Enable UFMT on test/test_fake_tensor.py, test/test_flop_counter.py and some files (#125747)

Part of: #123062

Ran lintrunner on:

- test/test_fake_tensor.py
- test/test_flop_counter.py
- test/test_function_schema.py
- test/test_functional_autograd_benchmark.py
- test/test_functional_optim.py
- test/test_functionalization_of_rng_ops.py

Detail:

```bash
$ lintrunner -a --take UFMT --all-files
ok No lint issues.
Successfully applied all patches.
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125747
Approved by: https://github.com/malfet
This commit is contained in:
Yuanhao Ji
2024-05-15 14:50:14 +00:00
committed by PyTorch MergeBot
parent 187aeaeabf
commit ba3cd6e463
7 changed files with 665 additions and 321 deletions

View File

@ -1,15 +1,16 @@
# Owner(s): ["oncall: distributed"]
from typing import List, Optional, Tuple
import unittest
from typing import List, Optional, Tuple
import torch
import torch.distributed
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from torch.optim import SGD, Adam, AdamW
from torch.testing._internal.common_utils import TestCase, run_tests
from torch.optim import Adam, AdamW, SGD
from torch.testing._internal.common_utils import run_tests, TestCase
class MyModule(torch.nn.Module):
def __init__(self):
@ -21,6 +22,7 @@ class MyModule(torch.nn.Module):
def forward(self, t1):
return self.lin2(F.relu(self.lin1(t1)))
# dummy class to showcase custom optimizer registration with functional wrapper
class MyDummyFnOptimizer:
def __init__(
@ -32,7 +34,6 @@ class MyDummyFnOptimizer:
weight_decay: float = 0.0,
_allow_empty_param_list: bool = False,
):
if not 0.0 <= lr:
raise ValueError(f"Invalid learning rate: {lr}")
if not 0.0 <= eps:
@ -58,17 +59,26 @@ class MyDummyFnOptimizer:
def step_param(self, param: Tensor, grad: Optional[Tensor]):
# call the custom optimizer step_param implementation
with torch.no_grad():
raise RuntimeError("MyDummyFnOptimizer does not support step_param() as of now")
raise RuntimeError(
"MyDummyFnOptimizer does not support step_param() as of now"
)
def step(self, gradients: List[Optional[Tensor]]):
# call the custom optimizer step implementation
with torch.no_grad():
raise RuntimeError("MyDummyFnOptimizer does not support step() as of now")
if torch.distributed.is_available():
from torch.distributed.optim.utils import functional_optim_map, register_functional_optim
@unittest.skipIf(not torch.distributed.is_available(), "These are testing distributed functions")
if torch.distributed.is_available():
from torch.distributed.optim.utils import (
functional_optim_map,
register_functional_optim,
)
@unittest.skipIf(
not torch.distributed.is_available(), "These are testing distributed functions"
)
class TestFunctionalOptimParity(TestCase):
def _validate_parameters(self, params_1, params_2):
for p1, p2 in zip(params_1, params_2):