mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 13:44:15 +08:00
* start at generic trilinear * Implement einsum (fixes #1889) This provides a simple implementation of einsum. It is built on top of the work for computing bilinear (#6110). It uses a naive left-to-right resolution at the moment. Autograd is able to differentiate by itself. The obvious unsupported feature is taking diagonals (einsum('ii->i',(a,)). * add tests and docs * fix flake8 * clean diff * rebase on current master to resolve conflicting String wrapping * clean up after rebase * better commentary in einsum and sumproduct_pair * don't say fixme if it's fixed and rename num_outputs to num_output_dims * adapt python wrapper to use std::string instead of String to avoid typedef at::String * typos and some vector to array conversion * fix accidental python<->python3 change * really fix bad rebase
This commit is contained in:
committed by
Francisco Massa
parent
187955b959
commit
bd0cc7d364
@ -27,7 +27,7 @@ static std::unordered_map<std::string, ParameterType> type_map = {
|
||||
{"optional<ScalarType>", ParameterType::SCALARTYPE},
|
||||
{"Layout", ParameterType::LAYOUT},
|
||||
{"Device", ParameterType::DEVICE},
|
||||
{"String", ParameterType::STRING},
|
||||
{"std::string", ParameterType::STRING},
|
||||
};
|
||||
|
||||
FunctionParameter::FunctionParameter(const std::string& fmt, bool keyword_only)
|
||||
|
Reference in New Issue
Block a user