Always build USE_DISTRIBUTED. (#160449)

Signed-off-by: Edward Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160449
Approved by: https://github.com/wconstab, https://github.com/albanD, https://github.com/dcci
This commit is contained in:
Edward Yang
2025-09-01 14:59:40 -04:00
committed by PyTorch MergeBot
parent 13b65196db
commit b7034e9c92
28 changed files with 120 additions and 213 deletions

View File

@ -35,11 +35,10 @@ fi
print_cmake_info
if [[ ${BUILD_ENVIRONMENT} == *"distributed"* ]]; then
# Needed for inductor benchmarks, as lots of HF networks make `torch.distribtued` calls
USE_DISTRIBUTED=1 USE_OPENMP=1 WERROR=1 python setup.py bdist_wheel
USE_OPENMP=1 WERROR=1 python setup.py bdist_wheel
else
# Explicitly set USE_DISTRIBUTED=0 to align with the default build config on mac. This also serves as the sole CI config that tests
# that building with USE_DISTRIBUTED=0 works at all. See https://github.com/pytorch/pytorch/issues/86448
# NB: we always build with distributed; USE_DISTRIBUTED turns off all
# backends (specifically the gloo backend), so test that this case works too
USE_DISTRIBUTED=0 USE_OPENMP=1 MACOSX_DEPLOYMENT_TARGET=11.0 WERROR=1 BUILD_TEST=OFF USE_PYTORCH_METAL=1 python setup.py bdist_wheel --plat-name macosx_11_0_arm64
fi
if which sccache > /dev/null; then

View File

@ -16,6 +16,8 @@ popd
# enable debug asserts in serialization
export TORCH_SERIALIZATION_DEBUG=1
python -mpip install --no-input -r requirements.txt
setup_test_python() {
# The CircleCI worker hostname doesn't resolve to an address.
# This environment variable makes ProcessGroupGloo default to

View File

@ -213,7 +213,8 @@ pip install requests ninja typing-extensions
retry pip install -r "${pytorch_rootdir}/requirements.txt" || true
retry brew install libomp
# For USE_DISTRIBUTED=1 on macOS, need libuv, which is build as part of tensorpipe submodule
# For USE_DISTRIBUTED=1 on macOS, this enables gloo, which needs libuv, which
# is build as part of tensorpipe submodule
export USE_DISTRIBUTED=1
export USE_MKLDNN=OFF

View File

@ -22,7 +22,6 @@ COMMON_COPTS = [
"-DHAVE_SHM_UNLINK=1",
"-D_FILE_OFFSET_BITS=64",
"-DUSE_FBGEMM",
"-DUSE_DISTRIBUTED",
"-DAT_PER_OPERATOR_HEADERS",
"-DATEN_THREADING=NATIVE",
"-DNO_CUDNN_DESTROY_HANDLE",

View File

@ -181,8 +181,9 @@ elseif(CMAKE_SYSTEM_PROCESSOR MATCHES "^(ppc64le)")
set(CPU_POWER ON)
endif()
# For non-supported platforms, turn USE_DISTRIBUTED off by default. It is not
# tested and likely won't work without additional changes.
# For non-supported platforms, turn USE_DISTRIBUTED off by default.
# NB: USE_DISTRIBUTED simply disables the backend; distributed code
# still gets built
if(NOT LINUX AND NOT WIN32)
set(USE_DISTRIBUTED
OFF
@ -261,11 +262,11 @@ option(USE_PYTORCH_METAL "Use Metal for PyTorch iOS build" OFF)
option(USE_PYTORCH_METAL_EXPORT "Export Metal models on MacOSX desktop" OFF)
option(USE_NATIVE_ARCH "Use -march=native" OFF)
cmake_dependent_option(USE_MPS "Use MPS for macOS build" ON "MPS_FOUND" OFF)
option(USE_DISTRIBUTED "Use distributed" ON)
option(USE_DISTRIBUTED "Enable default distributed backends" ON)
cmake_dependent_option(USE_NCCL "Use NCCL" ON
"USE_DISTRIBUTED;USE_CUDA OR USE_ROCM;UNIX;NOT APPLE" OFF)
cmake_dependent_option(USE_XCCL "Use XCCL" ON
"USE_XPU;UNIX;NOT APPLE" OFF)
"USE_DISTRIBUTED;USE_XPU;UNIX;NOT APPLE" OFF)
cmake_dependent_option(USE_RCCL "Use RCCL" ON USE_NCCL OFF)
cmake_dependent_option(USE_RCCL "Use RCCL" ON "USE_NCCL;NOT WIN32" OFF)
cmake_dependent_option(USE_STATIC_NCCL "Use static NCCL" OFF "USE_NCCL" OFF)
@ -430,11 +431,10 @@ if(WIN32)
PATH_SUFFIXES lib
NO_DEFAULT_PATH)
if(NOT libuv_tmp_LIBRARY)
set(USE_DISTRIBUTED OFF)
set(USE_GLOO OFF)
message(
WARNING
"Libuv is not installed in current conda env. Set USE_DISTRIBUTED to OFF. "
"Libuv is not installed in current conda env. Set USE_GLOO to OFF. "
"Please run command 'conda install -c conda-forge libuv=1.39' to install libuv."
)
else()

View File

@ -540,12 +540,10 @@ if(NOT INTERN_BUILD_MOBILE AND NOT BUILD_LITE_INTERPRETER)
${TORCH_SRC_DIR}/csrc/utils/byte_order.cpp
)
if(USE_DISTRIBUTED)
append_filelist("libtorch_distributed_base_sources" TORCH_SRCS)
if(NOT WIN32)
append_filelist("libtorch_distributed_extra_sources" TORCH_SRCS)
endif()
endif()
endif()
if(USE_CUDA OR USE_ROCM)
@ -568,7 +566,6 @@ if(USE_CUDA)
list(APPEND Caffe2_GPU_SRCS
${TORCH_SRC_DIR}/csrc/cuda/nccl.cpp)
endif()
if(USE_DISTRIBUTED)
append_filelist("libtorch_cuda_distributed_base_sources" Caffe2_GPU_SRCS)
if(NOT WIN32)
append_filelist("libtorch_cuda_distributed_extra_sources" Caffe2_GPU_SRCS)
@ -594,7 +591,6 @@ if(USE_CUDA)
if(CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.0 AND CUDA_NVCC_FLAGS MATCHES ".*compute_90.*")
set_source_files_properties(${ASYNC_MM_FILE} PROPERTIES COMPILE_FLAGS "-gencode arch=compute_90a,code=sm_90a")
endif()
endif()
set_source_files_properties(
${TORCH_ROOT}/aten/src/ATen/cuda/detail/LazyNVRTC.cpp
PROPERTIES COMPILE_DEFINITIONS "NVRTC_SHORTHASH=${CUDA_NVRTC_SHORTHASH}"
@ -626,12 +622,10 @@ if(USE_ROCM)
list(APPEND Caffe2_HIP_SRCS
${TORCH_SRC_DIR}/csrc/cuda/nccl.cpp)
endif()
if(USE_DISTRIBUTED)
append_filelist("libtorch_cuda_distributed_base_sources" Caffe2_HIP_SRCS)
if(NOT WIN32)
append_filelist("libtorch_cuda_distributed_extra_sources" Caffe2_HIP_SRCS)
endif()
endif()
# caffe2_nvrtc's stubs to driver APIs are useful for HIP.
# See NOTE [ ATen NVRTC Stub and HIP ]
add_library(caffe2_nvrtc SHARED ${ATen_NVRTC_STUB_SRCS})
@ -1351,13 +1345,11 @@ if(BUILD_TEST)
add_subdirectory(${TORCH_ROOT}/test/cpp/jit ${CMAKE_BINARY_DIR}/test_jit)
add_subdirectory(${TORCH_ROOT}/test/cpp/nativert ${CMAKE_BINARY_DIR}/test_nativert)
add_subdirectory(${TORCH_ROOT}/test/inductor ${CMAKE_BINARY_DIR}/test_inductor)
if(USE_DISTRIBUTED)
add_subdirectory(${TORCH_ROOT}/test/cpp/c10d ${CMAKE_BINARY_DIR}/test_cpp_c10d)
if(NOT WIN32)
add_subdirectory(${TORCH_ROOT}/test/cpp/dist_autograd ${CMAKE_BINARY_DIR}/dist_autograd)
add_subdirectory(${TORCH_ROOT}/test/cpp/rpc ${CMAKE_BINARY_DIR}/test_cpp_rpc)
endif()
endif()
if(NOT NO_API)
add_subdirectory(${TORCH_ROOT}/test/cpp/api ${CMAKE_BINARY_DIR}/test_api)
endif()
@ -1461,46 +1453,40 @@ if(BUILD_LITE_INTERPRETER)
endif()
endif()
# Pass USE_DISTRIBUTED to torch_cpu, as some codes in jit/pickler.cpp and
# jit/unpickler.cpp need to be compiled only when USE_DISTRIBUTED is set
if(USE_DISTRIBUTED)
target_compile_definitions(torch_cpu PUBLIC USE_DISTRIBUTED)
if(USE_GLOO AND USE_C10D_GLOO)
if(USE_GLOO AND USE_C10D_GLOO)
target_compile_definitions(torch_cpu PUBLIC USE_C10D_GLOO)
endif()
if(USE_UCC AND USE_C10D_UCC)
endif()
if(USE_UCC AND USE_C10D_UCC)
target_compile_definitions(torch_cpu PUBLIC USE_C10D_UCC)
if(USE_CUDA)
target_compile_definitions(torch_cuda PUBLIC USE_C10D_UCC)
endif()
endif()
if(USE_NCCL AND USE_C10D_NCCL)
endif()
if(USE_NCCL AND USE_C10D_NCCL)
if(USE_ROCM)
target_compile_definitions(torch_hip PUBLIC USE_C10D_NCCL)
else()
target_compile_definitions(torch_cuda PUBLIC USE_C10D_NCCL)
endif()
endif()
if(USE_MPI AND USE_C10D_MPI)
endif()
if(USE_MPI AND USE_C10D_MPI)
if(CMAKE_CXX_COMPILER_ID MATCHES "Clang" OR CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
set_source_files_properties(
"${TORCH_SRC_DIR}/csrc/distributed/c10d/ProcessGroupMPI.cpp"
PROPERTIES COMPILE_FLAGS -Wno-deprecated-declarations)
endif()
target_compile_definitions(torch_cpu PUBLIC USE_C10D_MPI)
endif()
# Pass USE_RPC in order to reduce use of
# #if defined(USE_DISTRIBUTED) && !defined(_WIN32)
# need to be removed when RPC is supported
if(NOT WIN32)
endif()
# Pass USE_RPC in order to reduce use of
# #if defined(USE_DISTRIBUTED) && !defined(_WIN32)
# need to be removed when RPC is supported
if(NOT WIN32)
target_compile_definitions(torch_cpu PUBLIC USE_RPC)
endif()
# Pass USE_TENSORPIPE to torch_cpu as some parts of rpc/utils.cpp
# can only be compiled with USE_TENSORPIPE is set.
if(USE_TENSORPIPE)
endif()
# Pass USE_TENSORPIPE to torch_cpu as some parts of rpc/utils.cpp
# can only be compiled with USE_TENSORPIPE is set.
if(USE_TENSORPIPE)
target_compile_definitions(torch_cpu PUBLIC USE_TENSORPIPE)
endif()
endif()
if(NOT INTERN_BUILD_MOBILE)

View File

@ -1126,7 +1126,7 @@ if(USE_CUDA AND CUDA_VERSION VERSION_LESS 13.0)
include_directories(SYSTEM ${CUB_INCLUDE_DIRS})
endif()
if(USE_DISTRIBUTED AND USE_TENSORPIPE)
if(USE_TENSORPIPE)
if(MSVC)
message(WARNING "Tensorpipe cannot be used on Windows.")
else()

View File

@ -191,13 +191,11 @@ function(caffe2_print_configuration_summary)
message(STATUS " USE_PYTORCH_QNNPACK : ${USE_PYTORCH_QNNPACK}")
message(STATUS " USE_XNNPACK : ${USE_XNNPACK}")
message(STATUS " USE_DISTRIBUTED : ${USE_DISTRIBUTED}")
if(${USE_DISTRIBUTED})
message(STATUS " USE_MPI : ${USE_MPI}")
message(STATUS " USE_GLOO : ${USE_GLOO}")
message(STATUS " USE_GLOO_WITH_OPENSSL : ${USE_GLOO_WITH_OPENSSL}")
message(STATUS " USE_GLOO_IBVERBS : ${USE_GLOO_IBVERBS}")
message(STATUS " USE_TENSORPIPE : ${USE_TENSORPIPE}")
endif()
if(NOT "${SELECTED_OP_LIST}" STREQUAL "")
message(STATUS " SELECTED_OP_LIST : ${SELECTED_OP_LIST}")
endif()

View File

@ -3331,13 +3331,6 @@ def coverage_post_process(app, exception):
if not isinstance(app.builder, CoverageBuilder):
return
if not torch.distributed.is_available():
raise RuntimeError(
"The coverage tool cannot run with a version "
"of PyTorch that was built with USE_DISTRIBUTED=0 "
"as this module's API changes."
)
# These are all the modules that have "automodule" in an rst file
# These modules are the ones for which coverage is checked
# Here, we make sure that no module is missing from that list

View File

@ -1,4 +1,4 @@
if(USE_DISTRIBUTED AND NOT WIN32)
if(NOT WIN32)
set(DIST_AUTOGRAD_TEST_DIR "${TORCH_ROOT}/test/cpp/dist_autograd")
set(DIST_AUTOGRAD_TEST_SOURCES
${TORCH_ROOT}/test/cpp/common/main.cpp

View File

@ -63,10 +63,7 @@ from torch.export.passes import move_to_device_pass
from torch.fx.experimental.proxy_tensor import make_fx
from torch.fx.experimental.symbolic_shapes import ShapeEnv
from torch.testing import FileCheck
from torch.testing._internal.common_cuda import (
PLATFORM_SUPPORTS_FLASH_ATTENTION,
xfailIfDistributedNotSupported,
)
from torch.testing._internal.common_cuda import PLATFORM_SUPPORTS_FLASH_ATTENTION
from torch.testing._internal.common_utils import (
find_library_location,
IS_FBCODE,
@ -15360,7 +15357,6 @@ class GraphModule(torch.nn.Module):
finally:
torch.distributed.destroy_process_group()
@xfailIfDistributedNotSupported
def test_distributed_all_reduce(self):
class Foo(torch.nn.Module):
def __init__(self):
@ -15378,7 +15374,6 @@ class GraphModule(torch.nn.Module):
inp = (torch.randn(4, 4),)
self.assertTrue(torch.allclose(ep.module()(*inp), m(*inp)))
@xfailIfDistributedNotSupported
def test_distributed_all_gather(self):
class Foo(torch.nn.Module):
def forward(self, x):
@ -15394,7 +15389,6 @@ class GraphModule(torch.nn.Module):
torch.allclose(a, b) for a, b in zip(ep.module()(*inp), m(*inp))
)
@xfailIfDistributedNotSupported
def test_distributed_all_gather_into_tensor(self):
class Foo(torch.nn.Module):
def forward(self, x):
@ -15408,7 +15402,6 @@ class GraphModule(torch.nn.Module):
inp = (torch.randn(2),)
self.assertTrue(torch.allclose(ep.module()(*inp), m(*inp)))
@xfailIfDistributedNotSupported
@testing.expectedFailureCppRuntime
def test_distributed_all_to_all_single(self):
class Foo(torch.nn.Module):
@ -15426,7 +15419,6 @@ class GraphModule(torch.nn.Module):
)
self.assertEqual(len(nodes), 1)
@xfailIfDistributedNotSupported
@testing.expectedFailureCppRuntime
def test_distributed_reduce_scatter_tensor(self):
class Foo(torch.nn.Module):

View File

@ -88,8 +88,7 @@ def build_pytorch(
) -> None:
my_env = _create_build_env()
if (
not check_negative_env_flag("USE_DISTRIBUTED")
and not check_negative_env_flag("USE_CUDA")
not check_negative_env_flag("USE_CUDA")
and not check_negative_env_flag("USE_NCCL")
and not check_env_flag("USE_SYSTEM_NCCL")
):

View File

@ -273,32 +273,30 @@ add_custom_command(
WORKING_DIRECTORY
"${TORCH_ROOT}"
)
if(USE_DISTRIBUTED)
if(WIN32)
if(WIN32)
append_filelist("libtorch_python_distributed_core_sources" TORCH_PYTHON_SRCS)
else()
else()
append_filelist("libtorch_python_distributed_sources" TORCH_PYTHON_SRCS)
endif()
# Disable certain warnings for GCC-9.X
if(CMAKE_COMPILER_IS_GNUCXX)
endif()
# Disable certain warnings for GCC-9.X
if(CMAKE_COMPILER_IS_GNUCXX)
set_source_files_properties(${TORCH_SRC_DIR}/csrc/distributed/autograd/init.cpp PROPERTIES COMPILE_FLAGS "-Wno-cast-function-type")
set_source_files_properties(${TORCH_SRC_DIR}/csrc/distributed/rpc/testing/init.cpp PROPERTIES COMPILE_FLAGS "-Wno-cast-function-type")
set_source_files_properties(${TORCH_SRC_DIR}/csrc/distributed/c10d/init.cpp PROPERTIES COMPILE_FLAGS "-Wno-cast-function-type")
endif()
# NCCL is a private dependency of libtorch, but libtorch_python includes
# some private headers of libtorch, which in turn include NCCL. As a hacky
# alternative to making NCCL a public dependency of libtorch, we make it
# a private dependency of libtorch_python as well.
if(USE_NCCL)
list(APPEND TORCH_PYTHON_LINK_LIBRARIES __caffe2_nccl)
endif()
# Same for MPI.
if(USE_MPI)
list(APPEND TORCH_PYTHON_LINK_LIBRARIES MPI::MPI_CXX)
endif()
list(APPEND TORCH_PYTHON_COMPILE_DEFINITIONS USE_C10D)
endif()
# NCCL is a private dependency of libtorch, but libtorch_python includes
# some private headers of libtorch, which in turn include NCCL. As a hacky
# alternative to making NCCL a public dependency of libtorch, we make it
# a private dependency of libtorch_python as well.
if(USE_NCCL)
list(APPEND TORCH_PYTHON_LINK_LIBRARIES __caffe2_nccl)
endif()
# Same for MPI.
if(USE_MPI)
list(APPEND TORCH_PYTHON_LINK_LIBRARIES MPI::MPI_CXX)
endif()
list(APPEND TORCH_PYTHON_COMPILE_DEFINITIONS USE_C10D)
if(USE_NCCL AND NOT WIN32)
list(APPEND TORCH_PYTHON_SRCS
@ -366,10 +364,6 @@ if(BUILD_LIBTORCHLESS)
target_compile_definitions(torch_python PRIVATE USE_C10D_NCCL)
endif()
if(USE_DISTRIBUTED)
target_compile_definitions(torch_python PRIVATE USE_DISTRIBUTED)
endif()
if(USE_MPI AND USE_C10D_MPI)
target_compile_definitions(torch_python PRIVATE USE_C10D_MPI)
endif()

View File

@ -15,9 +15,7 @@
#include <torch/csrc/utils/cpp_stacktraces.h>
#include <torch/csrc/utils/pybind.h>
#if defined(USE_DISTRIBUTED)
#include <torch/csrc/distributed/c10d/exception.h>
#endif
inline void PyErr_SetString(PyObject* type, const std::string& message) {
PyErr_SetString(type, message.c_str());

View File

@ -120,14 +120,12 @@
#endif
#endif
#ifdef USE_DISTRIBUTED
#ifdef USE_C10D
#include <torch/csrc/distributed/autograd/python_autograd.h>
#include <torch/csrc/distributed/c10d/c10d.h>
#include <torch/csrc/distributed/rpc/rpc.h>
#include <torch/csrc/distributed/rpc/testing/testing.h>
#endif
#endif
#if defined(USE_VALGRIND)
#include <callgrind.h>
@ -552,11 +550,7 @@ static PyObject* THPModule_getBackcompatKeepdimWarn(
}
static PyObject* THPModule_hasDistributed(PyObject* _unused, PyObject* noargs) {
#ifdef USE_DISTRIBUTED
Py_RETURN_TRUE;
#else
Py_RETURN_FALSE;
#endif
}
static PyObject* THPModule_showConfig(PyObject* module, PyObject* noargs) {
@ -1993,7 +1987,7 @@ PyObject* initModule() {
#ifdef USE_XPU
THPUtils_addPyMethodDefs(methods, THXPModule_methods());
#endif
#if defined(USE_DISTRIBUTED) && defined(USE_C10D)
#ifdef USE_C10D
THPUtils_addPyMethodDefs(
methods, torch::distributed::c10d::python_functions());
#ifndef _WIN32

View File

@ -8,9 +8,7 @@
#include <torch/csrc/autograd/python_autograd.h>
#include <torch/csrc/autograd/python_cpp_function.h>
#include <torch/csrc/autograd/python_variable.h>
#ifdef USE_DISTRIBUTED
#include <torch/csrc/distributed/autograd/functions/sendrpc_backward.h>
#endif
#include <torch/csrc/jit/python/python_tracer.h>
#include <torch/csrc/utils/pybind.h>
#include <torch/csrc/utils/python_numbers.h>
@ -150,11 +148,9 @@ void THPAutograd_initFunctions() {
static PyTypeObject CopyBackwardsClass;
addClass<CopyBackwards, NoCtor>(module, CopyBackwardsClass, "CopyBackwards");
#ifdef USE_DISTRIBUTED
static PyTypeObject SendRpcBackwardClass;
addClass<torch::distributed::autograd::SendRpcBackward, NoCtor>(
module, SendRpcBackwardClass, "SendRpcBackward");
#endif
static PyTypeObject CopySlicesClass;
addClass<CopySlices, NoCtor>(module, CopySlicesClass, "CopySlices");

View File

@ -1,7 +1,5 @@
#ifdef USE_DISTRIBUTED
#include <torch/csrc/distributed/c10d/Functional.hpp>
#endif
#include <torch/csrc/inductor/aoti_torch/c/shim_cpu.h>
#include <torch/csrc/inductor/aoti_torch/utils.h>
@ -533,7 +531,6 @@ AOTITorchError aoti_torch_cpu__weight_int4pack_mm_cpu_tensor(
});
}
#ifdef USE_DISTRIBUTED
AOTITorchError aoti_torch_cpu__c10d_functional_all_reduce_(
AtenTensorHandle inp,
const char* reduce_op,
@ -566,4 +563,3 @@ AOTITorchError aoti_torch_cpu__c10d_functional_wait_tensor(
*ret0 = new_tensor_handle(std::move(tmp_result));
});
}
#endif

View File

@ -13,6 +13,8 @@
#include <torch/csrc/Layout.h>
#include <torch/csrc/QScheme.h>
#include <torch/csrc/Stream.h>
#include <torch/csrc/distributed/rpc/py_rref.h>
#include <torch/csrc/distributed/rpc/rref_impl.h>
#include <torch/csrc/jit/api/module.h>
#include <torch/csrc/jit/frontend/schema_matching.h>
#include <torch/csrc/jit/frontend/tracer.h>
@ -24,10 +26,6 @@
#include <torch/csrc/utils/pybind.h>
#include <torch/csrc/utils/python_arg_parser.h>
#include <torch/csrc/utils/six.h>
#ifdef USE_DISTRIBUTED
#include <torch/csrc/distributed/rpc/py_rref.h>
#include <torch/csrc/distributed/rpc/rref_impl.h>
#endif
#include <ATen/core/function_schema.h>
#include <c10/core/Stream.h>

View File

@ -1225,7 +1225,7 @@ std::shared_ptr<SugaredValue> toSugaredValue(
} else if (obj.ptr() == py::module::import("torch").attr("_check").ptr()) {
return std::make_shared<TorchCheckValue>();
#ifdef USE_RPC
// RPC module is only available when build flag "USE_DISTRIBUTED" is on.
// This is not defined on WINDOWS
} else if (
isRpcAvailable &&
obj.ptr() ==
@ -1238,7 +1238,6 @@ std::shared_ptr<SugaredValue> toSugaredValue(
return SpecialFormValue::create(prim::rpc_sync);
} else if (
isRpcAvailable &&
// RPC module is only available when build flag "USE_DISTRIBUTED" is on.
obj.ptr() ==
py::module::import("torch.distributed.rpc").attr("remote").ptr()) {
return SpecialFormValue::create(prim::rpc_remote);

View File

@ -128,13 +128,8 @@ struct InterpreterContinuation {
std::optional<at::ThreadLocalState> tls_state = std::nullopt)
: state(std::move(state_)),
stack(std::move(stack_)),
tls_state_(std::move(tls_state))
#ifdef USE_DISTRIBUTED
,
dist_autograd_context_id_(dist_autograd_context_id)
#endif
{
}
tls_state_(std::move(tls_state)),
dist_autograd_context_id_(dist_autograd_context_id) {}
void operator()();
@ -142,9 +137,10 @@ struct InterpreterContinuation {
InterpreterState state;
Stack stack;
std::optional<at::ThreadLocalState> tls_state_ = std::nullopt;
#ifdef USE_DISTRIBUTED
int64_t dist_autograd_context_id_;
#ifndef USE_RPC
[[maybe_unused]]
#endif
int64_t dist_autograd_context_id_;
};
// what is the tensors type, including state from the current execution context

View File

@ -79,9 +79,7 @@ class TORCH_API Pickler {
void pushTuple(const IValue& ivalue);
void pushString(const std::string& string);
void pushDevice(const IValue& ivalue);
#ifdef USE_DISTRIBUTED
void pushRRef(const IValue& ivalue);
#endif
// unmemoized version
void pushStringImpl(const std::string& string);
void pushStorageOfTensor(const at::Tensor& tensor);

View File

@ -140,9 +140,7 @@ class TORCH_API Unpickler {
void rebuildParameter();
void rebuildTensorFromTypeV2();
void rebuildSparseTensor();
#ifdef USE_DISTRIBUTED
void rebuildRRef();
#endif
PickleOpCode readInstruction();
PickleOpCode readOpCode() {
return static_cast<PickleOpCode>(read<uint8_t>());

View File

@ -30,15 +30,12 @@
#include <torch/csrc/profiler/standalone/execution_trace_observer.h>
#include <torch/csrc/profiler/util.h>
#ifdef USE_DISTRIBUTED
#include <torch/csrc/distributed/c10d/ParamCommsUtils.hpp>
#endif // USE_DISTRIBUTED
using namespace at;
// Collective property attributes
// https://github.com/pytorch/pytorch/issues/124674
#ifdef USE_DISTRIBUTED
constexpr auto kETCommsName = "collective_name";
constexpr auto kETInMsgNelems = "in_msg_nelems";
constexpr auto kETOutMsgNelems = "out_msg_nelems";
@ -49,7 +46,6 @@ constexpr auto kETGlobalRankStride = "global_rank_stride";
constexpr auto kETGroupSize = "pg_size";
constexpr auto kETProcessGroupName = "pg_name";
constexpr auto kETProcessGroupDesc = "pg_desc";
#endif // USE_DISTRIBUTED
namespace torch::profiler::impl {
@ -269,7 +265,6 @@ static std::ofstream openOutputFile(const std::string& name) {
return stream;
}
#ifdef USE_DISTRIBUTED
static std::string getAttrJson(
const std::string& name,
const std::string& type,
@ -282,7 +277,6 @@ static std::string getAttrJson(
type,
value);
}
#endif
static void writeJsonNode(
std::ofstream& out,
@ -660,7 +654,6 @@ static void handleKernelBackendInfo(
inline std::string getCommsNodeAttrs(const RecordFunction& fn) { // NOLINT
std::vector<std::string> attrs;
#ifdef USE_DISTRIBUTED
// We rely on paramcommsdebug object that is available in thread local info
auto debugInfo = dynamic_cast<ParamCommsDebugInfo*>(
c10::ThreadLocalDebugInfo::get(c10::DebugInfoKind::PARAM_COMMS_INFO));
@ -704,8 +697,6 @@ inline std::string getCommsNodeAttrs(const RecordFunction& fn) { // NOLINT
addAttr(kGroupSize, kETGroupSize, "uint64");
#endif // USE_DISTRIBUTED
// XXX consider using as string stream?
return attrs.empty() ? "" : fmt::format(", {}", fmt::join(attrs, ", "));
}

View File

@ -11,9 +11,7 @@
#ifdef USE_KINETO
#include <libkineto.h>
#endif
#ifdef USE_DISTRIBUTED
#include <torch/csrc/distributed/c10d/ParamCommsUtils.hpp>
#endif // USE_DISTRIBUTED
namespace torch::profiler::impl {
@ -455,7 +453,6 @@ std::unordered_map<std::string, std::string> saveNcclMeta(
// @lint-ignore CLANGTIDY
const SaveNcclMetaConfig& config) {
std::unordered_map<std::string, std::string> map;
#ifdef USE_DISTRIBUTED
auto debugInfo = dynamic_cast<ParamCommsDebugInfo*>(
c10::ThreadLocalDebugInfo::get(c10::DebugInfoKind::PARAM_COMMS_INFO));
@ -565,7 +562,6 @@ std::unordered_map<std::string, std::string> saveNcclMeta(
}
}
}
#endif // USE_DISTRIBUTED
return map;
}

View File

@ -185,7 +185,6 @@ struct HashCombine {
}
};
#ifdef USE_DISTRIBUTED
constexpr auto kCommsName = "Collective name";
constexpr auto kDtype = "dtype";
constexpr auto kInMsgNelems = "In msg nelems";
@ -203,6 +202,5 @@ constexpr auto kP2pSrc = "Src Rank";
constexpr auto kP2pDst = "Dst Rank";
constexpr auto kInTensorsStart = "Input Tensors start";
constexpr auto kOutTensorsStart = "Output Tensors start";
#endif // USE_DISTRIBUTED
} // namespace torch::profiler::impl

View File

@ -14,16 +14,10 @@ log = logging.getLogger(__name__)
def is_available() -> bool:
"""
Return ``True`` if the distributed package is available.
Otherwise,
``torch.distributed`` does not expose any other APIs. Currently,
``torch.distributed`` is available on Linux, MacOS and Windows. Set
``USE_DISTRIBUTED=1`` to enable it when building PyTorch from source.
Currently, the default value is ``USE_DISTRIBUTED=1`` for Linux and Windows,
``USE_DISTRIBUTED=0`` for MacOS.
Always returns ``True``. Note that even if distributed is available,
there may not necessarily be any usable backends.
"""
return hasattr(torch._C, "_c10d_init")
return True
if is_available() and not torch._C._c10d_init():

View File

@ -5,10 +5,6 @@ from typing import Union
import torch
import torch.distributed as dist
# The two imports below are not always available depending on the
# USE_DISTRIBUTED compile flag. Make sure they raise import error
# if we're trying to use them.
from torch.distributed import group, ProcessGroup

View File

@ -2,10 +2,6 @@
import torch
import torch.distributed as dist
from torch.autograd import Function
# The two imports below are not always available depending on the
# USE_DISTRIBUTED compile flag. Make sure they raise import error
# if we're trying to use them.
from torch.distributed import group, ReduceOp