mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
Revert "Validate input types for torch.nn.Linear
and torch.nn.Bilinear
(#135596)"
This reverts commit e157ce3ebbb3f30d008c15914e82eb74217562f0. Reverted https://github.com/pytorch/pytorch/pull/135596 on behalf of https://github.com/malfet due to It's too restrictive, should allow other int-like types, such as `numpy.int64` ([comment](https://github.com/pytorch/pytorch/pull/135596#issuecomment-2349714104))
This commit is contained in:
@ -3180,66 +3180,6 @@ rnn_gru_lstm_module_info_decorators = (
|
||||
|
||||
# Start of module error inputs functions.
|
||||
|
||||
def module_error_inputs_torch_nn_Linear(module_info, device, dtype, requires_grad, training, **kwargs):
|
||||
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
||||
samples = [
|
||||
ErrorModuleInput(
|
||||
ModuleInput(
|
||||
constructor_input=FunctionInput("10", 20),
|
||||
forward_input=FunctionInput(make_input(3, 10)),
|
||||
),
|
||||
error_on=ModuleErrorEnum.CONSTRUCTION_ERROR,
|
||||
error_type=TypeError,
|
||||
error_regex=r"Expected int for in_features but got <class 'str'>"
|
||||
),
|
||||
ErrorModuleInput(
|
||||
ModuleInput(
|
||||
constructor_input=FunctionInput(10, 20.7),
|
||||
forward_input=FunctionInput(make_input(3, 10)),
|
||||
),
|
||||
error_on=ModuleErrorEnum.CONSTRUCTION_ERROR,
|
||||
error_type=TypeError,
|
||||
error_regex=r"Expected int for out_features but got <class 'float'>"
|
||||
),
|
||||
]
|
||||
return samples
|
||||
|
||||
|
||||
def module_error_inputs_torch_nn_Bilinear(module_info, device, dtype, requires_grad, training, **kwargs):
|
||||
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
||||
samples = [
|
||||
ErrorModuleInput(
|
||||
ModuleInput(
|
||||
constructor_input=FunctionInput("10", 20, 30),
|
||||
forward_input=FunctionInput(make_input(3, 10), make_input(3, 20)),
|
||||
),
|
||||
error_on=ModuleErrorEnum.CONSTRUCTION_ERROR,
|
||||
error_type=TypeError,
|
||||
error_regex=r"Expected int for in1_features but got <class 'str'>"
|
||||
),
|
||||
ErrorModuleInput(
|
||||
ModuleInput(
|
||||
constructor_input=FunctionInput(10, 20.7, 30),
|
||||
forward_input=FunctionInput(make_input(3, 10), make_input(3, 20)),
|
||||
),
|
||||
error_on=ModuleErrorEnum.CONSTRUCTION_ERROR,
|
||||
error_type=TypeError,
|
||||
error_regex=r"Expected int for in2_features but got <class 'float'>"
|
||||
),
|
||||
ErrorModuleInput(
|
||||
ModuleInput(
|
||||
constructor_input=FunctionInput(10, 20, "30"),
|
||||
forward_input=FunctionInput(make_input(3, 10), make_input(3, 20)),
|
||||
),
|
||||
error_on=ModuleErrorEnum.CONSTRUCTION_ERROR,
|
||||
error_type=TypeError,
|
||||
error_regex=r"Expected int for out_features but got <class 'str'>"
|
||||
),
|
||||
]
|
||||
return samples
|
||||
|
||||
|
||||
|
||||
def module_error_inputs_torch_nn_RNN_GRU_Cell(module_info, device, dtype, requires_grad, training, **kwargs):
|
||||
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
||||
samples = [
|
||||
@ -3892,14 +3832,12 @@ module_db: List[ModuleInfo] = [
|
||||
)),
|
||||
ModuleInfo(torch.nn.Linear,
|
||||
module_inputs_func=module_inputs_torch_nn_Linear,
|
||||
module_error_inputs_func=module_error_inputs_torch_nn_Linear,
|
||||
skips=(
|
||||
# No channels_last support for Linear currently.
|
||||
DecorateInfo(unittest.skip("Skipped!"), 'TestModule', 'test_memory_format'),)
|
||||
),
|
||||
ModuleInfo(torch.nn.Bilinear,
|
||||
module_inputs_func=module_inputs_torch_nn_Bilinear,
|
||||
module_error_inputs_func=module_error_inputs_torch_nn_Bilinear,
|
||||
decorators=[
|
||||
DecorateInfo(
|
||||
toleranceOverride({
|
||||
|
Reference in New Issue
Block a user