[ROCm][CI] Upgrade ROCm to 7.0 (#163140)

Upgrade all the ROCm docker image to ROCm 7.0 release version.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163140
Approved by: https://github.com/jeffdaily

Co-authored-by: Jeff Daily <jeff.daily@amd.com>
This commit is contained in:
Jeff Daily
2025-09-30 02:23:26 +00:00
committed by PyTorch MergeBot
parent 3b4ad4a17d
commit b7419b920d
5 changed files with 28 additions and 24 deletions

View File

@ -84,8 +84,8 @@ fi
_UCX_COMMIT=7836b165abdbe468a2f607e7254011c07d788152
_UCC_COMMIT=430e241bf5d38cbc73fc7a6b89155397232e3f96
if [[ "$image" == *rocm* ]]; then
_UCX_COMMIT=cc312eaa4655c0cc5c2bcd796db938f90563bcf6
_UCC_COMMIT=0c0fc21559835044ab107199e334f7157d6a0d3d
_UCX_COMMIT=29831d319e6be55cb8c768ca61de335c934ca39e
_UCC_COMMIT=9f4b242cbbd8b1462cbc732eb29316cdfa124b77
fi
tag=$(echo $image | awk -F':' '{print $2}')
@ -175,20 +175,6 @@ case "$tag" in
fi
GCC_VERSION=11
VISION=yes
ROCM_VERSION=6.4
NINJA_VERSION=1.9.0
TRITON=yes
KATEX=yes
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
if [[ $tag =~ "benchmarks" ]]; then
INDUCTOR_BENCHMARKS=yes
fi
;;
pytorch-linux-noble-rocm-alpha-py3)
ANACONDA_PYTHON_VERSION=3.12
GCC_VERSION=11
VISION=yes
ROCM_VERSION=7.0
NINJA_VERSION=1.9.0
TRITON=yes
@ -196,6 +182,9 @@ case "$tag" in
UCX_COMMIT=${_UCX_COMMIT}
UCC_COMMIT=${_UCC_COMMIT}
PYTORCH_ROCM_ARCH="gfx90a;gfx942;gfx950"
if [[ $tag =~ "benchmarks" ]]; then
INDUCTOR_BENCHMARKS=yes
fi
;;
pytorch-linux-jammy-xpu-n-1-py3)
ANACONDA_PYTHON_VERSION=3.10

View File

@ -42,12 +42,6 @@ EOF
rocm_baseurl="http://repo.radeon.com/rocm/apt/${ROCM_VERSION}"
amdgpu_baseurl="https://repo.radeon.com/amdgpu/${ROCM_VERSION}/ubuntu"
# Special case for ROCM_VERSION == 7.0
if [[ $(ver "$ROCM_VERSION") -eq $(ver 7.0) ]]; then
rocm_baseurl="https://repo.radeon.com/rocm/apt/7.0_alpha2"
amdgpu_baseurl="https://repo.radeon.com/amdgpu/30.10_alpha2/ubuntu"
fi
# Add amdgpu repository
UBUNTU_VERSION_NAME=`cat /etc/os-release | grep UBUNTU_CODENAME | awk -F= '{print $2}'`
echo "deb [arch=amd64] ${amdgpu_baseurl} ${UBUNTU_VERSION_NAME} main" > /etc/apt/sources.list.d/amdgpu.list

View File

@ -59,7 +59,6 @@ jobs:
pytorch-linux-jammy-py3.13-clang12,
pytorch-linux-jammy-rocm-n-py3,
pytorch-linux-noble-rocm-n-py3,
pytorch-linux-noble-rocm-alpha-py3,
pytorch-linux-jammy-rocm-n-py3-benchmarks,
pytorch-linux-jammy-cuda12.8-cudnn9-py3.10-clang12,
pytorch-linux-jammy-py3.10-gcc11,

View File

@ -38,7 +38,7 @@ jobs:
with:
runner_prefix: "${{ needs.get-label-type.outputs.label-type }}"
build-environment: linux-noble-rocm-py3.12-mi355
docker-image-name: ci-image:pytorch-linux-noble-rocm-alpha-py3
docker-image-name: ci-image:pytorch-linux-noble-rocm-n-py3
sync-tag: rocm-build
test-matrix: |
{ include: [

View File

@ -638,6 +638,17 @@ class TestMatmulCuda(InductorTestCase):
@parametrize("batch_size", [None, 1, 16])
@parametrize("backend", ["cublas", "cublaslt"])
def test_mm_bmm_dtype_overload(self, input_dtype, M, N, K, batch_size, backend):
if torch.version.hip:
msg = "accuracy regression in hipblas and hipblaslt in ROCm 7.0 for certain shapes"
if input_dtype == torch.bfloat16 and N == 1 and K == 32 and batch_size:
raise unittest.SkipTest(msg)
if input_dtype == torch.bfloat16 and N == 1 and K == 64 and batch_size:
raise unittest.SkipTest(msg)
if input_dtype == torch.float16 and M == 32 and N == 1 and K == 64 and batch_size == 1:
raise unittest.SkipTest(msg)
if input_dtype == torch.float16 and M == 64 and N == 1 and K == 64 and batch_size == 1:
raise unittest.SkipTest(msg)
device = "cuda"
dtype = input_dtype
with blas_library_context(backend):
@ -692,6 +703,17 @@ class TestMatmulCuda(InductorTestCase):
@parametrize("batch_size", [None, 1, 32])
@parametrize("backend", ["cublas", "cublaslt"])
def test_addmm_baddmm_dtype_overload(self, input_dtype, M, N, K, batch_size, backend):
if torch.version.hip:
msg = "accuracy regression in hipblas and hipblaslt in ROCm 7.0 for certain shapes"
if input_dtype == torch.bfloat16 and N == 1 and K == 32 and batch_size:
raise unittest.SkipTest(msg)
if input_dtype == torch.bfloat16 and N == 1 and K == 64 and batch_size:
raise unittest.SkipTest(msg)
if input_dtype == torch.float16 and M == 32 and N == 1 and K == 64 and batch_size == 1:
raise unittest.SkipTest(msg)
if input_dtype == torch.float16 and M == 64 and N == 1 and K == 64 and batch_size == 1:
raise unittest.SkipTest(msg)
device = "cuda"
dtype = input_dtype
with blas_library_context(backend):