGS']
|
||||
|
||||
def _cubic_interpolate(x1, f1, g1, x2, f2, g2, bounds=None):
|
||||
# ported from https://github.com/torch/optim/blob/master/polyinterp.lua
|
||||
|
@ -9,6 +9,9 @@ from bisect import bisect_right
|
||||
|
||||
from .optimizer import Optimizer
|
||||
|
||||
__all__ = ['LambdaLR', 'MultiplicativeLR', 'StepLR', 'MultiStepLR', 'ConstantLR', 'LinearLR',
|
||||
'ExponentialLR', 'SequentialLR', 'CosineAnnealingLR', 'ChainedScheduler', 'ReduceLROnPlateau',
|
||||
'CyclicLR', 'CosineAnnealingWarmRestarts', 'OneCycleLR']
|
||||
|
||||
EPOCH_DEPRECATION_WARNING = (
|
||||
"The epoch parameter in `scheduler.step()` was not necessary and is being "
|
||||
|
@ -4,6 +4,7 @@ from torch import Tensor
|
||||
from .optimizer import Optimizer
|
||||
from typing import List, Optional
|
||||
|
||||
__all__ = ['NAdam', 'nadam']
|
||||
|
||||
class NAdam(Optimizer):
|
||||
r"""Implements NAdam algorithm.
|
||||
|
@ -6,6 +6,7 @@ from itertools import chain
|
||||
import warnings
|
||||
import functools
|
||||
|
||||
__all__ = ['Optimizer']
|
||||
|
||||
class _RequiredParameter(object):
|
||||
"""Singleton class representing a required parameter for an Optimizer."""
|
||||
|
@ -5,6 +5,7 @@ from torch import Tensor
|
||||
from .optimizer import Optimizer
|
||||
from typing import List, Optional
|
||||
|
||||
__all__ = ['RAdam', 'radam']
|
||||
|
||||
class RAdam(Optimizer):
|
||||
r"""Implements RAdam algorithm.
|
||||
|
@ -3,6 +3,7 @@ from torch import Tensor
|
||||
from .optimizer import Optimizer
|
||||
from typing import List, Optional
|
||||
|
||||
__all__ = ['RMSprop', 'rmsprop']
|
||||
|
||||
class RMSprop(Optimizer):
|
||||
r"""Implements RMSprop algorithm.
|
||||
|
@ -3,6 +3,7 @@ from torch import Tensor
|
||||
from .optimizer import Optimizer
|
||||
from typing import List, Optional
|
||||
|
||||
__all__ = ['Rprop', 'rprop']
|
||||
|
||||
class Rprop(Optimizer):
|
||||
r"""Implements the resilient backpropagation algorithm.
|
||||
|
@ -3,6 +3,7 @@ from torch import Tensor
|
||||
from .optimizer import Optimizer, required
|
||||
from typing import List, Optional
|
||||
|
||||
__all__ = ['SGD', 'sgd']
|
||||
|
||||
class SGD(Optimizer):
|
||||
r"""Implements stochastic gradient descent (optionally with momentum).
|
||||
|
@ -2,6 +2,7 @@ import torch
|
||||
from . import _functional as F
|
||||
from .optimizer import Optimizer
|
||||
|
||||
__all__ = ['SparseAdam']
|
||||
|
||||
class SparseAdam(Optimizer):
|
||||
r"""Implements lazy version of Adam algorithm suitable for sparse tensors.
|
||||
|
@ -7,6 +7,7 @@ import torch
|
||||
from torch.nn import Module
|
||||
from torch.optim.lr_scheduler import _LRScheduler
|
||||
|
||||
__all__ = ['AveragedModel', 'update_bn', 'SWALR']
|
||||
|
||||
class AveragedModel(Module):
|
||||
r"""Implements averaged model for Stochastic Weight Averaging (SWA).
|
||||
|
Reference in New Issue
Block a user