Update to TorchFix 0.4.0 (#119424)

`torch.library.Library` updated to `torch.library._scoped_library` in files with many tests where it seems obvious to do, otherwise `noqa: TOR901` added - see https://github.com/pytorch/pytorch/pull/118318 for more context.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119424
Approved by: https://github.com/zou3519
This commit is contained in:
Sergii Dymchenko
2024-02-12 23:30:08 +00:00
committed by PyTorch MergeBot
parent 5acd1f0f7d
commit bd9db6a9c7
22 changed files with 348 additions and 355 deletions

View File

@ -63,10 +63,9 @@ class TestPythonRegistration(TestCase):
# RuntimeError: impl("aten::neg", ...):
# Explicitly provided namespace (aten) in operator name does not match ...
with self.assertRaisesRegex(RuntimeError, "operator name does not match namespace"):
my_lib3 = Library("foo", "DEF")
my_lib3.define("neg(Tensor self) -> Tensor")
my_lib3.impl(torch.ops.aten.neg.default, my_neg, "AutogradCPU")
del my_lib3
with _scoped_library("foo", "DEF") as my_lib3:
my_lib3.define("neg(Tensor self) -> Tensor")
my_lib3.impl(torch.ops.aten.neg.default, my_neg, "AutogradCPU")
# Example 2
def my_mul(*args, **kwargs):
@ -92,12 +91,12 @@ class TestPythonRegistration(TestCase):
def test_error_if_fn_not_callable(self):
with self.assertRaisesRegex(TypeError, "Input function is required to be a callable"):
my_lib = Library("aten", "IMPL")
my_lib.impl(torch.ops.aten.neg.default, [], "AutogradCPU")
with _scoped_library("aten", "IMPL") as my_lib:
my_lib.impl(torch.ops.aten.neg.default, [], "AutogradCPU")
def test_finalizer(self):
impls_refcnt = sys.getrefcount(torch.library._impls)
lib = Library(self.test_ns, "FRAGMENT")
lib = Library(self.test_ns, "FRAGMENT") # noqa: TOR901
lib.define("foo123(Tensor x) -> Tensor")
# 1 for `lib`, 1 for sys.getrefcount
@ -142,12 +141,11 @@ class TestPythonRegistration(TestCase):
run[0] = True
return args[0].clone()
my_lib1 = Library("aten", "IMPL")
my_lib1.impl('aten::sum', my_sum, "CPU")
x = torch.tensor([1, 2])
self.assertEqual(torch.sum(x), x)
self.assertTrue(run[0])
del my_lib1
with _scoped_library("aten", "IMPL") as my_lib1:
my_lib1.impl('aten::sum', my_sum, "CPU")
x = torch.tensor([1, 2])
self.assertEqual(torch.sum(x), x)
self.assertTrue(run[0])
# Validate that the old behavior is restored for sum
self.assertEqual(torch.sum(x), torch.tensor(3))
@ -168,17 +166,16 @@ class TestPythonRegistration(TestCase):
return jitted_where(*args, **kwargs)
# overriding where's cuda kernel with Jiterator generated kernel
my_lib = Library("aten", "IMPL")
my_lib.impl('aten::where.self', inverted_where, "CUDA")
with _scoped_library("aten", "IMPL") as my_lib:
my_lib.impl('aten::where.self', inverted_where, "CUDA")
device = 'cuda'
cond = torch.tensor([True, True, False], device=device, dtype=torch.bool)
x = torch.tensor([1, 2, 3], device=device)
y = torch.tensor([-1, -2, -3], device=device)
device = 'cuda'
cond = torch.tensor([True, True, False], device=device, dtype=torch.bool)
x = torch.tensor([1, 2, 3], device=device)
y = torch.tensor([-1, -2, -3], device=device)
self.assertEqual(torch.where(cond, x, y), torch.tensor([-1, -2, 3]))
self.assertTrue(CALLED[0])
del my_lib
self.assertEqual(torch.where(cond, x, y), torch.tensor([-1, -2, 3]))
self.assertTrue(CALLED[0])
# behavior restored after deregistration
self.assertEqual(torch.where(cond, x, y), torch.tensor([1, 2, -3]))
@ -199,13 +196,12 @@ class TestPythonRegistration(TestCase):
return jitted_gelu(*args, **kwargs)
# overriding gelu's cuda kernel with Jiterator generated relu kernel
my_lib = Library("aten", "IMPL")
my_lib.impl('aten::gelu', fast_gelu, "CUDA")
with _scoped_library("aten", "IMPL") as my_lib:
my_lib.impl('aten::gelu', fast_gelu, "CUDA")
x = torch.rand([3, 3], device='cuda', dtype=torch.float)
self.assertEqual(torch.nn.functional.gelu(x), torch.nn.functional.relu(x))
self.assertTrue(CALLED[0])
del my_lib
x = torch.rand([3, 3], device='cuda', dtype=torch.float)
self.assertEqual(torch.nn.functional.gelu(x), torch.nn.functional.relu(x))
self.assertTrue(CALLED[0])
# behavior restored after deregistration
self.assertNotEqual(torch.nn.functional.gelu(x), torch.nn.functional.relu(x))
@ -226,13 +222,12 @@ class TestPythonRegistration(TestCase):
return jitted_exp(*args, **kwargs)
# overriding exp's cuda kernel with clipped_exp kernel
my_lib = Library("aten", "IMPL")
my_lib.impl('aten::exp', clipped_exp, "CUDA")
with _scoped_library("aten", "IMPL") as my_lib:
my_lib.impl('aten::exp', clipped_exp, "CUDA")
x = torch.tensor([0.0, 100.0], device='cuda', dtype=torch.float16)
self.assertEqual(torch.exp(x), torch.tensor([1.0, 22026.4657948], dtype=torch.float16))
self.assertTrue(CALLED[0])
del my_lib
x = torch.tensor([0.0, 100.0], device='cuda', dtype=torch.float16)
self.assertEqual(torch.exp(x), torch.tensor([1.0, 22026.4657948], dtype=torch.float16))
self.assertTrue(CALLED[0])
# behavior restored after deregistration
self.assertEqual(torch.exp(x), torch.tensor([1.0, torch.inf], dtype=torch.float16))
@ -252,18 +247,17 @@ class TestPythonRegistration(TestCase):
CALLED[0] = True
return jitted_add(*args, **kwargs)
my_lib = Library("aten", "IMPL")
my_lib.impl('aten::add.Tensor', buggy_add, "CUDA")
with _scoped_library("aten", "IMPL") as my_lib:
my_lib.impl('aten::add.Tensor', buggy_add, "CUDA")
x_cpu = torch.rand([3, 3], device='cpu')
y_cpu = torch.rand([3], device='cpu')
x_cpu = torch.rand([3, 3], device='cpu')
y_cpu = torch.rand([3], device='cpu')
x_cuda = x_cpu.cuda()
y_cuda = y_cpu.cuda()
x_cuda = x_cpu.cuda()
y_cuda = y_cpu.cuda()
self.assertEqual(x_cuda + y_cuda, x_cpu + y_cpu + 1)
self.assertTrue(CALLED[0])
del my_lib
self.assertEqual(x_cuda + y_cuda, x_cpu + y_cpu + 1)
self.assertTrue(CALLED[0])
# behavior restored after deregistration
self.assertEqual(x_cuda + y_cuda, x_cpu + y_cpu)
@ -277,97 +271,80 @@ class TestPythonRegistration(TestCase):
def test_extend_library_with_dispatch_key_arg(self):
def my_sum(*args, **kwargs):
return args[0].clone()
my_lib1 = Library("aten", "IMPL", dispatch_key="CPU")
# RuntimeError: Explicitly provided dispatch key (Conjugate) is
# inconsistent with the dispatch key of the enclosing TORCH_LIBRARY_IMPL block
with self.assertRaisesRegex(RuntimeError, "inconsistent with the dispatch key"):
my_lib1.impl('sum', my_sum, "Conjugate")
my_lib1.impl('aten::sum', my_sum)
x = torch.tensor([1, 2])
self.assertEqual(torch.sum(x), x)
del my_lib1
with _scoped_library("aten", "IMPL", dispatch_key="CPU") as my_lib1:
# RuntimeError: Explicitly provided dispatch key (Conjugate) is
# inconsistent with the dispatch key of the enclosing TORCH_LIBRARY_IMPL block
with self.assertRaisesRegex(RuntimeError, "inconsistent with the dispatch key"):
my_lib1.impl('sum', my_sum, "Conjugate")
my_lib1.impl('aten::sum', my_sum)
x = torch.tensor([1, 2])
self.assertEqual(torch.sum(x), x)
def test_create_new_library(self) -> None:
my_lib1 = Library(self.test_ns, "DEF")
with _scoped_library(self.test_ns, "DEF") as my_lib1:
my_lib1.define("sum(Tensor self) -> Tensor")
my_lib1.define("sum(Tensor self) -> Tensor")
# Example 1
@torch.library.impl(my_lib1, "sum", "CPU")
def my_sum(*args, **kwargs):
return args[0].clone()
x = torch.tensor([1, 2])
op = getattr(torch.ops, self.test_ns).sum
self.assertEqual(op(x), x)
my_lib2 = Library(self.test_ns, "IMPL")
# Example 2
@torch.library.impl(my_lib2, op.default, "ZeroTensor")
def my_sum_zt(*args, **kwargs):
if args[0]._is_zerotensor():
return torch._efficientzerotensor(args[0].shape)
else:
# Example 1
@torch.library.impl(my_lib1, "sum", "CPU")
def my_sum(*args, **kwargs):
return args[0].clone()
y = torch._efficientzerotensor(3)
self.assertTrue(op(y)._is_zerotensor())
self.assertEqual(op(x), x)
x = torch.tensor([1, 2])
op = getattr(torch.ops, self.test_ns).sum
self.assertEqual(op(x), x)
del my_lib2
del my_lib1
with _scoped_library(self.test_ns, "IMPL") as my_lib2:
# Example 2
@torch.library.impl(my_lib2, op.default, "ZeroTensor")
def my_sum_zt(*args, **kwargs):
if args[0]._is_zerotensor():
return torch._efficientzerotensor(args[0].shape)
else:
return args[0].clone()
y = torch._efficientzerotensor(3)
self.assertTrue(op(y)._is_zerotensor())
self.assertEqual(op(x), x)
def test_create_new_library_fragment_no_existing(self):
my_lib = Library(self.test_ns, "FRAGMENT")
with _scoped_library(self.test_ns, "FRAGMENT") as my_lib:
my_lib.define("sum2(Tensor self) -> Tensor")
my_lib.define("sum2(Tensor self) -> Tensor")
@torch.library.impl(my_lib, "sum2", "CPU")
def my_sum(*args, **kwargs):
return args[0]
@torch.library.impl(my_lib, "sum2", "CPU")
def my_sum(*args, **kwargs):
return args[0]
x = torch.tensor([1, 2])
self.assertEqual(getattr(torch.ops, self.test_ns).sum2(x), x)
del my_lib
x = torch.tensor([1, 2])
self.assertEqual(getattr(torch.ops, self.test_ns).sum2(x), x)
def test_create_new_library_fragment_with_existing(self):
my_lib1 = Library(self.test_ns, "DEF")
with _scoped_library(self.test_ns, "DEF") as my_lib1:
# Create a fragment
with _scoped_library(self.test_ns, "FRAGMENT") as my_lib2:
my_lib2.define("sum4(Tensor self) -> Tensor")
# Create a fragment
my_lib2 = Library(self.test_ns, "FRAGMENT")
@torch.library.impl(my_lib2, "sum4", "CPU")
def my_sum4(*args, **kwargs):
return args[0]
my_lib2.define("sum4(Tensor self) -> Tensor")
x = torch.tensor([1, 2])
self.assertEqual(getattr(torch.ops, self.test_ns).sum4(x), x)
@torch.library.impl(my_lib2, "sum4", "CPU")
def my_sum4(*args, **kwargs):
return args[0]
# Create another fragment
with _scoped_library(self.test_ns, "FRAGMENT") as my_lib3:
my_lib3.define("sum3(Tensor self) -> Tensor")
x = torch.tensor([1, 2])
self.assertEqual(getattr(torch.ops, self.test_ns).sum4(x), x)
@torch.library.impl(my_lib3, "sum3", "CPU")
def my_sum3(*args, **kwargs):
return args[0]
# Create another fragment
my_lib3 = Library(self.test_ns, "FRAGMENT")
my_lib3.define("sum3(Tensor self) -> Tensor")
@torch.library.impl(my_lib3, "sum3", "CPU")
def my_sum3(*args, **kwargs):
return args[0]
x = torch.tensor([1, 2])
self.assertEqual(getattr(torch.ops, self.test_ns).sum3(x), x)
del my_lib1
del my_lib2
del my_lib3
x = torch.tensor([1, 2])
self.assertEqual(getattr(torch.ops, self.test_ns).sum3(x), x)
@unittest.skipIf(IS_WINDOWS, "Skipped under Windows")
def test_alias_analysis(self):
def test_helper(alias_analysis=""):
my_lib1 = Library(self.test_ns, "DEF")
my_lib1 = Library(self.test_ns, "DEF") # noqa: TOR901
called = [0]
@ -388,11 +365,11 @@ class TestPythonRegistration(TestCase):
def test_error_for_unsupported_ns_or_kind(self) -> None:
with self.assertRaisesRegex(ValueError, "Unsupported kind"):
my_lib1 = Library("myns", "BLA")
my_lib1 = Library("myns", "BLA") # noqa: TOR901
for kind in ('DEF', 'FRAGMENT'):
with self.assertRaisesRegex(ValueError, "reserved namespace"):
my_lib1 = Library("prim", kind)
my_lib1 = Library("prim", kind) # noqa: TOR901
def test_returning_symint(self) -> None:
shape_env = ShapeEnv()
@ -402,15 +379,15 @@ class TestPythonRegistration(TestCase):
s0, s1 = ft.shape
tlib = Library(self.test_ns, "DEF")
tlib.define("sqsum(SymInt a, SymInt b) -> SymInt")
with _scoped_library(self.test_ns, "DEF") as tlib:
tlib.define("sqsum(SymInt a, SymInt b) -> SymInt")
@impl(tlib, "sqsum", "CompositeExplicitAutograd")
def sqsum(a: SymInt, b: SymInt):
return a * a + b * b
@impl(tlib, "sqsum", "CompositeExplicitAutograd")
def sqsum(a: SymInt, b: SymInt):
return a * a + b * b
out = getattr(torch.ops, self.test_ns).sqsum.default(s0, s1)
out_val = shape_env.evaluate_expr(out.node.expr)
out = getattr(torch.ops, self.test_ns).sqsum.default(s0, s1)
out_val = shape_env.evaluate_expr(out.node.expr)
self.assertEqual(out_val, 13)
def test_register_functional_op_error_cases(self):
@ -566,8 +543,7 @@ class TestPythonRegistration(TestCase):
getattr(torch.ops, self.test_ns).foo_functional.default, (x, y, z, w))
def test_register_fallthrough(self):
try:
my_lib = Library('aten', 'IMPL')
with _scoped_library('aten', 'IMPL') as my_lib:
my_lib.impl("mm", fallthrough_kernel, "AutocastCPU")
a = torch.randn(2, 3, device='cpu', dtype=torch.float32)
@ -577,8 +553,6 @@ class TestPythonRegistration(TestCase):
self.assertEqual(torch.mm(a, b).dtype, torch.float32)
# ops that don't have a fallthrough registered should not be affected
self.assertEqual(torch.matmul(a, b).dtype, torch.bfloat16)
finally:
del my_lib
with torch.autocast(device_type="cpu", dtype=torch.bfloat16):
# default behavior should have been restored
@ -694,13 +668,13 @@ $5: f32[2] = torch._ops.aten.clone.default($4, memory_format=torch.contiguous_fo
print("woof")
return torch.empty(())
my_lib = Library("my_lib", "DEF")
my_lib.define("weird(Tensor?[] self) -> Tensor")
my_lib.impl("weird", weird, "CPU")
with capture_logs() as logs:
x = LoggingTensor(torch.ones(2, 2))
log_input("x", x)
torch.ops.my_lib.weird.default([None, x])
with _scoped_library("my_lib", "DEF") as my_lib:
my_lib.define("weird(Tensor?[] self) -> Tensor")
my_lib.impl("weird", weird, "CPU")
with capture_logs() as logs:
x = LoggingTensor(torch.ones(2, 2))
log_input("x", x)
torch.ops.my_lib.weird.default([None, x])
self.assertExpectedInline('\n'.join(logs), '''\
$0: f32[2, 2] = input('x')
@ -1485,28 +1459,29 @@ $0: f32[] = torch._ops.aten.empty.memory_format([], device=device(type='cpu'), p
t.record_stream(s)
def test_return_stream(self) -> None:
l_def = torch.library.Library("test_return_stream", "DEF")
l_def.define("return_stream(Tensor self) -> Stream")
l_impl = torch.library.Library("test_return_stream", "IMPL", "CPU")
l_impl.impl("return_stream", lambda _: torch.Stream(stream_id=0, device_index=1, device_type=2))
with _scoped_library("test_return_stream", "DEF") as l_def:
l_def.define("return_stream(Tensor self) -> Stream")
with _scoped_library("test_return_stream", "IMPL", "CPU") as l_impl:
l_impl.impl("return_stream",
lambda _: torch.Stream(stream_id=0, device_index=1, device_type=2))
class TestMode(TorchDispatchMode):
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
return torch.Stream(stream_id=1, device_index=2, device_type=3)
class TestMode(TorchDispatchMode):
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
return torch.Stream(stream_id=1, device_index=2, device_type=3)
t = torch.tensor(5.)
s = torch.ops.test_return_stream.return_stream(t)
self.assertIsInstance(s, torch.Stream)
self.assertEqual(s.stream_id, 0)
self.assertEqual(s.device_index, 1)
self.assertEqual(s.device_type, 2)
t = torch.tensor(5.)
s = torch.ops.test_return_stream.return_stream(t)
self.assertIsInstance(s, torch.Stream)
self.assertEqual(s.stream_id, 0)
self.assertEqual(s.device_index, 1)
self.assertEqual(s.device_type, 2)
with TestMode():
s = torch.ops.test_return_stream.return_stream(t)
self.assertIsInstance(s, torch.Stream)
self.assertEqual(s.stream_id, 1)
self.assertEqual(s.device_index, 2)
self.assertEqual(s.device_type, 3)
with TestMode():
s = torch.ops.test_return_stream.return_stream(t)
self.assertIsInstance(s, torch.Stream)
self.assertEqual(s.stream_id, 1)
self.assertEqual(s.device_index, 2)
self.assertEqual(s.device_type, 3)
def test_subclass_autograd_device_check(self) -> None:
class NonWrapperSubclass(torch.Tensor):